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Abstract: The purpose of this paper is to establish an existence theorem for a system of nonlinear
fourth-order differential equations with two parameters{

u(4) + A(x)u = λ f (x, u, v, u′′, v′′), 0 < x < 1,
v(4) + B(x)v = µg(x, u, v, u′′, v′′), 0 < x < 1

subject to the coupled integral boundary conditions: u(0) = u′(1) = u′′′(1) = 0, u′′(0) =
∫ 1

0
p(x)v′′(x)dx,

v(0) = v′(1) = v′′′(1) = 0, v′′(0) =
∫ 1

0
q(x)u′′(x)dx,

where A, B ∈ C[0, 1], p, q ∈ L1[0, 1], λ > 0, µ > 0 are two parameters and f , g : [0, 1] × [0,∞) ×
[0,∞) × (−∞, 0) × (−∞, 0)→ R are two continuous functions satisfy the growth conditions.

Keywords: fourth-order differential equations; nonlocal boundary conditions; existence theorem;
Schauder’s fixed point theorem
Mathematics Subject Classification: 34B15, 34B18

1. Introduction

In [1], the authors investigated the following system of fourth-order differential equations{
u(4) = f (x, u, v, u′′, v′′), 0 < x < 1,
v(4) = g(x, u, v, u′′, v′′), 0 < x < 1,

(1.1)
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subject to the boundary conditions{
u(0) = u′′(0) = 0, u(1) = u′′(1) = 0,
v(0) = v′′(0) = 0, v(1) = v′′(1) = 0,

(1.2)

where f , g ∈ C ((0, 1) × (0,∞) × (0,∞) × (−∞, 0) × (−∞, 0), R) . The results were obtained by
approximating the fourth-order system to a second-order singular one and using a fixed point index
theorem on cones.

Recently, the authors [2] studied the following system{
u(4) + β1u′′ − α1u = f (x, u, v), 0 < x < 1,
v(4) + β2v′′ − α2v = g(x, u, v), 0 < x < 1,

(1.3)

subject to the above boundary conditions, where αi, βi ∈ R, i = 1, 2 satisfy βi < 2π2, αi ≥ −
β2

i
4 ,

αi
π4 +

βi
π2 < 1, and established the existence of positive solutions for this system with superlinear or

sublinear nonlinearities.
In [3], the author considered the nonlinear fourth-order differential equation{

u(4) = λ f (x, u, v), 0 < x < 1,
v(4) = µg(x, u, v), 0 < x < 1,

(1.4)

subject to the coupled integral boundary conditions u(0) = u′(1) = u′′′(1) = 0, u′′(0) =
∫ 1

0
p(x)v′′(x)dx,

v(0) = v′(1) = v′′′(1) = 0, v′′(0) =
∫ 1

0
q(x)u′′(x)dx,

(1.5)

where p and q are continuous functions on [0, 1], λ and µ are two positive parameters and
f , g : [0, 1] × [0,∞) × [0,∞)→ [0,∞) are continuous functions, and established a sufficient condition∫ 1

0
p(x)dx

∫ 1

0
q(x)dx < 1 with the extreme limits of f and g to guarantee a unique positive solution

(u, v) in C[0, 1] × C[0, 1] for this problem by using the Guo-Krasnosel’skii fixed point theorem and
the Green’s functions.

In this paper, we establish an existence theorem for the following boundary value problem{
u(4) + A(x)u = λ f (x, u, v, u′′, v′′), 0 < x < 1,
v(4) + B(x)v = µg(x, u, v, u′′, v′′), 0 < x < 1,

(1.6)

subject to the integral boundary conditions (1.5), where A, B ∈ C[0, 1], p, q ∈ L1[0, 1] and f , g :
[0, 1] × [0,∞) × [0,∞) × (−∞, 0) × (−∞, 0) → R are continuous functions and satisfy the growth
conditions with variable parameters:

| f (x, u, v,w, z)| ≤ a1(x) |u| + b1(x) |v| + c1(x) |w| + d1(x) |z| + e1(x), (1.7)

|g(x, u, v,w, z)| ≤ a2(x) |u| + b2(x) |v| + c2(x) |w| + d2(x) |z| + e2(x), (1.8)

where ai(x), bi(x), ci(x), di(x), ei(x), i = 1, 2 are positive continuous functions on [0, 1]. Moreover, we
will assume that

sup
0≤x≤1

A(x) = A1 <
α
√

C1
, sup

0≤x≤1
B(x) = B1 <

β
√

C1
, 0 < λ ≤

α − A1
√

C1

7k1 + 1
, 0 < µ ≤

β − B1
√

C1

7k2 + 1
, (1.9)
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σ =

∫ 1

0
p(x)dx

∫ 1

0
q(x)dx < 1,

α

1 − σ
≤

√
C1,

β

1 − σ
≤

√
C1. (1.10)

where ki = max{ai, bi, ci, di}, ai = max
0≤x≤1

ai(x), bi = max
0≤x≤1

bi(x), ci = max
0≤x≤1

ci(x), di = max
0≤x≤1

di(x),

ei = max
0≤x≤1

ei(x), C1 =
4

π2 − 4
, α = 1 −

∫ 1

0
p2(x) > 0 and β = 1 −

∫ 1

0
q2(x) > 0.

It is well-known that fourth-order differential equations play a major role in physics and elasticity
theory, and lead to wide range of applications in mechanical engineering. Equations of (1.6) represent
deflections of beams, where u and v denote the deflections and f , g denote the distributed loads on the
beams, and each distributed load depends on the deflection. Here; u′′ is the bending moment stiffness,
and u(4) is the load density stiffness, and λ, µ are parameters that represent the reciprocal of the flexural
rigidity of the material of each beam, which measures the resistance to bend. The simplest case is
when the load f = f (x) depends only on position x, but more general representations of f could also
include other variables, such as the deflection u and the bending moment stiffness u′′, which arise
frequently in applications to mechanics. In [4], we established an existence and uniqueness theorem
for the boundary value problem

u(4) + A(x)u = λ f (x, u, u′′), 0 < x < 1, (1.11)

subject to the integral boundary conditions

u(0) = u(1) =

1∫
0

p(x)u(x)dx, u′′(0) = u′′(1) =

1∫
0

q(x)u′′(x)dx, (1.12)

where A ∈ C[0, 1], p, q ∈ L1[0, 1] and f is continuous on [0, 1]×R×R and satisfies a growth condition
with variable parameters:

| f (x, u, v)| ≤ a(x) |u| + b(x) |v| + c(x), (1.13)

where a, b, c are positive continuous functions on [0, 1]. This problem has attracted the attention of
many researchers due to its important and various applications to mechanics and construction
engineering (see [5–11] and references therein). With the exception of [9, 11] none of the authors
discussed the problem with integral conditions. In [4], we investigated the problem in the case of
small deflections, which usually occurs when the material of the beam has high flexural rigidity (i.e.,
λ is small), and so we imposed an upper bound for λ. This natural assumption of small deflections is
essential to neglect shear distortion and effects of rotatory inertia and this will lead to Euler-Bernoulli
Equation. Moreover, it is critical when it comes to industrial applications since large deflections of
beams used in building towers, skyscrapers, bridges, and other constructions may cause cracks in the
beams and this could lead to disastrous effects, such as the collapse of the construction for example.

In this paper, we wish to extend our study to the case of systems of beam equations rather than a
single equation. Particularly speaking, investigating the existence of small deflections (i.e., solutions
to the system (1.6) under some natural assumptions).

In system (1.6) the situation is a bit more complicated since it represents two different beams each
of which exhibits a small deflection, and both deflections and their bending moment stiffness affect
the distributed loads on both beams. This situation arises in heavy construction (towers, skyscrapers)
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where the deflection of one beam could affect the load on the next beam and the other surrounding
beams. Studying these systems with a careful analysis of deflections could help reach the typical
design for the structure to be built. In [1] the boundary conditions models a simply supported beam
(provided that p = q = 0). In this study, since deflection of a beam is affected by loads on surrounding
beams, it is more suitable to study boundary condition of the form (1.5) which represent beams that
are simply supported at one end and sliding clamped at the other end, which is the same model studied
by [3] . This important study is an extension of [4] to system of beams, and it generalizes the works
of [1–3]. The system (1.6) generalizes the preceding systems in the following sense:

1). If A = B = 0 then (1.6) reduces to (1.4) and (1.1).
2). If f and g depend only on u and v then (1.6) reduces to (1.3) and (1.4).
3). If p(x) = q(x) = 0 then the condition (1.5) reduces to (1.2).

2. Existence theorem

The system (1.6) subject to the integral boundary conditions (1.5) can be converted into the
following coupled system:

u′′ = w, u(0) = u′(1) = 0,
v′′ = z, v(0) = v′(1) = 0,
w′′ = −A(x)u + λ f (x, u, v, w, z), w(0) =

∫ 1

0
p(x)z(x)dx, w′(1) = 0,

z′′ = −B(x)v + µg(x, u, v, w, z), z(0) =
∫ 1

0
q(x)w(x)dx, z′(1) = 0.

(2.1)

Thus, we shall prove the following statement

Proposition 2.1. If the conditions (1.7)–(1.10) hold, then there exist two constants M > 0 and M∗ > 0
such that for any x ∈ [0, 1] and any solution (u, v) to the system (2.1), we have

‖ u ‖3,ρ≤ M and ‖ v ‖3,ρ≤ M∗, (2.2)

where

‖ u ‖3,ρ= max
0≤x≤1

(
|u(x)| + |u′(x)| + |ρ(x)u′′(x)| + |u′′′(x)|

)
, (2.3)

‖ v ‖3,ρ= max
0≤x≤1

(
|v(x)| + |v′(x)| + |ρ(x)v′′(x)| + |v′′′(x)|

)
, (2.4)

and ρ(x) = x(1 − x
2 ), x ∈ [0, 1].

Proof. Multiplying both sides of the first equation of (2.1) by u and integrating the resulting equation
from 0 to 1, then employing integration by parts, we obtain

u′(1)u(1) − u′(0)u(0) −
∫ 1

0
u′2(x)dx =

∫ 1

0
u(x)w(x)dx. (2.5)

Taking into account u(0) = u′(1) = 0, we have∫ 1

0
u′2(x)dx = −

∫ 1

0
u(x)w(x)dx. (2.6)
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The integral
∫ 1

0
u(x)w(x)dx can be estimated by means of the Cauchy-Schwarz inequality∣∣∣∣∣∣

∫ 1

0
u(x)w(x)dx

∣∣∣∣∣∣ ≤
(∫ 1

0
u2(x)dx

) 1
2
(∫ 1

0
w2(x)dx

) 1
2

. (2.7)

Using the Wirtinger’s inequality [12]:∫ b

a
h2(x)dx ≤

4(b − a)2

π2

∫ b

a
(h′(x))2dx, (2.8)

provided h ∈ C1[a, b] and h(a) = 0, we obtain∫ 1

0
u2(x)dx ≤

4
π2

∫ 1

0
u′2(x)dx. (2.9)

Thus ∫ 1

0
u′2(x)dx ≤

4
π2

∫ 1

0
w2(x)dx. (2.10)

Adding (2.9) and (2.10), we obtain∫ 1

0
u2(x)dx +

(
1 −

4
π2

) ∫ 1

0
u′2(x)dx ≤

4
π2

∫ 1

0
w2(x)dx. (2.11)

Consequently, ∫ 1

0
u2(x)dx +

∫ 1

0
u′2(x)dx ≤ C1

∫ 1

0
w2(x)dx, (2.12)

where C1 =
4

π2 − 4
.

Similarly, for the second equation of (2.1), we obtain∫ 1

0
v2(x)dx +

∫ 1

0
v′2(x)dx ≤ C1

∫ 1

0
z2(x)dx. (2.13)

Proceeding as before, multiplying both sides of the third equation of (2.1) by ρ(x)v and integrating
the resulting equation from 0 to 1, then employing integration by parts, taking into account the nonlocal
boundary conditions w(0) =

∫ 1

0
p(x)z(x)dx and w′(1) = 0, we obtain∫ 1

0
w2(x)dx + 2

∫ 1

0
ρ(x)(w′(x))2dx =

[∫ 1

0
p(x)z(x)dx

]2

+ 2
∫ 1

0
A(x)ρ(x)u(x)w(x)dx

−2λ
∫ 1

0
f (x, u, v,w, z)ρ(x)w(x)dx. (2.14)

Note that, since sup
0≤x≤1

ρ(x) = 1
2 ,

2

∣∣∣∣∣∣
∫ 1

0
A(x)ρ(x)u(x)w(x)dx

∣∣∣∣∣∣ ≤ A1

(∫ 1

0
u2(x)dx

) 1
2
(∫ 1

0
w2(x)dx

) 1
2

, (2.15)
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and [∫ 1

0
p(x)z(x)dx

]2

≤

(∫ 1

0
p2(x)dx

) (∫ 1

0
z2(x)dx

)
. (2.16)

Applying (1.7) to f (x, u, v, w, z) to obtain∣∣∣∣∣∣
∫ 1

0
f (x, u, v,w, z)ρ(x)w(x)dx

∣∣∣∣∣∣ ≤ a1

2

∫ 1

0
|u(x)w(x)| dx +

b1

2

∫ 1

0
|v(x)w(x)| dx +

c1

2

∫ 1

0
w2(x)dx

+
d1

2

∫ 1

0
|w(x)z(x)| dx +

1
2

∫ 1

0
|e1(x)w(x)| dx. (2.17)

The integrals on the right hand side of the above inequality can be estimated by means of the ε−
inequality: ∫ 1

0
|F(x)G(x)| dx ≤

1
ε

∫ 1

0
F2(x)dx + ε

∫ 1

0
G2(x)dx, ε > 0. (2.18)

Thus ∣∣∣∣∣∣
∫ 1

0
f (x, u, v,w, z)ρ(x)w(x)dx

∣∣∣∣∣∣ ≤ a1

2ε1

∫ 1

0
u2(x)dx +

a1ε1

2

∫ 1

0
w2(x)dx +

b1

2ε2

∫ 1

0
v2(x)dx

+
b1ε2

2

∫ 1

0
w2(x)dx +

c1

2

∫ 1

0
w2(x)dx +

d1ε3

2

∫ 1

0
w2(x)dx

+
d1

2ε3

∫ 1

0
z2(x)dx +

e2
1

2ε4
+
ε4

2

∫ 1

0
w2(x)dx, εi > 0, i = 1, ..., 4. (2.19)

But ∫ 1

0
u2(x)dx ≤

∫ 1

0
u2(x)dx +

∫ 1

0
u′2(x)dx ≤ C1

∫ 1

0
w2(x)dx, (2.20)

and ∫ 1

0
v2(x)dx ≤

∫ 1

0
v2(x)dx +

∫ 1

0
v′2(x)dx ≤ C1

∫ 1

0
z2(x)dx. (2.21)

Substituting (2.20) and (2.21) into (2.15) and (2.16), we obtain

2

∣∣∣∣∣∣
∫ 1

0
A(x)ρ(x)u(x)w(x)dx

∣∣∣∣∣∣ ≤ A1

√
C1

∫ 1

0
w2(x)dx, (2.22)

and ∣∣∣∣∣∣
∫ 1

0
f (x, u, v,w, z)ρ(x)w(x)dx

∣∣∣∣∣∣ ≤
(
a1C1

2ε1
+

a1ε1

2
+

c1

2
+

b1ε2

2
+

d1ε3

2
+
ε4

2

) ∫ 1

0
w2(x)dx

+

(
b1C1

2ε2
+

d1

2ε3

) ∫ 1

0
z2(x)dx +

e2
1

2ε4
. (2.23)
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Now using (2.14), (2.16), (2.22) and (2.23), we obtain

[
1 − A1

√
C1 − λ

(
a1C1

ε1
+ a1ε1 + c1 + b1ε2 + d1ε3 + ε4

)] ∫ 1

0
w2(x)dx + 2

∫ 1

0
ρ(x)w′2(x)dx

≤

[
λ

(
b1C1

ε1
+

d1

ε2

)
+

∫ 1

0
p2(x)dx

] ∫ 1

0
z2(x)dx +

λe2
1

ε4
. (2.24)

If we choose εi = 1, i = 1, ..., 4, then[
1 − A1

√
C1 − λ

(a1C1

2
+ a1 + b1 + c1 + d1 + 1

)] ∫ 1

0
w2(x)dx + 2

∫ 1

0
ρ(x)w′2(x)dx

≤

[
λ

2
(b1C1 + d1) +

∫ 1

0
p2(x)dx

] ∫ 1

0
z2(x)dx +

λe2
1

2
. (2.25)

Since a1C1
2 + a1 + b1 + c1 + d1 + 1 < K1 = 5k1 + 1, where k1 = max{a1, b1, c1, d1},[

1 − A1

√
C1 − λK1

] ∫ 1

0
w2(x)dx + 2

∫ 1

0
ρ(x)w′2(x)dx

≤

[
λ

2
(b1C1 + d1) +

∫ 1

0
p2(x)dx

] ∫ 1

0
z2(x)dx +

λe2
1

2
. (2.26)

Similarly, for the fourth equation of (2.1), we have

[
1 − B1

√
C1 − µK2

] ∫ 1

0
z2(x)dx + 2

∫ 1

0
ρ(x)z′2(x)dx

≤

[
µ

2
(b2C1 + d2) +

∫ 1

0
q2(x)dx

] ∫ 1

0
w2(x)dx +

µe2
2

2
, (2.27)

where K2 = 5k2 +1, and k2 = max{a2, b2, c2, d2}. Since A1 <
α
√

C1
, B1 <

β
√

C1
, and in view of λ < α−A1

√
C1

K1

and µ < β−B1
√

C1
K2

, we have

γ1

∫ 1

0
w2(x)dx + 2

∫ 1

0
ρ(x)w′2(x)dx ≤ δ1

∫ 1

0
z2(x)dx +

λe2
1

2
, (2.28)

and

γ2

∫ 1

0
z2(x)dx + 2

∫ 1

0
ρ(x)z′2(x)dx ≤ δ2

∫ 1

0
w2(x)dx +

µe2
2

2
, (2.29)

where

γ1 = 1 − A1

√
C1 − λK1 > 0, γ2 = 1 − B1

√
C1 − µK2 > 0, (2.30)

and

δ1 =
λ

2
(b1C1 + d1) +

∫ 1

0
p2(x)dx, δ2 =

µ

2
(b2C1 + d2) +

∫ 1

0
q2(x)dx. (2.31)
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Hence ∫ 1

0
w2(x)dx <

∫ 1

0
w2(x)dx +

∫ 1

0
ρ(x)w′2(x)dx ≤

δ1

γ1

∫ 1

0
z2(x)dx +

λe2
1

2γ1
, (2.32)

and ∫ 1

0
z2(x)dx <

∫ 1

0
z2(x)dx +

∫ 1

0
ρ(x)z′2(x)dx ≤

δ2

γ2

∫ 1

0
w2(x)dx +

µe2
2

2γ2
. (2.33)

Substituting (2.33) into (2.32), we obtain∫ 1

0
w2(x)dx ≤ M1, (2.34)

where M1 =

δ1µe2
2

2γ1γ2
+

λe2
1

2γ1

1 − δ1δ2
γ1γ2

. It is easy to see from the upper bound of λ in (1.9) that λ <
α −
√

C1A1

K1 + b1C1
2 + d1

2

,

hence δ1 < γ1. Similarly, µ <
β −
√

C1B1

K2 + b2C1
2 + d2

2

, hence δ2 < γ2 and therefore δ1δ1 < γ1γ2. Hence

∫ 1

0
z2(x)dx ≤ M2, (2.35)

where M2 = δ2
γ2

M1 +
µe2

2
2γ2
. Combining (2.34) and (2.35) with (2.12) and (2.13), respectively, we have∫ 1

0
u2(x)dx +

∫ 1

0
u′2(x)dx ≤ C1M1, (2.36)

and ∫ 1

0
v2(x)dx +

∫ 1

0
v′2(x)dx ≤ C1M2. (2.37)

From (2.32) and (2.33), we obtain∫ 1

0
w2(x)dx +

∫ 1

0
ρ(x)w′2(x)dx ≤ M3, (2.38)

where M3 = δ1
γ1

M2 +
λe2

1
2γ1

and ∫ 1

0
z2(x)dx +

∫ 1

0
ρ(x)z′2(x)dx ≤ M4, (2.39)

where M4 = δ2
γ2

M1 +
µe2

2
2γ2
.

From the third equation of (2.1), we have∫ 1

0
(w′′)2(x)dx =

∫ 1

0

[
−A(x)u + λ f (x, u(x), v(x),w(x), z(x))

]2 dx. (2.40)
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Applying the growth condition (1.7) and using the sum of square inequality (
∑n

i=1 hi)2 ≤ n
∑

i=1 h2
i ,

we obtain

∫ 1

0
(w′′)2(x)dx ≤ 2

[
A2

1

∫ 1

0
u2(x)dx + λ2

∫ 1

0
f 2(x, u(x), v(x),w(x), z(x))dx

]
, (2.41)

and∫ 1

0
f 2dx ≤ 5

[
a2

1

∫ 1

0
u2(x)dx + b2

1

∫ 1

0
v2(x)dx + c2

1

∫ 1

0
w2(x)dx + d2

1

∫ 1

0
z2(x)dx + e2

1

]
. (2.42)

Hence ∫ 1

0
(w′′(x))2dx ≤ M5, (2.43)

where M5 = 2A2
1C1M1 + 10λ2

(
a2

1C1M1 + b2
1C1M2 + c2

1M1 + d2
1 M2 + e2

1

)
.

Similarly, from the fourth equation of (2.1), we have∫ 1

0
(z′′(x))2dx ≤ M6. (2.44)

where M6 = 2B2
1C1M2 + 10µ2

(
a2

2C1M1 + b2
2C1M2 + c2

2M1 + d2
2 M2 + e2

2

)
.

On the other hand, we have

u(x) =

∫ x

0
u′(x)dx, u(0) = 0 and u′(x) = −

∫ 1

x
u′′(x)dx, u′(1) = 0. (2.45)

Thus

|u(x)| ≤
(∫ 1

0
(u′(x))2dx

) 1
2

≤
√

C1M1, (2.46)

and

|u′(x)| ≤
(∫ 1

0
(u′′(x))2dx

) 1
2

≤
√

M1. (2.47)

Also, from

ρ(x)w(x) =

∫ x

0
(ρ(x)w(x))′ dx, ρ(0) = 0, (2.48)

we obtain

|ρ(x)w(x)| ≤
∫ 1

0

∣∣∣(ρ(x)w(x))′
∣∣∣ dx ≤

∫ 1

0
|ρ′(x)w(x) + ρ(x)w′(x)| dx. (2.49)

Using sup
0≤x≤1

|ρ′(x)| = 1, sup
0≤x≤1

ρ(x) |= 1
2 and applying Hölder’s inequality, we obtain

| ρ(x)w(x) |≤
√

2
[∫ 1

0
(w2(x) + ρ(x)w′(x)2)dx

] 1
2

≤
√

2M3. (2.50)
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We also have

w′(x) =

∫ 1

x
w′′(x)dx, w′(1) = 0. (2.51)

Hence

|w′(x)| ≤
(∫ 1

0
(w′′(x))2dx

) 1
2

≤
√

M5. (2.52)

Similarly, we obtain

max
0≤x≤1

(
|v(x)| + |v′(x)| + |ρ(x)z(x)| + |z′(x)|

)
≤

√
C1M2 +

√
M2 +

√
2M4 +

√
M6. (2.53)

Thus, the resulting inequalities imply the required result, and complete the proof of the proposition.
�

The fundamental theorem used in proving the existence of the solution is Schauder’s theorem. In
order to make use of this theorem, it is sufficient to present the following lemmas.

Lemma 2.2. Let h : [0, 1]→ R be a continuous function. The unique solution u of the boundary value
problem

u′′ = h(x), 0 < x < 1, (2.54)

subject to the boundary conditions u(0) = u′(1) = 0 is given by

u(x) =

∫ 1

0
ĝ(x, y)h(y)dy, (2.55)

where

ĝ(x, y) =

{
−x, 0 ≤ x ≤ y ≤ 1,
−y, 0 ≤ y ≤ x ≤ 1.

(2.56)

Proof. Integrating this equation twice, we obtain

u(x) =

∫ x

0

[∫ y

1
h(s)ds

]
dy + δ1x + δ2, (2.57)

where δi, i = 1, 2 are constants of integration. Integrations by parts of the integral with respect to y in
this equation gives

u(x) = −x
∫ 1

x
h(y)dy −

∫ x

0
yh(y)dy + δ1x + δ2. (2.58)

We determine δ1 = δ2 = 0 from u(0) = u′(1) = 0. It follows that

u(x) = −x
∫ 1

x
h(y)dy −

∫ x

0
yh(y)dy. (2.59)

The proof is complete. �
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Lemma 2.3. Let h1, h2 : [0, 1]→ R be continuous functions. The unique solution (u, v) of the following
system {

w′′ = h1(x), 0 < x < 1,
z′′ = h2(x), 0 < x < 1,

(2.60)

subject to the integral boundary conditions w(0) =
∫ 1

0
p(x)z(x)dx, w′(1) = 0,

z(0) =
∫ 1

0
p(x)w(x)dx, z′(1) = 0,

(2.61)

is given by

w(x) =

∫ 1

0
G1(x, y)h1(y)dy +

∫ 1

0
G2(x, y)h2(y)dy, z(x) =

∫ 1

0
G3(x, y)h2(y)dy +

∫ 1

0
G4(x, y)h1(y)dy,

(2.62)
where Gi(x; y), i = 1, 2, 3, 4 are the Green functions of this boundary value problem and given by

G1(x, y) = ĝ(x, y) +
1

1 − σ

∫ 1

0
p(x)dx

∫ 1

0
q(x)̂g(x, y)dx, G2(x, y) =

1
1 − σ

∫ 1

0
p(x)̂g(x, y)dx, (2.63)

and

G3(x, y) = ĝ(x, y) +
1

1 − σ

∫ 1

0
q(x)dx

∫ 1

0
p(x)̂g(x, y)dx, G4(x, y) =

1
1 − σ

∫ 1

0
q(x)̂g(x, y)dx, (2.64)

where σ =
∫ 1

0
p(x)dx

∫ 1

0
q(x)dx.

Proof. Proceeding as in the previous proof of lemma, we obtain w =
∫ 1

0
ĝ(x, y)h1(y)dy + δ1x + δ2, 0 < x < 1,

z =
∫ 1

0
ĝ(x, y)h2(y)dy + δ3x + δ4, 0 < x < 1.

(2.65)

We determine δi, i = 1, 2, 3, 4 from the given boundary conditions, which imply that δ1 = δ3 =

0, δ2 =
∫ 1

0
p(x)z(x)dx, δ4 =

∫ 1

0
q(x)w(x)dx. It follows that w =

∫ 1

0
ĝ(x, y)h1(y)dy +

∫ 1

0
p(x)z(x)dx, 0 < x < 1,

z =
∫ 1

0
ĝ(x, y)h2(y)dy +

∫ 1

0
q(x)w(x)dx, 0 < x < 1.

(2.66)

Solving this system for
∫ 1

0
p(x)z(x)dx and

∫ 1

0
q(x)w(x)dx, we obtain

∫ 1
0 q(x)w(x)dx = 1

1−σ

[∫ 1
0 q(x)(

∫ 1
0 ĝ(x, y)h1(y)dy)dx +

∫ 1
0 q(x)dx

∫ 1
0 p(x)(

∫ 1
0 ĝ(x, y)h2(y)dy)dx

]
,∫ 1

0 p(x)z(x)dx = 1
1−σ

[∫ 1
0 p(x)(

∫ 1
0 ĝ(x, y)h2(y)dy)dx +

∫ 1
0 p(x)dx

∫ 1
0 q(x)(

∫ 1
0 ĝ(x, y)h1(y)dy)dx

]
.

(2.67)

A simple computation leads to
w(x) =

∫ 1
0 ĝ(x, y)h1(y)dy + 1

1−α

[∫ 1
0 q(x)(

∫ 1
0 ĝ(x, y)h1(y)dy)dx +

∫ 1
0 q(x)dx

∫ 1
0 p(x)(

∫ 1
0 ĝ(x, y)h2(y)dy)dx

]
,

z(x) =
∫ 1

0 ĝ(x, y)h2(y)dy + 1
1−α

[∫ 1
0 p(x)(

∫ 1
0 ĝ(x, y)h2(y)dy)dx +

∫ 1
0 p(x)dx

∫ 1
0 q(x)(

∫ 1
0 ĝ(x, y)h1(y)dy)dx

]
,

(2.68)

which are what we had to prove. �
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Thus, in view of these two lemmas and from (2.1), we obtain an equivalent integral system

u =

∫ 1

0
ĝ(x, s)w(s)ds, (2.69)

v =

∫ 1

0
ĝ(x, s)z(s)ds, (2.70)

w = −

∫ 1

0
G1(x, s)A(s)u(s)ds + λ

∫ 1

0
G1(x, s) f (s, u(s), v(s),w(s), z(s))ds

−

∫ 1

0
G2(x, s)B(s)v(s)ds + µ

∫ 1

0
G2(x, s)g(s, u(s), v(s),w(s), z(s))ds, (2.71)

and

z = −

∫ 1

0
G3(x, s)B(s)v(s)ds + µ

∫ 1

0
G3(x, s)g(s, u(s), v(s),w(s), z(s))ds

−

∫ 1

0
G4(x, s)A(s)w(s)ds + λ

∫ 1

0
G4(x, s) f (s, u(s), v(s),w(s), z(s))ds. (2.72)

Inserting (2.71) and (2.72) into (2.69) and (2.70), we obtain

u = −

∫ 1

0
Ĝ1(x, t)A(t)u(t)dt + λ

∫ 1

0
Ĝ1(x, t) f (t, u(t), v(t),w(t), z(t))dt

−

∫ 1

0
Ĝ2(x, t)B(t)v(t)dt + µ

∫ 1

0
Ĝ2(x, t)g(t, u(t), v(t),w(t), z(t))dt, (2.73)

and

v = −

∫ 1

0
Ĝ3(x, t)B(t)v(t)dt + µ

∫ 1

0
Ĝ3(x, t)g(t, u(t), v(t),w(t), z(t))dt

−

∫ 1

0
Ĝ4(x, t)A(t)w(t)dt + λ

∫ 1

0
Ĝ4(x, t) f (t, u(t), v(t),w(t), z(t))dt, (2.74)

respectively, where Ĝi(x, t) =
∫ 1

0
ĝ(x, s)Gi(s, t)ds, i = 1, ..., 4.

Consider the Banach space Yρ = C3
ρ[0, 1] ⊂ C3[0, 1] with norm ‖ u ‖3,ρ, where ρ(x) = x(1 − x

2 ), and
define the operator T : X −→ X by T (u, v) = (T1(u, v),T2(u, v)) , where X = Yρ × Yρ with norm
‖ (u, v) ‖3,ρ=‖ u ‖3,ρ + ‖ v ‖3,ρ, and

T1(u, v) = −

∫ 1

0
Ĝ1(x, t)A(t)u(t)dt + λ

∫ 1

0
Ĝ1(x, t) f (t, u(t), v(t),w(t), z(t))dt

−

∫ 1

0
Ĝ2(x, t)B(t)v(t)dt + µ

∫ 1

0
Ĝ2(x, t)g(t, u(t), v(t),w(t), z(t))dt, (2.75)

and

T2(u, v) = −

∫ 1

0
Ĝ3(x, t)B(t)v(t)dt + µ

∫ 1

0
Ĝ3(x, t)g(t, u(t), v(t),w(t), z(t))dt
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−

∫ 1

0
Ĝ4(x, t)A(t)w(t)dt + λ

∫ 1

0
Ĝ4(x, t) f (t, u(t), v(t),w(t), z(t))dt. (2.76)

Consider the closed and convex set

S =
{
(u, v) ∈ X : ‖(u, v)‖3,ρ ≤ 6(M + M∗)

}
. (2.77)

Lemma 2.4. For any (u, v) ∈ S, T (u, v) is contained in S.

Proof. Note first that the differentiability of Ĝi, i = 1, ..., 4 allows differentiation under integral sign.
From the definition of T (u, v), we have

T ′1(u, v) = −

∫ 1

0
Ĝ1,x(x, t)A(t)u(t)dt + λ

∫ 1

0
Ĝ1,x(x, t) f (t, u(t), v(t),w(t), z(t))dt

−

∫ 1

0
Ĝ2,x(x, t)B(t)v(t)dt + µ

∫ 1

0
Ĝ2,x(x, t)g(t, u(t), v(t),w(t), z(t))dt, (2.78)

T ′′1 (u, v) = −

∫ 1

0
Ĝ1,xx(x, t)A(t)u(t)dt + λ

∫ 1

0
Ĝ1,xx(x, t) f (t, u(t), v(t),w(t), z(t))dt

−

∫ 1

0
Ĝ2,xx(x, t)B(t)v(t)dt + µ

∫ 1

0
Ĝ2,xx(x, t)g(t, u(t), v(t),w(t), z(t))dt, (2.79)

and

T ′′′1 (u, v) = −

∫ 1

0
Ĝ1,xxx(x, t)A(t)u(t)dt + λ

∫ 1

0
Ĝ1,xxx(x, t) f (t, u(t), v(t),w(t), z(t))dt

−

∫ 1

0
Ĝ2,xxx(x, t)B(t)v(t)dt + µ

∫ 1

0
Ĝ2,xxx(x, t)g(t, u(t), v(t),w(t), z(t))dt. (2.80)

Thus,

|T1(u, v)| ≤
∫ 1

0

∣∣∣∣Ĝ1(x, t)
∣∣∣∣ |A(t)| |u(t)| dt + λ

∫ 1

0

∣∣∣∣Ĝ1(x, t)
∣∣∣∣ | f (t, u(t), v(t),w(t), z(t))| dt

+

∫ 1

0

∣∣∣∣Ĝ2(x, t)
∣∣∣∣ |B(t)| |v(t)| dt + µ

∫ 1

0

∣∣∣∣Ĝ2(x, t)
∣∣∣∣ |g(t, u(t), v(t),w(t), z(t))| dt. (2.81)

Using
∣∣∣̂g(x, s)

∣∣∣ ≤ 1,
∣∣∣∣Ĝ1(s, t)

∣∣∣∣ ≤ 1
1−σ , σ =

∫ 1

0
p(x)dx

∫ 1

0
q(x)dx,

∣∣∣∣Ĝ2(s, t)
∣∣∣∣ ≤ 1

1−σ ,∣∣∣∣Ĝ3(s, t)
∣∣∣∣ ≤ 1

1−σ

∫ 1

0
p(x)dx,

∣∣∣∣Ĝ4(s, t)
∣∣∣∣ ≤ 1

1−σ

∫ 1

0
q(x)dx, |A(t)| ≤ A1, |B(t)| ≤ B1 and the growth conditions

on f and g with the above estimates of u, v,w, z, (Proposition 2.1) and with sufficiently small values of
λ and µ, thus there exist constants Di > 0, i = 1, 2, 3, 4 such that

max
0≤x≤1

|T1(u, v)| ≤ D1 = max
( A1

1 − σ
,

B1

1 − σ

)
(M + M∗). (2.82)

Since A1 <
α
√

C1
, B1 <

β
√

C1
, α

1−σ ≤
√

C1 and β

1−σ ≤
√

C1, we have

max
0≤x≤1

|T1(u, v)| ≤ M + M∗. (2.83)
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Proceeding in this way for T ′1(u, v), T ′′1 (u, v) and T ′′′1 (u, v), we obtain

max
0≤x≤1

| T ′1(u, v) |≤ D2 ≤ M+ M∗, max
0≤x≤1

| ρ(x)T ′′1 (u, v) |≤ D3 ≤ M+ M∗, max
0≤x≤1

| T ′′′1 (u, v) |≤ D4 ≤ M+ M∗.

(2.84)
Thus

‖ T1(u, v) ‖3,ρ≤ 3(M + M∗). (2.85)

A similar argument of the above gives

‖ T2(u, v) ‖3,ρ≤ 3(M + M∗). (2.86)

It follows that ‖ T (u, v) ‖3,ρ≤ 6(M + M∗). Taking into account the continuity of f (x, u, v, u′′, v′′),
g(x, u, v, u′′, v′′), u, v, u′′ and v′′, it follows that T (u, v) is continuous. This shows that T (u, v) is also
contained in S. �

To prove that T (u, v) is compact we use the Arzela-Ascoli Lemma, that is; T (S) must be closed,
bounded and equicontinuous. In order to prove that T (S) is equicontinuous, it is sufficient to prove that
if ε > 0 there exists δ > 0 such that for all x ∈ [0, 1] the inequality

|T (u(x), v(x)) − T (u(y), v(y))| ≤ ε, (2.87)

is satisfied for any x and y in the interval [0, 1] with | x − y |< δ. Indeed, by the definition of T1(u, v),
there exists a constant K1 > 0 such that

|T1 (u(x), v(x)) − T1(u(y), v(y))| ≤

∣∣∣∣∣∣
∫ x

y
Ĝ1(x, t)A(t)u(t)dt + λ

∫ x

y
Ĝ1(x, t) f (t, u(t), v(t),w(t), z(t))dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ x

y
Ĝ2(x, t)B(t)v(t)dt + µ

∫ x

y
Ĝ2(x, t)g(t, u(t), v(t),w(t), z(t))dt

∣∣∣∣∣∣
≤ K1 |x − y| . (2.88)

Similarly, for T2 (u(x), v(x)) , we have

|T2 (u(x), v(x)) − T2(u(y), v(y))| ≤ K2 |x − y| for any x, y ∈ [0, 1], (2.89)

which proves the equicontinuous of T (u, v).
Consequently, T (u, v) has a fixed point by the Schauder’s fixed point theorem.
Thus, we have the following theorem

Theorem 2.5. Under the hypothesis of Proposition 1, there exists a continuous solution (u, v) in
C3
ρ[0, 1] ×C3

ρ[0, 1] which satisfies system (1.6) with the boundary conditions (1.5).
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