Research article

On the nonlinear system of fourth-order beam equations with integral boundary conditions

  • Received: 05 July 2021 Accepted: 04 August 2021 Published: 09 August 2021
  • MSC : 34B15, 34B18

  • The purpose of this paper is to establish an existence theorem for a system of nonlinear fourth-order differential equations with two parameters

    $ \begin{eqnarray*} \left\{ \begin{array}{rcl} u^{(4)}+A(x)u& = &\lambda f(x, u, v, u'', v''), \ 0<x<1, \\ v^{(4)}+B(x)v& = &\mu g(x, u, v, u'', v''), \ 0<x<1 \end{array} \right. \end{eqnarray*} $

    subject to the coupled integral boundary conditions:

    $ \begin{eqnarray*} \left\{ \begin{array}{rcl} u(0) = u'(1) = u'''(1) = 0, \ u''(0)& = & \int_{0}^{1}p(x)v''(x)dx, \\ v(0) = v'(1) = v'''(1) = 0, \ v''(0)& = & \int_{0}^{1}q(x)u''(x)dx, \end{array} \right. \end{eqnarray*} $

    where $ A, \ B \in C[0, 1], $ $ p, q\in L^{1}[0, 1], $ $ \lambda > 0, \mu > 0 $ are two parameters and $ f, g: [0, 1]\times[0, \infty)\times[0, \infty)\times(-\infty, 0)\times(-\infty, 0) \rightarrow \mathbb{R} $ are two continuous functions satisfy the growth conditions.

    Citation: Ammar Khanfer, Lazhar Bougoffa. On the nonlinear system of fourth-order beam equations with integral boundary conditions[J]. AIMS Mathematics, 2021, 6(10): 11467-11481. doi: 10.3934/math.2021664

    Related Papers:

  • The purpose of this paper is to establish an existence theorem for a system of nonlinear fourth-order differential equations with two parameters

    $ \begin{eqnarray*} \left\{ \begin{array}{rcl} u^{(4)}+A(x)u& = &\lambda f(x, u, v, u'', v''), \ 0<x<1, \\ v^{(4)}+B(x)v& = &\mu g(x, u, v, u'', v''), \ 0<x<1 \end{array} \right. \end{eqnarray*} $

    subject to the coupled integral boundary conditions:

    $ \begin{eqnarray*} \left\{ \begin{array}{rcl} u(0) = u'(1) = u'''(1) = 0, \ u''(0)& = & \int_{0}^{1}p(x)v''(x)dx, \\ v(0) = v'(1) = v'''(1) = 0, \ v''(0)& = & \int_{0}^{1}q(x)u''(x)dx, \end{array} \right. \end{eqnarray*} $

    where $ A, \ B \in C[0, 1], $ $ p, q\in L^{1}[0, 1], $ $ \lambda > 0, \mu > 0 $ are two parameters and $ f, g: [0, 1]\times[0, \infty)\times[0, \infty)\times(-\infty, 0)\times(-\infty, 0) \rightarrow \mathbb{R} $ are two continuous functions satisfy the growth conditions.



    加载中


    [1] F. L. Zhu, L. S. Liu, Y. H. Wu, Positive solutions for systems of a nonlinear fourth-order singular semipositone boundary value problems, Appl. Math. Comput., 216 (2010), 448–457.
    [2] Q. Y. Wang, L. Yang, Positive solutions for a nonlinear system of fourth-order ordinary differential equations, Electron. J. Differ. Eq., 2020 (2020), 1–15.
    [3] R. T. Jiang, C. B. Zhai, Positive solutions for a system of fourth-order differential equations with integral boundary conditions and two parameters, Nonlinear Anal.-Model., 23 (2018), 401–422.
    [4] A. Khanfer, L. Bougoffa, On the fourth-order nonlinear beam equation of a small deflection with nonlocal conditions, AIMS Mathematics, 6 (2021), 9899–9910.
    [5] Z. B. Bai, H. Y. Wang, On positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270 (2002), 357–368.
    [6] R. Ma, Multiple positive solutions for a semipositone fourth-order boundary value problem, Hiroshima Math. J., 33 (2003), 217–227.
    [7] Q. Zhang, S. H. Chena, J. H. Lv, Upper and lower solution method for fourth-order four-pointboundary value problems, J. Comput. Appl. Math., 196 (2006), 387–393.
    [8] Z. L. Wei, C. C. Pang, The method of lower and upper solutions for fourth order singular m-point boundary value problems, J. Math. Anal. Appl., 322 (2006), 675–692.
    [9] G. Infante, P. Pietramala, A cantilever equation with nonlinear boundary conditions, Electron. J. Qual. Theor., 15 (2009), 1–14.
    [10] H. L. Ma, Symmetric positive solutions for nonlocal boundary value problems of fourth order, Nonlinear Anal.-Theor., 68 (2008), 645–651.
    [11] X. L. Han, H. L. Gao, J. Xu, Existence of positive solutions for nonlocal fourth-order boundary value problem with variable parameter, Fixed Point Theory A., 2011 (2011), 604046.
    [12] J. B. Diaz, F. T. Metcalf, Variations of Wirtinger's inequality, New York: Academic Press, 1976.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2094) PDF downloads(94) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog