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1. Introduction and preliminaries

Consider the linear hybrid time-delay system

ẋ(t) = Ax(t) + Bx(t − τ) +C
∫ 0

−h
x(t + θ)dθ, (1.1)

where x(t) ∈ Rn, the matrices A, B and C are in Rn×n, and τ ≥ 0 and h ≥ 0 are constant delays. Systems
of this nature are extensively employed in modeling dynamical systems in economics and population
dynamics, as well as in the study of deformable solids with memory, and wave processes in extended
electrical circuits [1, 2].

A system is said to be positive if for any nonnegative initial condition, the solutions x(t) of the
system remain nonnegative for all t ≥ 0.
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Throughout this paper, we will be dealing with real square matrices. In addition, for a symmetric
matrix A ∈ Rn×n, we shall write A ≺ 0 (A ⪯ 0, resp.) if A is negative definite (semidefinite, resp.).

Let A = [ai j]n
i, j=1 be a real n × n matrix. Then, A is defined as follows:

• Metzler matrix: if ai j ≥ 0 for all i , j, where i, j = 1, . . . , n.

• Nonnegative matrix: if ai j ≥ 0 for all i, j = 1, . . . , n.

• Hurwitz matrix: if all its eigenvalues have negative real parts.

For further details on such matrices, refer to [3].
The following result, known as the Lyapunov theorem, provides a necessary and sufficient condition

for a matrix to be Hurwitz.

Lemma 1.1. [4] Let A ∈ Rn×n. Then, A is Hurwitz if and only if there exists a positive definite matrix
P ∈ Rn×n such that

AT P + PA ≺ 0. (1.2)

The matrix inequality (1.2) is commonly referred to as the Lyapunov inequality. In the case
where P is a positive diagonal matrix satisfying the above Lyapunov inequality, A is called a Lyapunov
diagonally stable matrix. It follows from the definition of Hurwitz matrices that a Lyapunov diagonally
stable matrix is Hurwitz. For those interested in gaining a deeper understanding and broader context of
this topic from the perspective of matrix theory, we direct the reader to [3–6]. These references offer an
in-depth and thorough exploration of the subject, covering essential aspects and methodologies integral
to the field. They provide valuable insights and a comprehensive overview that enrich and support the
discussion presented in our work.

Lyapunov diagonal stability has been applied in various fields, such as population dynamics [7, 8],
communication networks [9], and systems theory [3]. Given its significance, it has been extensively
studied in the literature [10–15].

This notion of matrix stability has been expanded to include simultaneous Lyapunov diagonal
stability. This involves the existence of a positive diagonal matrix D that satisfies the Lyapunov
inequality for a family of matrices A = {Ai}

r
i=1, where Ai ∈ R

n×n for i = 1, . . . , r. This form of
stability is referred to as common Lyapunov diagonal stability. There is more than one approach
used in the literature to characterize this type of stability. In [16], a theorem of alternatives for linear
maps over inner product spaces is presented. Another approach, developed in [17], utilizes the notion
of P-matrices and Hadamard products. In [18], the Khatri-Rao products are used to derive further
characterizations. For more recent developments in this area, see [16–22].

Returning to the system (1.1), let us quote a few results. The first one provides a characterization
of system (1.1) assuming it is a positive system. Meanwhile, the second result offers a necessary and
sufficient condition for the asymptotic stability of the system under the same assumption.

Lemma 1.2. [23] The system given in (1.1) is positive if and only if A is Metzler; meanwhile, B and
C are nonnegative.

Lemma 1.3. [24] If (1.1) is a positive system, then it is asymptotically stable if and only if

A + B + hC

is a Hurwitz matrix.
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According to [25], when employing the direct Lyapunov method for the stability analysis
of the system (1.1), a Lyapunov-Krasovskii functional can be determined and expressed in the
following form:

V(x) = xT (t)Px(t) +
∫ t

t−τ
xT (θ)Qx(θ) dθ +

∫ 0

−h

∫ t

t+θ
xT (u)Rx(u) du dθ, (1.3)

where P, Q, and R are positive definite matrices.
The time-delayed system in (1.1) is said to be as diagonally stable if a Lyapunov-Krasovskii

functional, as described in (1.3), exists with positive diagonal matrices P, Q, and R that meet the
criteria of the Krasovskii theorem on asymptotic stability [26].

Theorem 1.1. [27] If system (1.1) is positive, then it is asymptotically stable if and only if it is
diagonally stable.

As it has been shown in [27], a positive system in the form of (1.1) is diagonally stable if and only
if there exist a triple of positive diagonal matrices P, Q, and R satisfying the following linear matrix
inequality: 

AT P + PA + Q + hR PB hPC
BT P −Q 0

hCT P 0 −hR

 ≺ 0.

The main focus of the work of this paper is deriving a characterization for the existence of a diagonal
solution for the above inequality in the case that A is a Metzler matrix with B and C being nonnegative
matrices. Without loss of generality, we assume h = 1. In other words, we investigate the existence of
positive diagonal solution for the inequality in the form

AT P + PA + Q + R PB PC
BT P −Q 0
CT P 0 −R

 ≺ 0. (1.4)

An immediate observation here is that when B = C = 0, this last inequality reduces to the Lyapunov
inequality. Meanwhile, if only C = 0, it becomes the Riccati inequality; see [28] for further details.

In a Euclidean vector space over R, nonempty disjoint convex sets can be separated by a hyperplane.
The hyperplane separation theorem, which appears in various forms in the literature (see [29]) is
particularly relevant when one of the convex sets is a cone, as highlighted in the following lemma.
This version, which we will refer to as the Separation Theorem, is an important result for this paper.

Lemma 1.4. [30] Let U and V be nonempty convex subsets in a Euclidean space E (over R) with an
inner product ⟨·, ·⟩. In addition, suppose that V is a cone and the intersection of U and V is empty.
Then, there exists a nonzero vector u in E such that

⟨u, z⟩ ≥ 0, ∀z ∈ U,

⟨u, z⟩ ≤ 0, ∀z ∈ V.

It is well-known that the cone of positive semidefinite matrices in Rn×n is self-dual. The next lemma
demonstrates this.
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Lemma 1.5. [29] Let W denote the space of all n × n symmetric matrices equipped with the inner
product ⟨X,Y⟩ = tr(XY) for all X,Y ∈ W. Then, the cone of positive semidefinite matrices S in W is
self-dual. That is, if H ∈ W satisfies

tr(HX) ≥ 0, ∀ X ∈ S ,

then H ∈ S .

2. Main results

We start this section with some technical lemmas which are going to be necessary for us to develop
the main results of this paper.

Lemma 2.1. [19] Suppose A ∈ Rn×n is a Metzler matrix and B ∈ Rn×n is a nonnegative matrix. If
the matrix C = A + B is Hurwitz, then there exists a positive diagonal matrix D ∈ Rn×n such that the
following inequalities hold:

AT D + DA ≺ 0

and
CT D + DC ≺ 0.

Lemma 2.2. [28] Suppose A ∈ Rn×n is a Metzler matrix and H ∈ Rn×n is a positive semidefinite
matrix. Furthermore, let u ∈ Rn be a nonnegative vector such that ui =

√
hii for i = 1, . . . , n. Then, the

following inequality holds:
tr(uuT A) ≥ tr(HA).

Using the Schur complement, we can derive the following result, which provides an alternative
method for finding the solution to (1.1). For more detailed discussions on the Schur complement and
its applications, see, for example, [31].

Lemma 2.3. Let A, B,C ∈ Rn×n. There exist positive definite matrices P,Q, and R in Rn×n satisfying
the inequality 

AT P + PA + Q + R PB PC
BT P −Q 0
CT P 0 −R

 ≺ 0 (2.1)

if and only if
AT P + PA + Q + R + PBQ−1BT P + PCR−1CT P ≺ 0.

Proof. It follows directly from the Schur complement that inequality (2.1) is true if and only if the
following is satisfied:

(i)
[
−Q 0
0 −R

]
≺ 0, and

(ii) AT P + PA + Q + R −
[
PB PC

] [−Q 0
0 −R

]−1 [
BT P
CT P

]
≺ 0.
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Since Q and R are positive definite matrices, then (i) is always true. Meanwhile, (ii) is equivalent to

AT P + PA + Q + R + PBQ−1BT P + PCR−1CT P ≺ 0.

Theorem 2.1. Let A, B,C ∈ Rn×n such that A is a Metzler matrix, while B and C are nonnegative
matrices. If there is a positive diagonal matrix D and any positive definite matrices Q and R satisfying
the inequality (1.4), then the matrix A + B +C is Lyapunov diagonally stable.

Proof. Suppose that D ∈ Rn×n is a positive diagonal matrix and Q,R ∈ Rn×n are positive definite
matrices satisfying the inequality in (1.4). Thus, for any nonzero vector u ∈ Rn, construct a vector

v ∈ R3n to be such that v =


u
u
u

. Clearly, v is nonzero since u is nonzero. Therefore, it follows that

vT


AT D + DA + Q + R DB DC

BT D −Q 0
CT D 0 −R

 v =
[
uT uT uT

] 
AT D + DA + Q + R DB DC

BT D −Q 0
CT D 0 −R



u
u
u

 < 0.

This means that uT (AT D + DA + BT D + DB +CT D + DC)u < 0, i.e.,

(A + B +C)T D + D(A + B +C) ≺ 0.

This implies that the matrix A + B +C is Lyapunov diagonally stable.
We are now ready to present our main result, the proof of which follows the approach outlined in

Theorem 3.1 from [28].

Theorem 2.2. Let A, B,C ∈ Rn×n such that A is a Metzler matrix, while B and C are nonnegative
matrices. Then, there is a positive diagonal matrix D and positive definite matrices Q and R satisfying
the inequality (1.4) if and only if the matrix A + B +C is Hurwitz.

Proof. Necessity: It is immediate from Theorem 2.1 and the Laypunov theorem.
Sufficiency: Suppose that A + B+C is a Hurwitz matrix. Observe that since both B and C are both

nonnegative, then B +C is also a nonnegative matrix. Hence, since A is Metzler, by Lemma 2.1, there
is a positive diagonal matrix D ∈ Rn×n satisfying the following inequality:

(A + B +C)T D + D(A + B +C) ≺ 0. (2.2)

Select a matrix D satisfying (2.2). Therefore, to finish this direction, we need to show that there is a
pair of positive definite matrices B and C in Rn×n such that

AT D + DA + Q + R DB DC
BT D −Q 0
CT D 0 −R

 ≺ 0. (2.3)

We shall proceed with a contrapositive argument. First, suppose that there are no positive definite
matrices Q and R in Rn×n satisfying (2.3). Next, consider the space E consisting of all 3n × 3n real
symmetric matrices, with an inner product defined by

⟨F,G⟩ = tr(FG),

AIMS Mathematics Volume 9, Issue 10, 26435–26445.



26440

where F,G ∈ E. Furthermore, consider the following sets:

U =
{ 

AT D + DA + Q + R DB DC
BT D −Q 0
CT D 0 −R

 | Q ≻ 0,R ≻ 0 in Rn×n

}
, (2.4)

and
V =

{
S ≺ 0 | S ∈ R3n×3n

}
. (2.5)

Since there are no positive definite matrices satisfying (2.3), we must have U ∩ V = ∅. Furthermore,
it is clear that U and V represent nonempty convex cones within the vector space E. Based on
these observations, the separation theorem, specifically Lemma 1.4, is applicable in this context.
Consequently, there exists a nonzero matrix H ∈ E such that

tr(HX) ≥ 0, ∀X ∈ U, (2.6)

tr(HY) ≤ 0, ∀Y ∈ V. (2.7)

According to Lemma 1.5, inequality (2.7) indicates that H ⪰ 0. Next, partition H into a 3 by 3 block
matrix as follows:

H =


H11 H12 H13

HT
12 H22 H23

HT
13 HT

23 H33

 ,
where each Hi j ∈ R

n×n. Consequently, from inequality (2.6), we have

tr(HX) = tr
( 

H11 H12 H13

HT
12 H22 H23

HT
13 HT

23 H33



AT D + DA + Q + R DB DC

BT D −Q 0
CT D 0 −R


)
≥ 0

for all Q ≻ 0 and R ≻ 0 in Rn×n. By expanding the matrix multiplication in this last trace and recalling
that the trace is the sum of the diagonal entries, we obtain the following expression:

tr
(
H11(AT D + DA) + H12BT D + H13CT D + HT

12DB + (H11 − H22)Q + HT
13DC + (H11 − H33)R

)
≥ 0

for all Q ≻ 0 and R ≻ 0. Reordering this last inequality, we conclude that for all Q ≻ 0 and R ≻ 0, we
have

tr
(
H11(AT D + DA) + H12BT D + H13CT D + HT

12DB + HT
13DC

)
≥tr

(
(H22 − H11)Q + (H33 − H11)R

)
.

(2.8)

For any given positive definite matrix Q, if tr(Q(H22−H11)) > 0, this leads to a contradiction with (2.8).
To demonstrate this, let us consider the positive definite matrix tQ, where t > 0 is a sufficiently large
scalar. This substitution will reverse the inequality in (2.8). Therefore, we conclude that

tr(Q(H22 − H11)) ≤ 0 (2.9)

for all positive definite matrices Q. Using a similar argument, it can be shown that for all positive
definite matrices R,

tr(R(H33 − H11)) ≤ 0. (2.10)
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Now, the following trace:

tr
(
H11(AT D + DA) + H12BT D + H13CT D + HT

12DB + HT
13DC

)
must be negative. Otherwise, we will obtain a contradiction to (2.8). To see that, let t > 0 be
sufficiently small scalar. Then, consider the positive definite matrices tQ and tR and substitute them in
inequality (2.8). Doing this would result in the following:

tr
(
(H22 − H11)tQ + (H33 − H11)tR

)
> tr

(
H11(AT D + DA) + H12BT D + H13CT D + HT

12DB + HT
13DC

)
.

This is clearly contradicts that (2.8) holds for all positive definite matrices Q and R. Therefore, we
must have

tr
(
H11(AT D + DA) + H12BT D + H13CT D + HT

12DB + HT
13DC

)
≥ 0. (2.11)

Now, recall that the matrix H is partitioned into 3 by 3 block matrices with each block in Rn×n. Let
us construct a vector u ∈ R3n as the following: u =

[
x y z

]
, where x j =

√
(H11) j j, y j =

√
(H22) j j,

and z j =
√

(H33) j j. This means that x2
j is the jth diagonal component of H11, y2

j is the jth diagonal
component of H22, and z2

j is the jth diagonal component of H33, j = 1, . . . , n.
According to Lemma 1.5, inequality (2.9) implies that H22 − H11 ⪯ 0 and inequality (2.10) implies

that H33 − H11 ⪯ 0. This is equivalent to H11 − H22 ⪰ 0 and H11 − H33 ⪰ 0, i.e., x j − y j ≥ 0 and
x j − z j ≥ 0 for j = 1, . . . , n. Since H22 ⪰ 0 and H33 ⪰ 0, we must have y j ≥ 0 and z j ≥ 0. Therefore,
for j = 1, . . . , n, x j ≥ y j ≥ 0 and x j ≥ z j ≥ 0. Also, observe that x is a nonzero vector; otherwise y = 0
and z = 0, meaning that H is a zero matrix and this leads to a contradiction.

Additionally, note that we have

tr
(
H11(AT D + DA) + H12BT D + H13CT D + HT

12DB + HT
13DC

)
=tr

( 
H11 H12 H13

HT
12 H22 H23

HT
13 HT

23 H33



AT D + DA DB DC

BT D 0 0
CT D 0 0

 ). (2.12)

Recall that H is a positive semidefinite matrix. On the other hand, it is not difficult to see that the
matrix 

AT D + DA DB DC
BT D 0 0
CT D 0 0


is Metzler. Thus, by Lemma 2.2 it follows that

tr
(
uuT


AT D + DA DB DC

BT D 0 0
CT D 0 0


)
≥ tr

( 
H11 H12 H13

HT
12 H22 H23

HT
13 HT

23 H33



AT D + DA DB DC

BT D 0 0
CT D 0 0

 ). (2.13)

From (2.11), we obtain that

tr
(
uuT


AT D + DA DB DC

BT D 0 0
CT D 0 0


)
≥ 0, (2.14)
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which is the same as the following trace:

tr(xxT (AT D + DA) + xyT BT D + xzTCT D + yxT DB + zxT DC) ≥ 0. (2.15)

This is identical to
xT DAx + xT DBy + xT DCz ≥ 0. (2.16)

We note that B, C, and D all contain nonnegative entries. Additionally, for each j, we have x j ≥ y j and
x j ≥ z j. Thus, we conclude that

xT DBx ≥ xT DBy

and
xT DCx ≥ xT DCz.

By this and (2.16), we can see that

xT DAx + xT DBx + xT DCx ≥ xT DAx + xT DBy + xT DCz ≥ 0,

i.e.,
xT (DA + DB + DC)x ≥ 0.

This last inequality suggests that

xT (AT D + DA + BT D + DB +CT D + DC)x = xT ((A + B +C)T D + D(A + B +C)
)
x ≥ 0.

This contradicts that D satisfies the inequality in (2.2). This means that there is Q ≻ 0 and R ≻ 0 in
Rn×n satisfying (2.3). This completes the proof.

We note that when C = 0, Theorem 2.2 coincides with Theorem 3.1 in [28].

3. Conclusions

In this paper, we have derived a characterization for the existence of diagonal solutions for a
class of a linear matrix inequality. We considered systems where the matrices involved are Metzler
and nonnegative, and we established conditions for the asymptotic stability of these systems. Using
the separation theorems, we proved that if there exist positive diagonal matrices satisfying certain
inequalities, then the system matrices are Hurwitz. Our findings extend the current understanding of
Lyapunov diagonal stability and provide practical criteria for ensuring the stability of positive time-
delay systems.

Our work broadens the scope of Lyapunov diagonal stability by providing a more comprehensive
set of conditions under which stability can be ensured. This advancement is particularly relevant for
applications in economics, population dynamics, and engineering, where systems often exhibit time
delays and require robustness under nonnegativity constraints.

Future work can explore the possibility of developing similar characterizations for arbitrary matrices
A, B, and C, without the restrictive condition that A is Metzler and B and C are nonnegative matrices.
Such a generalization could open up new avenues for analysis in systems where these conditions do
not hold. Additionally, another promising direction for future research is the development of further
characterizations that parallel the results for Lyapunov diagonal stability, as seen in the works of [10]
and [15]. These explorations could provide deeper insights into the stability of complex dynamical
systems and enhance our understanding of the interplay between these inequalities and broader stability
criteria.
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20. T. Büyükköroğlu, Common diagonal Lyapunov function for third order linear switched system, J.
Comput. Appl. Math., 236 (2012), 3647–3653. https://doi.org/10.1016/j.cam.2011.06.013

21. M. Gumus, J. H. Xu, On common diagonal Lyapunov solutions, Linear Algebra Appl., 507 (2016),
32–50. https://doi.org/10.1016/j.laa.2016.05.032

22. R. N. Shorten, K. S. Narendra, Strict positive realness and the existence of diagonal Lyapunov
functions, In: Proceedings of the 45th IEEE Conference on Decision and Control, 2006, 2918–
2923. https://doi.org/10.1109/CDC.2006.376934

23. P. H. A. Ngoc, Stability of positive differential systems with delay, IEEE Trans. Automat. Control,
58 (2013), 203–209. https://doi.org/10.1109/TAC.2012.2203031

24. A. Y. Obolenskii, Stability of solutions of autonomous Wazewski systems with delayed action, Ukr.
Math. J., 35 (1983), 486–492. https://doi.org/10.1007/BF01061640

25. E. Fridman, Tutorial on Lyapunov-based methods for time-delay systems, Eur. J. Control, 20
(2014), 271–283. https://doi.org/10.1016/j.ejcon.2014.10.001

26. N. Krasovskii, Stability of motion, Stanford University Press, 1963.

27. A. Y. Aleksandrov, Construction of the Lyapunov-Krasovskii functionals for
some classes of positive delay systems, Sib. Math. J., 59 (2018), 753–762.
https://doi.org/10.1134/S0037446618050014

28. O. Mason, Diagonal Riccati stability and positive time-delay systems, Syst. Control Lett., 61
(2012), 6–10. https://doi.org/10.1016/j.sysconle.2011.09.022

AIMS Mathematics Volume 9, Issue 10, 26435–26445.

http://dx.doi.org/https://doi.org/10.1109/ACC.2003.1243497
http://dx.doi.org/https://doi.org/10.1109/TAC.1982.1102855
http://dx.doi.org/https://doi.org/10.1016/0024-3795(91)90366-5
http://dx.doi.org/https://doi.org/10.1016/0024-3795(91)90366-5
http://dx.doi.org/https://doi.org/10.1080/03081087.2011.647018
http://dx.doi.org/https://doi.org/10.1016/j.laa.2017.05.049
http://dx.doi.org/https://doi.org/10.3934/math.20241001
http://dx.doi.org/https://doi.org/10.1016/j.laa.2005.07.019
http://dx.doi.org/https://doi.org/10.1016/j.cam.2011.06.013
http://dx.doi.org/https://doi.org/10.1016/j.laa.2016.05.032
http://dx.doi.org/https://doi.org/10.1109/CDC.2006.376934
http://dx.doi.org/https://doi.org/10.1109/TAC.2012.2203031
http://dx.doi.org/https://doi.org/10.1007/BF01061640
http://dx.doi.org/https://doi.org/10.1016/j.ejcon.2014.10.001
http://dx.doi.org/https://doi.org/10.1134/S0037446618050014 
http://dx.doi.org/https://doi.org/10.1016/j.sysconle.2011.09.022


26445

29. S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.
https://doi.org/10.1017/CBO9780511804441

30. A. Barvinok, A course in convexity, American Mathematical Society, 2002.
http://dx.doi.org/10.1090/gsm/054

31. F. Z. Zhang, The Schur complement and its applications, New York: Springer, 2005.
https://doi.org/10.1007/b105056

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 10, 26435–26445.

http://dx.doi.org/https://doi.org/10.1017/CBO9780511804441
http://dx.doi.org/http://dx.doi.org/10.1090/gsm/054
http://dx.doi.org/https://doi.org/10.1007/b105056
http://creativecommons.org/licenses/by/4.0

	Introduction and preliminaries
	Main results
	Conclusions

