Research article

Preservation properties of some relative aging classes under $ (n-k+1) $-out-of-$ n $ systems

  • Received: 26 August 2024 Revised: 04 October 2024 Accepted: 14 October 2024 Published: 17 October 2024
  • MSC : 62E10, 62E15, 62N05

  • In this paper, we focus on two relative aging classes, namely increasing (decreasing) relative failure rate and increasing (decreasing) failure rate relative to average failure rate. We studied some reliability properties and connections with other classes of lifetime distributions. The main objective of this paper was to investigate the preservation properties of decreasing relative failure rate class and decreasing failure rate relative to average failure rate class under the structure of ($ n-k+1 $)-out-of-$ n $ system. We give some examples of parametric distributions to evaluate the correctness of the results.

    Citation: Mohamed Kayid, Mansour Shrahili. Preservation properties of some relative aging classes under $ (n-k+1) $-out-of-$ n $ systems[J]. AIMS Mathematics, 2024, 9(10): 29474-29495. doi: 10.3934/math.20241428

    Related Papers:

  • In this paper, we focus on two relative aging classes, namely increasing (decreasing) relative failure rate and increasing (decreasing) failure rate relative to average failure rate. We studied some reliability properties and connections with other classes of lifetime distributions. The main objective of this paper was to investigate the preservation properties of decreasing relative failure rate class and decreasing failure rate relative to average failure rate class under the structure of ($ n-k+1 $)-out-of-$ n $ system. We give some examples of parametric distributions to evaluate the correctness of the results.



    加载中


    [1] M. Alimohammadi, N. Balakrishnan, T. Simon, An inequality for log-concave functions and its use in the study of failure rates, Probab. Eng. Inform. Sci., 2024, 1–10. https://doi.org/10.1017/S0269964824000056
    [2] M. Alimohammadi, J. Navarro, Resolving an old problem on the preservation of the IFR property under the formation of systems with discrete distributions, J. Appl. Probab., 61 (2024), 644–653. https://doi.org/10.1017/jpr.2023.63 doi: 10.1017/jpr.2023.63
    [3] R. E. Barlow, F. Proschan, Mathematical theory of reliability, John Wiley & Sons, 1965.
    [4] R.B. Barlow, Statistical theory of reliability and life testing, Holt, 1975.
    [5] S. Bhattacharjee, A. K. Nanda, S. K. Misra, Reliability analysis using ageing intensity function, Stat. Probab. Lett., 83 (2013), 1364–1371. https://doi.org/10.1016/j.spl.2013.01.016 doi: 10.1016/j.spl.2013.01.016
    [6] D. Bhattacharyya, S. Ghosh, M. Mitra, On a non-monotonic ageing class based on the failure rate average, Commun. Stat. Theor. M., 51 (2022), 4807–4826. https://doi.org/10.1080/03610926.2020.1824273 doi: 10.1080/03610926.2020.1824273
    [7] S. Bhattacharjee, L. G. Rajib, M. Szymkowiak, Some results on characterization of distributions in reliability analysis, Commun. Stat. Theor. M., 2024, 1–12. https://doi.org/10.1080/03610926.2024.2306543 doi: 10.1080/03610926.2024.2306543
    [8] S. Eryilmaz, Reliability and performance evaluation of weighted $k$-out-of-$n$:G system consisting of components with discrete lifetimes, Reliab. Eng. Syst. Safe., 252 (2024), 110484. https://doi.org/10.1016/j.ress.2024.110484 doi: 10.1016/j.ress.2024.110484
    [9] F. Buono, M. Longobardi, M. Szymkowiak, On generalized reversed aging intensity functions, Ricerche Mat., 71 (2022), 85–108. https://doi.org/10.1007/s11587-021-00560-w doi: 10.1007/s11587-021-00560-w
    [10] M. Burkschat, Multivariate dependence of spacings of generalized order statistics, J. Multivariate Anal., 100 (2009), 1093–1106. https://doi.org/10.1016/j.jmva.2008.10.008 doi: 10.1016/j.jmva.2008.10.008
    [11] W. Ding, Y. Zhang, Relative ageing of series and parallel systems: Effects of dependence and heterogeneity among components, Oper. Res. Lett., 46 (2018), 219–224. https://doi.org/10.1016/j.orl.2018.01.005 doi: 10.1016/j.orl.2018.01.005
    [12] M. Finkelstein, Failure rate modelling for reliability and risk, London: Springer-Verlag, 2008. https://doi.org/10.1007/978-1-84800-986-8
    [13] P. W. Holland, Y. J. Wang, Dependence function for continuous bivariate densities, Commun. Stat. Theor. M., 16 (1987), 863–876. https://doi.org/10.1080/03610928708829408 doi: 10.1080/03610928708829408
    [14] S. Izadkhah, E. Amini-Seresht, N. Balakrishnan, Preservation properties of some reliability classes by lifetimes of coherent and mixed systems and their signatures, Probab. Eng. Inform. Sc., 37 (2023), 943–960. https://doi.org/10.1017/S0269964822000316 doi: 10.1017/S0269964822000316
    [15] R. Jiang, P. Ji, X. Xiao, Aging property of unimodal failure rate models, Reliab. Eng. Syst. Safe., 79 (2003), 113–116. https://doi.org/10.1016/S0951-8320(02)00175-8 doi: 10.1016/S0951-8320(02)00175-8
    [16] S. Karlin, Total positivity, Stanford University Press, 1968.
    [17] M. Kayid, Some new results on bathtub-shaped hazard rate models, Math. Biosci. Eng., 2 (2022), 1239–1250. https://doi.org/10.3934/mbe.2022057 doi: 10.3934/mbe.2022057
    [18] D. L. Kelly, A. Rodionov, J. Uwe-Klugel, Practical issues in component aging analysis, 2008.
    [19] C. D. Lai, M. Xie, Stochastic ageing and dependence for reliability, New York: Springer, 2006. https://doi.org/10.1007/0-387-34232-X
    [20] C. Li, X. Li, Relative ageing of series and parallel systems with statistically independent and heterogeneous component lifetimes, IEEE T. Reliab., 65 (2016), 1014–1021. https://doi.org/10.1109/TR.2015.2512226 doi: 10.1109/TR.2015.2512226
    [21] C. Li, R. Fang, X. Li, Stochastic somparisons of order statistics from scaled and interdependent random variables, Metrika, 79 (2016), 553–578. https://doi.org/10.1007/s00184-015-0567-3 doi: 10.1007/s00184-015-0567-3
    [22] B. H. Lindqvist, F. J. Samaniego, N. Wang, Preservation of the mean residual life order for coherent and mixed systems, J. Appl. Probab., 56 (2019), 153–173. https://doi.org/10.1017/jpr.2019.11 doi: 10.1017/jpr.2019.11
    [23] B. H. Lindqvist, F. J. Samaniego, Some new results on the preservation of the NBUE and NWUE aging classes under the formation of coherent systems, Nav. Res. Log., 66 (2019), 430–438. https://doi.org/10.1002/nav.21849 doi: 10.1002/nav.21849
    [24] A. W. Marshall, I. Olkin, Life distributions: Structure of nonparametric, semiparametric, and parametric families, New York: Springer, 2007. https://doi.org/10.1007/978-0-387-68477-2
    [25] A. K. Nanda, S. Bhattacharjee, S. S. Alam, Properties of aging intensity function, Stat. Probab. Lett., 77 (2007), 365–373. https://doi.org/10.1016/j.spl.2006.08.002 doi: 10.1016/j.spl.2006.08.002
    [26] J. Navarro, Y. del Águila, M. A. Sordo, A. Suárez-Llorens, Preservation of reliability classes under the formation of coherent systems, Appl. Stoch. Model. Bus., 30 (2014), 444–454. https://doi.org/10.1002/asmb.1985 doi: 10.1002/asmb.1985
    [27] J. Navarro, Preservation of DMRL and IMRL aging classes under the formation of order statistics and coherent systems, Stat. Probab. Lett., 137 (2018), 264–268. https://doi.org/10.1016/j.spl.2018.02.005 doi: 10.1016/j.spl.2018.02.005
    [28] P. E. Oliveira, N. Torrado, On proportional reversed failure rate class, Stat. Papers, 56 (2015), 999–1013. https://doi.org/10.1007/s00362-014-0620-8 doi: 10.1007/s00362-014-0620-8
    [29] F. Proschan, Theoretical explanation of observed decreasing failure rate, Technometrics, 5 (1963), 375–383. https://doi.org/10.2307/1266340 doi: 10.2307/1266340
    [30] R. Righter, M. Shaked, J. G. Shanthikumar, Intrinsic aging and classes of nonparametric distributions, Probab. Eng. Inform. Sc., 23 (2009), 563–582. https://doi.org/10.1017/S0269964809990015 doi: 10.1017/S0269964809990015
    [31] T. Sahoo, N. K. Hazra, Ordering and aging properties of systems with dependent components governed by the Archimedean copula, Probab. Eng. Inform. Sc., 37 (2023), 1–28. https://doi.org/10.1017/S0269964821000425 doi: 10.1017/S0269964821000425
    [32] F. J. Samaniego, On closure of the IFR class under formation of coherent systems, IEEE T. Reliab., 34 (1985), 69–72. https://doi.org/10.1109/TR.1985.5221935 doi: 10.1109/TR.1985.5221935
    [33] M. Shaked, J. G. Shanthikumar, Stochastic orders, Springer Science & Business Media, 2007.
    [34] S. M. Sunoj, R. S. Rasin, A quantile-based study on ageing intensity function, Commun. Stat. Theor. M., 47 (2018), 5474–5484. https://doi.org/10.1080/03610926.2017.1395049 doi: 10.1080/03610926.2017.1395049
    [35] M. Szymkowiak, Characterizations of distributions through aging intensity, IEEE T. Reliab., 67 (2018), 446–458. https://doi.org/10.1109/TR.2018.2817739 doi: 10.1109/TR.2018.2817739
    [36] M. Szymkowiak, G-generalized aging intensity functions, In: Lifetime analysis by aging intensity functions, Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-12107-5_7
    [37] M. Szymkowiak, Lifetime analysis by aging intensity functions, Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-12107-5
    [38] M. Tavangar, On the behavior of the failure rate and reversed failure rate in engineering systems, J. Appl. Probab., 57 (2020), 899–910. https://doi.org/10.1017/jpr.2020.36 doi: 10.1017/jpr.2020.36
    [39] N. Torrado, Comparing the reliability of coherent systems with heterogeneous, dependent and distribution-free components, Qual. Technol. Quant. M., 18 (2021), 740–770. https://doi.org/10.1080/16843703.2021.1963033 doi: 10.1080/16843703.2021.1963033
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(135) PDF downloads(18) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog