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1. Introduction

In practice, descriptions of the system and its components from different reliability assessments may
be based on many sources of information. Some might be unbiased measurements based on existing
statistical models or relative frequencies. Others could come from engineers’ or specialists’ views on
the underlying problem. The opinion of engineers can be crucial, especially for real-world reliability
problems where they may be the only source of information. Natural language statements can be used
to communicate reliability assessments, as these expressions are often better suited to convey reliability
information than numerical expressions. This demonstrates the importance of quantifying reliability
assessment tools.

The phenomenon of aging is one of the most remarkable features of reliability. The mathematical
theory of aging provides important measures for the quantification of aging concepts in reliability
analysis. “No aging” means that the age of a component does not influence how its remaining lifetime
is distributed. “Positive aging” is the process by which the remaining life of a component decreases
with age in the probable sense of the word. Reliability engineers often deal with such situations as parts
deteriorate over time due to increasing wear. However, the remaining lifetime is affected by “negative
aging”. Reliability growth phenomena can occur in certain cases when a system is regularly tested and
improved, even if this happens less frequently. Aging concepts explain how a system or component
gets better or worse with age. The aging characteristics of many classes of life distributions are defined
or classified in the literature. The aging characteristics of the distribution function of a non-negative
random variable (rv), which symbolizes the lifetime of a reliability system, are often very important
for defining the best operating strategies associated with the underlying lifetime event.

Aging classes of life distributions are a subset of the bigger class of non-parametric families of
life distributions, which has been studied in the context of reliability theory and survival analysis in
the literature. The assumption that a distribution function gives rise to an aging property causes it
to belong to a particular family, which can sometimes be supported by a physical understanding of
the failure mechanism since the families are characterized by attributes that have physically relevant
interpretations. For these non-parametric families, numerous statistical techniques can be viewed as
a middle ground between parametric and conventional distribution-free analysis. Life distributions
describe the time until an event occurs, such as failure in a system. Common life distributions include
exponential, Weibull, and their generalizations. Each has specific characteristics that can be leveraged
in reliability analysis. (see, e.g., Barlow and Proschan [4] and Marshall and Olkin [24]).

The preservation properties of classes of life distributions under coherent systems are important for
reliability theory and systems engineering. We illustrate here a breakdown of their importance and
usefulness. Coherent systems are constructed in such a way that their reliability can be analyzed
through their components. These systems can be series, parallel, or more complex configurations.
The overall reliability of a coherent system is determined by the reliability of its components and their
arrangement. Preservation properties refer to the characteristics of certain life distributions that are
preserved when applied to coherent systems. For example, several classes of lifetime distributions
have the property that if individual components have a certain reliability, the coherent system will also
have similar reliability properties. Understanding how lifetime distributions behave in coherent
systems allows engineers and reliability analysts to predict the performance of complex systems
based on the properties of simpler components. In the design domain of an optimization problem, if
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designers know which classes of lifetime distributions preserve certain properties, they can select
components that ensure the desired reliability level of the system. In risk management, preservation
properties help assess risks associated with system failures, enabling better decision-making
regarding maintenance and component selection. In various areas of engineering such as aerospace,
automotive, and electronics, where a system failure can have catastrophic consequences,
understanding these properties is critical to ensuring safety and reliability. In healthcare, where
medical devices and treatments are used, maintaining certain life distribution properties can provide
insight into patient outcomes and device longevity. In finance, understanding the preservation of life
distributions for risk assessment models can help in evaluating the longevity of financial products or
investments. In general, the preservation properties of classes of life distributions under coherent
systems are crucial for effective reliability analysis and system design. They provide the fundamental
knowledge needed to ensure that systems operate reliably over time, which is essential in various
industries where performance and safety are paramount. Understanding these concepts enables better
decision-making and optimization in complex systems.

The (n − k + 1)-out-of-n structures are considered as an important class of coherent systems in the
context of reliability. An (n−k+1)-out-of-n structure is a structure of order n that functions if and only
if at least n − k + 1 components function, where 1 ≤ k ≤ n. These structures are important because,
as Barlow and Proschan [3] have shown, the (n − k + 1)-out-of-n structure has the steepest reliability
functions among all monotone structures of order n. Moreover, these types of systems are very useful
from a mathematical point of view, since quantitative results are easy to obtain. Two important special
cases of (n − k + 1)-out-of-n systems are parallel systems and series systems corresponding to k = n
and k = 1, respectively. The (n − k + 1)-out-of-n system structure is a very popular type of redundancy
in fault-tolerant systems. It is widely used in both industrial and military systems. Fault-tolerant
systems include the multi-display system in a cockpit, the multi-motor system in an airplane, and the
multi-pump system in a hydraulic control system.

The problem of obtaining the class of lifetime distribution of systems with the (n − k + 1)-out-of-n
structure has been a key subject in the reliability field. To be more specific, it may be of some interest
to determine, for each class of life distributions, whether the (n − k + 1)-out-of-n structure yields a
system’s life distribution within the same class. In the literature, this kind of problem is referred
to as preservation properties of reliability (or aging) class of life distributions under the structure of
(n − k + 1)-out-of-n systems. Barlow and Proschan [4] showed that the increasing failure rate (IFR)
and the increasing failure rate in average (IFRA) classes are preserved under a system of independent
components with the (n−k+1)-out-of-n structure where component lifetimes are identically distributed.
The preservation property of different classes of life distributions in various cases where the component
lifetimes are possibly dependent has also been studied in the literature. The readers are referred to
Samaniego [32], Navarro et al. [26], Navarro [27], Buono et al. [9], Lindqvist et al. [22], Lindqvist and
Samaniego [23], and Izadkhah et al. [14] for recent developments on the area.

Barlow and Proschan [4] considered the problem of stochastic partial orderings of distributions
within a class so that, roughly speaking, within the IFR class, the distributions are ordered according
to the degree of IFR-ness, and similarly for other classes of life distributions. The objective of the
current study is to concentrate on two classes of life distributions that induce the concept of aging
speed. We obtain preservation properties of these classes under the formation of (n − k + 1)-out-of-n
systems with independent and identically distributed (i.i.d.) component lifetimes. Our results showed
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that if the distribution of lifetime components of a (n − k + 1)-out-of-n system possesses some kind of
decreasing aging rate over time, then the distribution of the lifetime of the system will also induce the
same property.

The rest of the paper is organized as follows. In Section 2, we provide basic definitions used
throughout the paper. In Section 3, we consider two classes of life distributions, namely
decreasing (increasing) relative failure rate and decreasing (increasing) failure rate relative to average
failure rate, and focus on some of their reliability properties. In Section 4, the preservation property of
the decreasing relative failure rate class under the structure of (n − k + 1)-out-of-n systems is
discussed. In Section 5, we get the preservation of decreasing failure rate relative to the average
failure rate class under the formation of (n − k + 1)-out-of-n systems. In Section 6, illustrative
conclusions of the paper are given and some remarks for future studies are appended.

2. Preliminaries

Let X be a non-negative rv that represents the lifetime of an item. We assume that X has cumulative
distribution function (cdf) FX, probability density function (pdf) fX, and survival function (sf) F̄X ≡

1 − FX. The hazard rate (hr) function (or failure rate function) of X, as an instantaneous measure of
risk or failure, is defined as

hX(t) = lim
δ→+

1
δ

P(X > t − δ | X > t) =
fX(t)
F̄X(t)

,

which is well-defined for all t ≥ 0, for which F̄X(t) > 0. The average failure rate of X is then given by

HX(t) =
1
t

∫ t

0
hX(x)dx =

1
t
(− ln(F̄X(t))).

The functions hX(t) and HX(t), as two useful reliability quantities, have been used repeatedly in
reliability studies and survival analyses for various purposes, from statistical inference procedures to
advanced stochastic analyses. Most of the important aging classes of lifetime distributions are
constructed using the failure rate or/and the failure rate average due to their monotonicity properties
as well as their non-monotonic behavior (see, for instance, Proschan [29], Lai and Xie [19],
Finkelstein [12], Bhattacharyya et al. [6], and Kayid [17].

Jiang et al. [15] have pointed out that an unimodal failure rate can be effectively viewed as
approximately decreasing, approximately increasing, or approximately constant. Clearly, such
representation is qualitative. In their paper, a quantitative measure, called the aging intensity (AI)
function, defined as the ratio of the failure rate hX(t) to the average failure rate HX(t), was studied. The
AI function is defined as

LX(t) =
hX(t)
HX(t)

=
thX(t)

− ln(F̄X(t))
.

Nanda et al. [25] explored the different properties of the AI function in several reliability problems.
The closure properties of the aging classes defined in terms of AI function under different reliability
operations such as the formation of k-out-of-n system, and increasing transformations, were also
presented. Bhattacharjee et al. [5] derived the AI function and also discussed its properties for various
Weibull models. The aging properties of a system are quantitatively analyzed by the AI function.
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Regarding the AI function, Bhattacharjee et al. [5] investigated some system characteristics and the
behavior of some generalized Weibull models. According to Bhattacharjee et al. [5], the AI function
plays a significant and completely unique role in the reliability consideration when researching the
aging behavior of systems. For some recent works on the study of the AI function, we refer the
readers to Sunoj and Rasin [34], Szymkowiak [35], Szymkowiak [36], Szymkowiak [37], and
Bhattacharjee et al. [7].

Here, we provide some elementary materials and definitions that are needed during our
investigation. X describes the lifetime of a device or a system of components. We suppose that X has
cdf FX, sf F̄X, and pdf fX whenever it exists. Two partial stochastic orders are used in this paper, and
they are defined as follows (cf. Shaked and Shanthikumar [33]).

Definition 2.1. Let X and Y represent two random lifetimes, where X and Y have sfs F̄X and F̄Y , and
pdfs fX and fY , respectively. Then, it is said that X is smaller than Y in the

(i) usual stochastic order (written as X ≤st Y) if F̄X(t) ≤ F̄Y(t), for all t ≥ 0, or equivalently, for all
increasing functions ϕ, it holds that E[ϕ(X)] ≤ E[ϕ(Y)].

(ii) likelihood ratio order (written as X ≤lr Y) if fY (t)
fX(t) is increasing in t ∈ S X ∪ S Y , where S X ≡ {t ≥

0 : fX(t) > 0} and S Y ≡ {t ≥ 0 : fY(t) > 0} are the supports of X and Y, respectively.

It is well-known in the literature that X ≤lr Y ⇒ X ≤st Y (see, e.g., Shaked and Shanthikumar [33]).
The following definition presents some aging classes of life distributions.

Definition 2.2. (Lai and Xie [19]). It is said that X possesses

(i) increasing [resp. decreasing] failure rate behaviour, denoted by X ∈ IFR (resp. X ∈ DFR) when
hX(t) is non-decreasing [resp. non-increasing] in t > 0.

(ii) increasing [resp. decreasing] failure rate in average property, denoted by X ∈ IFRA (resp.
X ∈ DFRA), when HX(t) = 1

t

∫ t

0
hX(x)dx is non-decreasing [resp. non-increasing] in t > 0.

It is known that X ∈ IFR implies that X ∈ IFRA and, moreover, X ∈ DFR concludes that X ∈ DFRA
(cf. Lai and Xie [19]).

The following technical definition can be found in Karlin [16].

Definition 2.3. Let K(x, y) be a non-negative bivariate function. It is said that K(·, ·) is a totally positive
of order 2 (abbreviated as T P2) function in (x, y) ∈ B1 × B2 where B1 and B2 are considered as two
arbitrary subsets of the real line, whenever

K(x1, y1) K(x1, y2)
K(x2, y1) K(x2, y2)

≥ 0, ∀ x1 ≤ x2 ∈ B1, ∀ y1 ≤ y2 ∈ B2. (2.1)

If the inequality’s direction in (2.1) is reversed, then K(x, y) is called a reverse regular of
order 2 (abbreviated as RR2) function in (x, y) ∈ B1 × B2.

3. Two relative aging classes of life distributions

This section provides the definitions, descriptions, and preliminary properties of some classes of
life distributions that consider the relative aging phenomenon. The concept of relative aging has been
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used to define an order relation between two lifetime distributions to induce that one-lifetime unit ages
faster than the other lifetime unit. The concept of relative aging can also be extended to describe the
aging behavior of a single lifetime unit. For instance, when it is said that a unit with random lifetime X
has an IFR distribution, it is evident that its hr function, hX(t), is increasing in t ≥ 0; however, the speed
of aging and that how fast the hr function increases as time traverses [0,+∞) is not considered. Despite
that, the hr function may increase (or decrease) at an increasing rate or it may increase (or decrease) at
a decreasing rate. This is another important aspect of a life distribution that is a fresh feature needing
to be quantified. The following definition is essential to our development.

In this manuscript, we will only consider nonnegative random variables that denote the life length
of a lifetime unit (e.g., a life span). The random variables are assumed to have absolutely continuous
distribution functions.

We first provide the definitions of some classes of life distributions before going into their details.
As two devices or life spans have a lifetime distribution which has increasing hazard rate functions,
one may ask whether one of them ages faster than the other. The following definition introduces two
three notions of aging for a lifetime device concerning its hr function.

Definition 3.1. Let X be a non-negative rv representing the lifetime of a device. Let X have hr function
hX . Then, it is said that X has

(i) increasing (decreasing) relative failure rate property [denoted by X ∈ IRFR (X ∈ DRFR)],
whenever ‘ hX(t)

hX(αt) is increasing (decreasing) in t ≥ 0’, for all α ∈ (0, 1).
(ii) increasing (decreasing) failure rate relative to average failure rate property [denoted as X ∈

IFR/A (X ∈ DFR/A)], whenever ‘ thX(t)∫ t
0 hX(x)dx

is increasing (decreasing) in t ≥ 0’ (Righter et al.

[30]).
(iii) X has initially increasing [resp. decreasing] failure rate (written as X ∈ Initially-IFR [resp.

X ∈ Initially-DFR]) whenever there exists an τ > 0, such that hX(t) increases in t ∈ (0, τ].

Keep in mind that if X is IFR, then hX(αt) ≤ hX(t), for all t ≥ 0, and for all α ∈ [0, 1]. We know
that if X is IFR, the hr function hX(t) progressively increases as t increases and traverses [0,+∞).
Nevertheless, it is not clear how fast the hr function increases in different time intervals. In this context,
if X is IRFR, the amount of increase of log(hX(t)) as the time goes from αt (for each α ∈ [0, 1]) toward t
increases with t, i.e., the difference log(hX(t))-log(hX(αt) increases with t, for all α ∈ [0, 1]. This means
that the speed of aging increases with time. Likewise, the two classes Initially-IFR and Initially-DFR
encompass many parametric families of distributions (see, e.g., Kelly et al. [18]). There are many
parametric distributions that have not monotone hr functions. Despite that, their hr function may have
the initially-increasing or initially-decreasing properties.

Remark 3.1. It is worth pointing out that sufficient conditions for X ∈ IRFR and X ∈ DRFR can
be established. Let λ(t, s) be a bivariate function on R2

+ = [0,∞) × [0,∞). If λ(t, s) is T P2 [or RR2]
in (t, s) ∈ R2

+, then X ∈ IRFR [or X ∈ DRFR]. If ∂
∂t log(λ(t, s)) and ∂

∂s log(λ(t, s)) exist and are
continuous, Theorem 7.1 in Holland and Wang [13] shows that λ(t, s) is T P2 [or RR2] in (t, s) ∈ R2

+ if
and only if ∂2

∂t∂s log(λ(t, s)) ≥ 0 [or ≤ 0] for all (t, s) ∈ R2
+.

In general, the IFR and DFR classes are neither implied by nor do they imply the IRFR and DRFR
classes. The following counterexample presents a situation where X ∈ IFR but X < IRFR.
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Counterexample 3.1. Suppose that X has an Erlang distribution with pdf fX(t) = 4te−2t, t ≥ 0 which
has hr function hX(t) = 4t

1+2t . This hr function is increasing, thus X ∈ IFR. On the other hand, for all
t ≥ 0 and for every α ∈ [0, 1], one has ∂

∂t
hX(αt)
hX(t) =

2α(1−α)
(1+2αt)2 which is non-negative for all t ≥ 0 and for any

α ∈ [0, 1]. Therefore, hX(αt)
hX(t) is increasing in t ≥ 0. Hence, according to Definition 3.1(i), one concludes

that X ∈ DRFR. Thus, in general DRFR ⊈ DFR.

However, we establish two propositions that provide some mild conditions under which X ∈ IRFR
[resp. X ∈ DRFR] implies that X ∈ IFR [resp. X ∈ DFR].

Proposition 3.1. Suppose fX(t) is right-continuous at t = 0 such that 0 < limx→0+ fX(x) < ∞ and
F̄X(0) = 1. Then:

(i) X ∈ IRFR implies that X ∈ IFR.
(ii) X ∈ DRFR implies that X ∈ DFR.

Proof. We only prove part (i), as the proof for part (ii) is similar. Since X ∈ IRFR, by Definition 3.1,
hX(αt)
hX(t) is non-increasing for t ≥ 0. Therefore, for any t1 ≤ t2 ∈ [0,∞), we have

hX(t2)
hX(t1)

≥
hX(αt2)
hX(αt1)

=
fX(αt2)
fX(αt1)

F̄X(αt1)
F̄X(αt2)

, for all α ∈ [0, 1].

So, it implies that

hX(t2)
hX(t1)

≥ lim
α→0+

fX(αt2)
fX(αt1)

F̄X(αt1)
F̄X(αt2)

= lim
α→0+

fX(αt2)
fX(αt1)

=
fX(0)
fX(0)

= 1, for all t1 ≤ t2 ∈ [0,∞).

Thus, we have shown that for all t1 ≤ t2 ∈ [0,∞), it follows that hX(t1) ≤ hX(t2), establishing that X is
IFR. Hence, the proof of part (i) is completed. □

It is remarkable here that in Example 3.1, limx→0+ fX(x) = 0, X ∈ DRFR but X < DFR, which shows
that the condition 0 < limx→0+ fX(x) < ∞ in Proposition 3.1 cannot be dropped.

In the following proposition, we prove that the IRFR and DRFR properties of a lifetime
distribution translate the initially-increasing and initially-decreasing (i.e., Initially-IFR and
Initially-IFR) properties of the hr function of the lifetime distribution to the entirely-increasing and
entirely-decreasing (i.e., IFR and DFR) properties of the hr function.

Proposition 3.2. The following implications hold:

(i) Let X ∈ IRFR. Then, X ∈ Initially − IFR yields X ∈ IFR.
(ii) Let X ∈ DRFR. Then, X ∈ Initially − DFR yields X ∈ DFR.
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Proof. We prove the result of assertion (i). The proof of assertion (ii) is analogous. Since X ∈ Initially−
IFR, thus for every t⋆1 ≤ t⋆2 ∈ (0, τ], one has hX(t⋆1 ) ≤ hX(t⋆2 ) ≤ hX(τ). On the other hand, since
X ∈ IRFR, thus for all t1 ≤ t2 ∈ (0,∞),

hX(t2)
hX(t1)

≥
hX(αt2)
hX(αt1)

, for all α ∈ [0, 1]. (3.1)

We need to demonstrate that for all t1 ≤ t2 ∈ (τ,+∞), it holds that hX(τ) ≤ hX(t1) ≤ hX(t2). To this
end, let us fix t1 ≤ t2 ∈ (τ,+∞), and select an α > 0 such that α ≤ min( τt1 ,

τ
t2

). Now, observe that
αt1 ≤ αt2 ∈ (0, τ]. Since X ∈ Initially-IFR, thus, hX(αt1) ≤ hX(αt2) ≤ hX(τ). From (3.1), it follows that
for all t1 ≤ t2 ∈ (τ,+∞), hX(t2) ≥ hX(t1) ≥ hX(τ), and, consequently, X is IFR. The proof of part (i) is
thus obtained. □

Remark 3.2. The classes of lifetime distributions proposed in Definition 3.1(i) reflect the irregular
variation of the hazard rate function over time. For instance, if X possess the IRFR property, then the
fluctuations of hX increase with time, while if X possess the DRFR property, then the hazard rate
function is becoming regularly more stable with time. The lifetime distribution classes in
Definition 3.1(ii) are closely related to the concept of aging intensity (AI) function. Let X be a
non-negative rv with sf F̄X and hr function hX, then LX(t) = thX(t)

− ln(F̄X(t)) is called the AI function of X. In
this case, X ∈ IFR/A (X ∈ DFR/A) is equivalent to saying that X has an increasing (a decreasing) AI
function (see, e.g., Nanda et al. [25]).

The classes of life distributions given in Definition 3.1 are connected as below.

Proposition 3.3. If X ∈ IRFR (X ∈ DRFR), then, X ∈ IFR/A (X ∈ DFR/A).

Proof. Suppose X has AI function LX. From Remark 3.2, it is sufficient to show that LX is an
increasing [a decreasing] function. We have

LX(t) =
hX(t)

1
t

∫ t

0
hX(x)dx

=
1

1
t

∫ t

0
hX(x)
hX(t) dx

=
1∫ 1

0
hX(αt)
hX(t) dα

,

where the last expression is due to the change of variable α = x
t . Now, assume that X ∈ IRFR

[X ∈ DRFR]. Then, according to Definition 3.1(i), hX(αt)
hX(t) is decreasing [increasing] in t > 0, for all

α ∈ (0, 1). Thus,
∫ 1

0
hX(αt)
hX(t) dα is also decreasing [increasing] in t > 0. The required result is obtained. □

Subsequently, we present a counterexample that demonstrates that the implication in Proposition 3.3
cannot be reversed.

Counterexample 3.2. Suppose that X is a non-negative rv with the following sf

F̄X(t) =

 e−λe
− 1

t , 0 ≤ t < 1,
e−λe

−1t, t ≥ 1,
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where λ > 0, form which the hazard rate function is derived as

hX(t) = −
d
dt

ln(F̄X(t)) =
{
λ
t2 e−

1
t , 0 ≤ t < 1,

λe−1, t ≥ 1.

The AI function of X is, therefore, obtained as

LX(t) =
thX(t)∫ t

0
hX(x)dx

=

{ 1
t , 0 ≤ t < 1,
1, t ≥ 1,

which is decreasing in t ≥ 0, which means that X ∈ DFR/A. However, one can see, after some
calculation, that

hX(t)
hX(αt)

=


α2e

1
t ( 1
α−1), 0 ≤ t < 1,

α2e
1
αt−1, 1 ≤ t < 1

α
,

1, t ≥ 1
α
,

which is not decreasing in t ≥ 0, for every α ∈ (0, 1). As a result, X < DRFR.

The following proposition presents a necessary and sufficient conditions under which X ∈ IRFR
(X ∈ DRFR).

Proposition 3.4. Let hX be a differentiable function.
Then, X ∈ IRFR (X ∈ DRFR) if, and only if, th′X(t)

hX(t) is increasing (decreasing) in t ≥ 0.

Proof. We give the proof of the non-parenthetical part, as the parenthetical part is similarly proved.
Note that X ∈ IRFR if, and only if, ∂

∂t ln
(

hX(t)
hX(αt)

)
≥ 0, for all t ≥ 0 and for all α ∈ (0, 1), or equivalently

if, t ∂
∂t ln

(
hX(t)

hX(αt)

)
≥ 0, ∀ t ≥ 0 and ∀ α ∈ (0, 1). It is seen that

t
∂

∂t
ln

(
hX(t)

hX(αt)

)
=

th′X(t)
hX(t)

−
αth′X(αt)
hX(αt)

,

which is non-negative if, and only if, th′X(t)
hX(t) ≥

αth′X(αt)
hX(αt) , ∀ t ≥ 0 and ∀ α ∈ (0, 1). This is also equivalent to

saying that th′X(t)
hX(t) is increasing in t ≥ 0. The proof is completed. □

In the context of Proposition 3.4, it is notable that the monotonicity of th′X(t)
hX(t) in t ≥ 0 is important to

make relative aging order among series systems (see, e.g., Theorem 7 in Li and Li [20] and also
Theorems 4.8–4.10 in Ding and Zhang [11]). Li et al. [21] used the monotonicity of th′X(t)

hX(t) in
Theorems 5.1 and 5.2 of their work to establish some results on stochastic ordering of special order
statistics in the scale model. Therefore, it seems that two lifetime distribution classes of IRFR and
DRFR have a key role in establishing relative ordering properties of series and parallel systems in the
reliability context. The shape of the hazard rate function is not identified when X possesses either
IRFR property or DRFR property. In spite of that, in Proposition 3.4, a function was found whose
monotonicity characterizes the the IRFR property and the DRFR property of life distributions.
However, the log-convexity and the log-concavity of a monotone hr function provide a relative aging
behavior in the sense of the IRFR and DRFR properties. The following proposition clarifies the issue.

Proposition 3.5. Let hX be a differentiable function.
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(i) If hX(t) is increasing and log-convex, then X ∈ IRFR.
(ii) If hX(t) is decreasing and log-concave, then X ∈ DRFR.

Proof. Denote γ(t) := th′X(t)
hX(t) . To prove (i), note that if hX(t) is increasing and log-convex, then

d
dt (ln(hX(t))) = h′X(t)

hX(t) is non-negative and increasing in t ≥ 0. Thus, γ(t) = t d
dt (ln(hX(t))), which is the

multiplication of two non-negative increasing functions is also an increasing function in t ≥ 0. From
Proportion 3.4, it is deduced that X ∈ IRFR. In order to prove (ii), set γ⋆(t) := t.−h′X(t)

hX(t) . Then, the proof
is obtained if we show that γ⋆(t) is increasing in t ≥ 0. As hX(t) is decreasing and log-concave, then
d
dt (ln(hX(t))) is negative and decreasing in t ≥ 0, and consequently, − d

dt (ln(hX(t))) = −h′X(t)
hX(t) is

non-negative and increasing in t ≥ 0. Hence, γ⋆(t) = t.
(
− d

dt (ln(hX(t)))
)

is also increasing in t ≥ 0. The
proof is thus obtained. □

From Proposition 3.5, it follows that if ∂
k

∂tk ln(hX(t)) ≥ (≤) 0, for k = 1, 2, then X ∈ IRFR (X ∈
DRFR). It is to be mentioned here that the log-convexity of the hr function has been utilized by
Burkschat [10] to obtain some dependence properties in multivariate settings.

It is known that X ∈ IFR(X ∈ DFR) implies that X ∈ IFRA(X ∈ DFRA). However, the converse
is not true in general (see, e.g., Lai and Xie [19]). The following proposition provides a sufficient
condition under which X ∈ IFRA(X ∈ DFRA) yields X ∈ IFR(X ∈ DFR).

Proposition 3.6. (i) Let X ∈ IFRA and also X ∈ IFR/A. Then, X ∈ IFR.
(ii) Let X ∈ DFRA and also X ∈ DFR/A. Then, X ∈ DFR.

Proof. Denote by LX, the AI function of X. Then, it is seen that

hX(t) =
1
t
· thX(t)

=
− ln(F̄X(t))

t
·

thX(t)
− ln(F̄X(t))

=

∫ t

0
hX(x)dx

t
· LX(t), ∀ t ≥ 0, (3.2)

which is the product of two non-negative increasing functions provided that the conditions in (i) are
satisfied. From (3.2), hX(t) is the product of two non-negative decreasing functions under the conditions
given in (ii). Hence, the proof is obviously validated. □

To highlight the importance of the presented classes of life distributions in Definition 3.1, some
standard parametric families of distributions such as Weibull and gamma are considered in the sequel
to see whether these distributions induce the IRFR (DRFR) property and, consequently, the
IFR/A (DFR/A) property.

Example 3.1. Suppose that X has Weibull distribution with shape parameter c > 0 and scale parameter
λ > 0, having sf F̄X(t) = exp(−(λt)c). It is seen that γ(t) = th′X(t)

hX(t) = c − 1, ∀ t ≥ 0, which is constant.
Therefore, X simultaneously possesses the IRFR and DRFR properties. By using Proposition 3.3,
X also possesses the IFR/A and DFR/A properties. In view of Remark 3.2, the reader may see also
Theorem 2.1 in Nanda et al. [25], which states that X possesses both the IFR/A and DFR/A properties
if, and only if, X has Weibull distribution. This is an indication that, analogous to the exponential
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distribution that reports no aging, the Weibull distribution also shows that there is no relative aging
phenomenon. More accurately, for the purpose of model selection, a life unit which does not experience
any shocks and work routinely may have a random lifetime X that follows Weibull distribution.

In some situations, a distribution is defined in terms of its density, but the distribution function and
survival function cannot be given in closed form. In addition to the normal distribution, an example
includes the gamma distribution. When neither the survival function nor the hazard rate can be given in
closed form, a direct study of hazard rate behavior and also the relative aging property of the underlying
distribution may not be particularly plain.

In the next example, we bring the gamma distribution as having DRFR and IRFR properties.

Example 3.2. Let X have gamma distribution with shape parameter b > 0 and scale parameter λ > 0,
having pdf fX(t) = 1

Γ(b)λ
btb−1 exp(−λt). Depending on the amount of the parameter b, for every λ > 0,

γ(t) = th′X(t)
hX(t) is either increasing or decreasing in t ≥ 0, as we shall show in this example. Then, by

using Proposition 3.4, either the IRFR property or the DRFR property holds. We have

γ(t) = t
d
dt

ln(hX(t))

= t
d
dt

ln

 tb−1e−λt∫ ∞
t

xb−1e−λxdx


= (b − 1) − λt +

tbe−λt∫ ∞
t

xb−1e−λxdx

= (b − 1) +
tbe−λt − λt

∫ ∞
t

xb−1e−λxdx∫ ∞
t

xb−1e−λxdx
.

It can be easily seen that

tbe−λt =
∫ ∞

t
(λx − b)xb−1e−λxdx.

Therefore,

γ(t) = (b − 1) +

∫ ∞
t

xb−1e−λx(λ(x − t) − b)dx∫ ∞
t

xb−1e−λxdx

= (b − 1) +

∫ ∞
0

(y + t)b−1e−λy(λy − b)dy∫ ∞
0

(y + t)b−1e−λydy
, (3.3)

where after the second equality, the change of variable y = x− t was made. We show that if b ≤ 1, then
γ(t) is increasing in t ≥ 0. It will also be shown that if b ≥ 1, then γ(t) decreases in t ≥ 0. For t ≥ 0,
define a non-negative rv Y(t) with pdf

fY(t)(y) =
(y + t)b−1e−λy∫ ∞

0
(y + t)b−1e−λy

, y ≥ 0. (3.4)

It can be easily verified that for b ≤ 1 (resp. b ≥ 1) (y + t)b−1e−λy is T P2 (resp. RR2) in (y, t) ∈ R2
+.

Thus, in the spirit of (3.4), we conclude that Y(t1) ≤lr Y(t2) (resp. Y(t1) ≥lr Y(t2)), for all t1 ≤ t2 ∈ R+.
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As the ≤lr order is stronger than the ≤st order, it follows that Y(t1) ≤st Y(t2) (resp. Y(t1) ≥st Y(t2)),
∀ t1 ≤ t2 ∈ R+. In view of (3.3), we have γ(t) = E[λY(t)− 1]. Since ϕ(y) = λy− 1 is increasing in y ≥ 0,
thus from definition, E[λY(t1)−1] ≤ E[λY(t2)−1], (resp. E[λY(t1)−1] ≥ E[λY(t2)−1]), ∀ t1 ≤ t2 ∈ R+.
Hence, if b ≤ 1 (resp. b ≥ 1), then γ(t) is increasing (resp. decreasing) in t ≥ 0, which reveals that the
gamma distribution with the shape parameter b and the scale parameter λ has the IRFR property and,
as a result of Proposition 3.3, it also has the IFR/A property when b ≤ 1. In the case, where b ≥ 1 it
can be shown by a similar discussion that the gamma distribution has the DRFR property and, further,
the DFR/A property.

4. Preservation of DRFR class of life distributions

The lifetime of a (n − k + 1)-out-of-n system with n components with random lifetimes X1, · · · , Xn

is the kth-order statistic of X1, · · · , Xn. Denoting by X1:n, · · · , Xn:n the ordered values of X1, · · · , Xn, the
lifetime of a (n − k + 1)-out-of-n system is represented by Xk:n. In this paper, we will consider systems
with homogenous independent components. Thus, it is assumed that X1, · · · , Xn are n non-negative
rvs following a common absolutely continuous cdf FX, the associated pdf fX and corresponding sf F̄X.
Then, Xk:n has pdf

fXk:n(t) =
n!

(k − 1)!(n − k)!
Fk−1

X (t)F̄n−k
X (t) fX(t), (4.1)

and the sf of Xk:n is obtained as

F̄Xk:n(t) =
n!

(k − 1)!(n − k)!

∫ F̄X(t)

0
yn−k(1 − y)k−1dy. (4.2)

Definition 4.1. (Oliveira and Torrado [28]). Suppose that X is a non-negative rv with pdf fX and cdf
FX that is absolutely continuous. The reversed hazard rate function of X is given by h̃X =

fX(t)
FX(t) . Then,

it is said that X has a decreasing proportional reversed failure rate (written as X ∈ DPRFR) whenever
t̃hX(t) is decreasing in t > 0.

The preservation properties of aging concepts related to (n − k + 1)-out-of-n and coherent systems
have been discussed in the literature, including works by Alimohammadi et al. [1], Alimohammadi and
Navarro [2], Eryilmaz [8], Sahoo and Hazra [31], Tavangar [38], and Torrado [39], along with their
references. Now, we show the following technical lemma, which is essential to get the main result of
this section.

Lemma 4.1. If X ∈ DFR/A, then X ∈ DPRFR.

Proof. First, we show that φ(u) := −u ln(u)
1−u is increasing in u ∈ (0, 1). We can see that

φ(u) =

∫ 1

u
(1 + ln(y))dy∫ 1

u
dy

=

∫ 1

0
(1 + ln(y)) ·

I[u < y < 1]∫ 1

0
I[u < y < 1]dy

= E[ϕ(Yu)], for all u ∈ (0, 1),
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where ϕ(y) = 1 + ln(y), Yu is a non-negative rv with pdf fYu(y) = I[u<y<1]∫ 1
0 I[u<y<1]dy

and I[A] represents the

indicator function of the set A. Since fYu(y) is T P2 in (u, y) ∈ (0, 1)2, thus Yu1 ≤lr Yu2 , for every
u1 ≤ u2 ∈ (0, 1), and therefore, Yu1 ≤st Yu2 , for all u1 ≤ u2 ∈ (0, 1). As ϕ(y) = 1 + ln(y) is an increasing
function in y ∈ (0, 1), from definition we obtain E[ϕ(Yu1)] ≤ E[ϕ(Yu2)], ∀ u1 ≤ u2 ∈ (0, 1). This reveals
that φ is an increasing function. Now, let us write

t̃hX(t) =
F̄X(t)

1 − F̄X(t)
thX(t)

=
−F̄X(t) ln(F̄X(t))

1 − F̄X(t)
thX(t)

− ln(F̄X(t))
= φ(F̄X(t))LX(t).

Note that φ(F̄X(t)) is decreasing in t > 0 and also, by assumption, LX(t) is decreasing in t > 0. Hence,
t̃hX(t) is decreasing in t > 0, or equivalently, X ∈ DPRFR, which completes the proof of the lemma. □

The result of Lemma 4.1 may be of an independent interest. It is known that X ∈ DFR yields
X ∈ DRHR. However, from Lemma 4.1 it is obvious that X ∈ DFR/A also yields X ∈ DRHR. This is
because when t̃hX(t) is decreasing in t > 0, h̃X(t) is also decreasing in t > 0.

Next, we present a preservation property of the DRFR class under (n − k + 1)-out-of-n structure,
which reveals that if the lifetime of the components of a system with this structure possesses the DRFR
property, then the lifetime of the system also possesses the DRFR property.

Theorem 1. Let X be a non-negative rv with sf F̄X and hazard rate function hX. Let X1, . . . , Xn be n
independent non-negative rvs, which are identically distributed (n independent copies of X). If X ∈
DRFR, then Xk:n ∈ DRFR, ∀ k = 1, . . . , n.

Proof. By dividing (4.1) to (4.2), the hazard rate of Xk:n is obtained as

hXk:n(t) =
Fk−1

X (t)F̄n−k
X (t) fX(t)∫ F̄X(t)

0
yn−k(1 − y)k−1dy

=
Fk−1

X (t)F̄n−k+1
X (t)∫ F̄X(t)

0
yn−k(1 − y)k−1dy

· hX(t). (4.3)

□

By appealing to (4.3), one has:

hXk:n(t) = Ψ(F̄X(t)) · hX(t), for all t ≥ 0, (4.4)

where Ψ(u) = un−k+1(1−u)k−1∫ u
0 yn−k(1−y)k−1dy

, for u ∈ (0, 1). It suffices to prove that
hXk:n (t)

hXk:n (αt) is decreasing in t ≥ 0, for
every α ∈ (0, 1). In view of (4.4), one has

hXk:n(t)
hXk:n(αt)

=
hX(t)

hX(αt)
·
Ψ(F̄X(t))
Ψ(F̄X(αt))

. (4.5)
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As the assumption hX(t)
hX(αt) is decreasing in t ≥ 0, for every α ∈ (0, 1), we only need to prove that Ψ(F̄X(t))

Ψ(F̄X(αt))

is decreasing in t ≥ 0, for all α ∈ (0, 1). We show that if X ∈ DFR/A, then Ψ(F̄X(t))
Ψ(F̄X(αt)) is decreasing in

t ≥ 0, for all α ∈ (0, 1). Since X ∈ DRFR yields X ∈ DFR/A, thus the proof is obtained. By a similar
method as in the proof of Proposition (3.4), by considering Ψ(F̄X(t)) in place of hX(t), it can be verified
that Ψ(F̄X(t))

Ψ(F̄X(αt)) is decreasing in t ≥ 0, for all α ∈ (0, 1) if, and only if,

t d
dtΨ(F̄X(t))

Ψ(F̄X(t))
is decreasing in t ≥ 0.

Thus, the proof is obtained if we show that

t
d
dt

ln(Ψ(F̄X(t))) is a decreasing function in t ≥ 0. (4.6)

We have

t
d
dt

ln(Ψ(F̄X(t))) = t
 ∂
∂t

ln(Fk−1
X (t)) +

∂

∂t
ln(F̄n−k+1

X (t)) −
∂

∂t
ln

∫ F̄X (t)

0
yn−k(1 − y)k−1dy


= t

(k − 1)̃hX(t) + (n − k + 1)hX(t) +
F̄n−k

X (t)Fk−1
X (t)∫ F̄X (t)

0 yn−k(1 − y)k−1dy
fX(t)


= t̃hX(t)

(k − 1) − (n − k + 1)
FX(t)
F̄X(t)

+
F̄n−k

X (t)Fk
X(t)∫ F̄X (t)

0 yn−k(1 − y)k−1dy


= t̃hX(t)

 F̄n−k
X (t)Fk

X(t)∫ F̄X (t)
0 yn−k(1 − y)k−1dy

−
nFX(t) + 1 − k

F̄X(t)


= t̃hX(t)

 F̄n−k+1
X (t)Fk

X(t) − (nFX(t) + (1 − k))
∫ F̄X (t)

0 yn−k(1 − y)k−1dy

F̄X(t)
∫ F̄X (t)

0 yn−k(1 − y)k−1dy


= t̃hX(t)


∫ F̄X (t)

0 (n − (n + 1)y − k + 1)yn−k(1 − y)k−1dy − (nFX(t) + (1 − k))
∫ F̄X (t)

0 yn−k(1 − y)k−1dy

F̄X(t)
∫ F̄X (t)

0 yn−k(1 − y)k−1dy


= t̃hX(t) ·

∫ F̄X (t)
0 (n − (n + 1) y

F̄X (t) )y
n−k(1 − y)k−1dy∫ F̄X (t)

0 yn−k(1 − y)k−1dy

= t̃hX(t) ·

∫ 1
0 (n − (n + 1)u)(uF̄X(t))n−k(1 − uF̄X(t))k−1du∫ 1

0 (uF̄X(t))n−k(1 − uF̄X(t))k−1du

= t̃hX(t) ·

∫ 1
0 (n − (n + 1)u)un−k(1 − uF̄X(t))k−1du∫ 1

0 un−k(1 − uF̄X(t))k−1du
.

From the assumption, X ∈ DRFR, which by Proposition 3.3, it implies that X ∈ DFR/A. By
Lemma 4.1, t̃hX(t) is decreasing in t ≥ 0. The proof is then obtained by showing that∫ 1

0
(n − (n + 1)u)un−k(1 − uF̄X(t))k−1du∫ 1

0
un−k(1 − uF̄X(t))k−1du

is decreasing in t ≥ 0.
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Set ϕ(u) = n − (n + 1)u and denote by U t, a non-negative rv that has pdf

fU t(u) =
un−k(1 − uF̄X(t))k−1∫ 1

0
un−k(1 − uF̄X(t))k−1du

, u ∈ (0, 1).

Then, ∫ 1

0
(n − (n + 1)u)un−k(1 − uF̄X(t))k−1du∫ 1

0
un−k(1 − uF̄X(t))k−1du

= E[ϕ(U t)].

It is easy to verify that (1 − uF̄X(t))k−1 is T P2 in (u, t) ∈ (0, 1) × R+. This concludes that fU t(u) is
T P2 in (u, t) ∈ (0, 1) × R+, or equivalently, U t1 ≤lr U t2 , ∀ t1 ≤ t2 ∈ R+, which further implies that
U t1 ≤st U t2 , ∀ t1 ≤ t2 ∈ R+. As ϕ(u) is a decreasing function, it is deduced that E[ϕ(U t1)] ≥ E[ϕ(U t2)],
for all t1 ≤ t2 ∈ R+. The proof of the theorem is completed.

Next, we present an example to examine the correctness of the result of Theorem 1.

Example 4.1. Suppose that X1, X2 and X3 are non-negative rvs, which represent the random lifetimes
of three independent and identical components such that Xi ∼ G(2, λ), i = 1, 2, 3. From Example 3.2,
X1 ∈ DRFR. The sf and the hr function of X1 is easily obtained as F̄X1(t) = (1+λt)e−λt and hX1(t) =

λ2t
1+λt .

Consider a 2-out-of-3 system composed of components with i.i.d. lifetimes X1, X2, and X3 having
common gamma distribution with an specified shape parameter b = 2 and an unknown scale parameter
λ. In this case, k = 2 and n = 3. The formula given in (4.3) reveals the hr function of X2:3 as follows

hX2:3(t) =
6λ2t(eλt − (1 + λt))

(3eλt − 2(1 + λt))(1 + λt)
,

from which one can develop that

γX2:3(t) =
th′X2:3

(t)

hX2:3(t)

= 1 −
λt

1 + λt
+

(λt)2

eλt − (1 + λt)
−

2(λt)2

3eλt − 2(1 + λt)
.

The plot depicted in Figure 1 show that γX2:3(t) is a decreasing function which, in view of
Proposition 3.4, confirms the result of Theorem 1 that X2:3 ∈ DRFR. Similarly, consider a parallel
system with three components with i.i.d. lifetimes X1, X2, and X3, and so k = n = 3. From the hr’s
formula in (4.3), the hr function of X3:3 is obtained as follows:

hX3:3(t) =
3λ2t(eλt − (1 + λt))2

e3λt − (eλt − (1 + λt))3 ,

which further reveals that

γX3:3(t) =
th′X3:3

(t)

hX3:3(t)

= 1 +
2λt(eλt − 1)

eλt − (1 + λt)
−

3λt(e3λt − (eλt − (1 + λt))2(eλt − 1))
e3λt − (eλt − (1 + λt))3 .

In Figure 2, we also plot the graph of the function γX3:3(t). As is shown, this function is also decreasing
in t as was expected from Theorem 1. Hence, by Proposition 3.4, we deduce that X3:3 ∈ DRFR.
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Figure 1. Plot of the function γX2:3(t) =
th′X2:3

(t)

hX2:3 (t) for the values 0 < t < 18 in Example 4.1.
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Figure 2. Plot of the function γX3:3(t) =
th′X3:3

(t)

hX3:3 (t) for the values 0 < t < 18 in Example 4.1.

5. Preservation of DFR/A class of life distributions

In this section, we establish that a system with the (n − k + 1)-out-of-n structure enjoys the
preservation property of the DFR/A class. This property indicates that if the components of such kind
of systems have lifetime distributions with DFR/A property, then the lifetime of the system also has
the DFR/A property.

Theorem 2. Let X be a non-negative rv with sf F̄X and AI function LX. Let X1, · · · , Xn be n independent
and identically distributed (n independent copies of X). If X ∈ DFR/A, then Xk:n ∈ DFR/A, for any
k = 1, . . . , n.

Proof. From assumption, since X ∈ DFR/A, thus LX(t) is decreasing in t ≥ 0. We need to show that
if LX(t) is decreasing in t ≥ 0, then LXk:n(t) is also decreasing in t ≥ 0. Let Ψ(x) = xn−k+1(1−x)k−1∫ x

0 yn−k(1−y)k−1dy
, for

x ∈ (0, 1) as defined in the proof of Theorem 1. Then, in view of (4.2), one can write

− ln(F̄Xk:n(t)) =
∫ 1

F̄X(t)

Ψ(x)
x

dx, for all t ≥ 0. (5.1)
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Using (4.4) and (5.1), we obtain

LXk:n(t) =
thXk:n(t)

− ln(F̄Xk:n(t))

=
tΨ(F̄X(t))hX(t)∫ 1

F̄X(t)
Ψ(x)

x dx

=
thX(t)

− ln(F̄X(t))
·
− ln(F̄X(t))Ψ(F̄X(t))∫ 1

F̄X(t)
Ψ(x)

x dx

= LX(t) · Ψ⋆(F̄X(t)), for all t ≥ 0, (5.2)

where Ψ⋆(u) := − ln(u)Ψ(u)∫ 1
u
Ψ(x)

x dx
. So, by using the relationship among the AI function of X and the AI function

of Xk:n as revealed in (5.3), the proof is obtained if we prove that Ψ⋆(F̄X(t)) is decreasing in t ≥ 0.
Equivalently, it can be shown that Ψ⋆(u) is increasing in u ∈ (0, 1). This is also equivalent to showing
that Ψ⋆(e−t) is decreasing in t ≥ 0. We have

Ψ⋆(e−t) =
tΨ(e−t)∫ 1

e−t
Ψ(u)

u

du

=
tΨ(e−t)∫ t

0
Ψ(e−y) dy

=
Ψ(e−t)∫ 1

0
Ψ(e−αt) dα

=
1∫ 1

0
Ψ(F̄T (αt))
Ψ(F̄T (t)) dα

, (5.3)

where the second equality is due to a change of variable as y = − ln(u), the third equality follows as a
result of a change of variable as α = y

t , and T is a non-negative rv with exponential distribution with
mean one. As LT (t) = 1, for all t ≥ 0, therefore, T ∈ DFR/A. As clarified and proved in the proof
of Theorem 1, for an arbitrary continuous life distribution FT where T ∈ DFR/A, it is deduced that
Ψ(F̄T (t))
Ψ(F̄T (αt)) is decreasing in t ≥ 0, for all α ∈ (0, 1), which is equivalent to saying that Ψ(F̄T (αt))

Ψ(F̄T (t)) is increasing
in t ≥ 0, for all α ∈ (0, 1). By applying this into (5.3), it follows that Ψ⋆(e−t) is decreasing in t ≥ 0.
The proof of theorem is thus completed. □

The following example presents a situation where Theorem 2 is applicable. To be more specific, we
consider the distribution function given in Counterexample 3.2.

Example 5.1. Suppose that X is a non-negative rv with sf F̄X and hr function hX, as given in
Counterexample 3.2. Then, we consider a 2-out-of-3 system with i.i.d. component lifetimes (3
independent copies of X). The sf and the hr function of X2:3 can be obtained from (4.2) and (4.3),
respectively. We have

F̄X2:3(t) = (3 − 2F̄X(t))F̄2
X(t), and hX2:3(t) =

6(1 − F̄X(t))
3 − 2F̄X(t)

· hX(t).
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We plot the graph of the function LX2:3(t) =
thX2:3 (t)

− ln(F̄X2:3 (t)) in Figure 3. As it is depicted, this function
decreases with time, which confirms the result of Theorem 2, i.e., X2:3 ∈ DFR/A. If we consider a
parallel system with i.i.d. component lifetimes as three independent copies of X, then the sf and the hr
function of X3:3 are acquired by (4.2) and (4.3), respectively, as follows:

F̄X3:3(t) = 1 − (1 − F̄X(x))3, and hX3:3(t) =
3(1 − F̄X(t))2F̄X(t)
1 − (1 − F̄X(x))3

· hX(t).

In Figure 4, we also plot the graph of LX3:3(t), where it is shown that this function is decreasing in t,
which again validates the result obtained in Theorem 2. Hence, it was verified that X3:3 ∈ DFR/A.
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Figure 3. Plot of the function LX2:3(t) =
thX2:3 (t)

− ln(F̄X2:3 (t)) with respect to 0 < t < 3 in Example 5.1.
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Figure 4. Plot of the function LX3:3(t) =
thX3:3 (t)

− ln(F̄X3:3 (t)) with respect to 0 < t < 3 in Example 5.1.

It is worth mentioning here that, since the DFR/A class is equivalent to the decreasing aging
intensity (DAI) class, the result of Theorem 2 confirms that the claim raised by Nanda et al. [25] in
their counterexample 2.7 is not correct.
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6. Conclusions

The rate (or speed) of aging is generally related to time and can either increase or decrease with
time; however, it can also be stable and not fluctuate. Barlow and Proschan [4] introduced this concept
by considering members of a class of life distributions, such as the IFR class, and then defining some
partial stochastic orderings to compare these members in terms of the degree of their IFR property.
Nevertheless, the concept of the speed of aging is not limited to the members of specific life distribution
classes. For example, the lifetime of an electrical device may exhibit a decreasing hazard rate during
an initial time interval, e.g., [0, τ0), with a decreasing rate of aging, and then its hazard rate increases
at an increasing rate as time passes [τ0,∞). In this paper, we have focused on several monotonic aging
classes from which the concept of aging rate is derived. Some interrelationships between these aging
classes and some connections between these classes and other known non-parametric classes of life
distributions proposed in the literature are validated. This paper concludes that, in addition to some
well-known aging classes such as IFR and IFRA, some lesser-known classes of life distributions that
incorporate the concept of aging rate are also preserved under the structure of (n − k + 1)-out-of-n
systems. This may provide new insights for reliability engineers and system designers.

In future studies, preservation properties of the aforementioned classes of lifetime distributions will
be considered under a range of reliability operations such as monotone transformations, shock models,
mixing, and convolution. The aging properties of coherent systems or at least (n − k + 1)-out-of-n
systems with possibly dependent component lifetimes will also be investigated.
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