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Abstract: This paper introduces a novel bivariate distribution derived from the univariate
exponentiated generalized inverted exponential (EGIE) distribution, which we term the bivariate
exponentiated generalized inverted exponential (BEGIE) distribution. The newly proposed distribution
belongs to the Marshall-Olkin class. Several statistical attributes of the BEGIE distribution are
explored. The utility of this distribution is examined through applications on both bivariate data and
dependent competing risks data. Estimation processes for the model’s parameters, using maximum
likelihood and Bayesian methods, are outlined for scenarios involving both bivariate and dependent
competing risks data. Due to the absence of closed-form solutions for these estimators, numerical
optimization techniques are employed. Furthermore, the proposed distribution is illustrated and
evaluated through the analysis of three real datasets: two involving bivariate data, and the other
involving dependent competing risks data.
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1. Introduction

Failure and many causes of failure usually emerge in various application disciplines such as
reliability, engineering, and lifetime study due to the complexity of internal structure and external
environment, which is referred to as competing risks model in literature. In most literature, inference
for competing risk models is studied under the assumption of independent causes of failure. Sarhan
and Balakrishnan [28], Sarhan, El-Gohary, El-Bassiouny, and Balakrishnan [29], El-Gohary and
Sarhan [10], Sarhan, Hamilton, Smith, and Kundu [30], Kundu, Sarhan, and Gupta [16], Sarhan,
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Apaloo, and Kundu [27] and Sarhan [26] proposed bivariate/multivariate lifetime distributions using
independent shock or competing risks models. This research mostly used bivariate distributions to
fit bivariate data sets. However, the assumption of independence among the causes of failure may
be inaccurate. For example, the classic two-unit series system failed due to shocks from three shock
sources. The first and second shock sources affect the first and second units, respectively, and the third
shock source hits both units at the same time. It is clear that the causes of failure in this system are
dependent. In practice, the associated failure reasons may be independent or dependent. In a clinical
medicine study, the causes of failure of colon cancer are cancer recurrence or death, and it is observed
that such failure causes are also dependent in this situation. As a result, inference for dependent
competing risks models will be more practical in reliability, engineering, and other related fields, and
in the study of competing risks models involving dependent causes of failure, it is natural to consider
a bivariate or multivariate distribution for the lifetimes.

Bivariate lifetime distributions are useful in modeling competing risks when there are two dependent
reasons of failure. Wada, Sen, and Shimakura [33] and Wang and Ghosh [34] used bivariate
exponential lifetime models to analyze data with two associated risk components. In situations where
there is a positive probability of two failure modes occurring simultaneously, the Marshall-Olkin
bivariate exponential (MOBE) distribution introduced by Marshall and Olkin [19] is probably the most
extensively used model. Pena and Gupta [25], Kotz, Balakrishnan, and Johnson [13], Kundu and
Dey [14], Li, Sun, and Song [18], Kundu and Gupta [15], Sarhan, Apaloo and Kundu [27], Alqallaf
and Kundu [5], Sarhan and Kundu [31], and references therein are all worth reading.

The inverse exponential (IE) distribution is a life time model that can simulate real-world
events, such as bathtub failure rates. Attempts to extend the flexibility of the IE distribution gave
rise to the generalized inverted exponential (GIE) distribution by Abouammoh and Alshingiti [2].
Oguntunde et al. [24] presented a new lifetime distribution known as the exponentiated generalized
inverted exponential (EGIE) distribution. The cumulative distribution function (cdf), probability
density function (pdf), and hazard rate function (hrf) of EGIE are given, respectively, by
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The EGIE distribution generalizes some well known lifetime distributions, and among them we list
two special cases.

1) When γ = 1, EGIE (λ, γ, α) reduces to the inverted exponential distribution, IE(λ, α), see Sanku
[9].

2) When λ = 1, EGIE (λ, γ, α) reduces to the exponentiated inverted exponential distribution,
GIE(γ, α), see Kawsar and Ahmad [12].
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The primary objective of this paper is to utilize the EGIE in proposing a novel bivariate distribution
by employing a shock model with three independent shocks, each following a non-identical EGIE
distribution. One advantage of the proposed distribution is its flexibility, as it generalizes several well-
known bivariate distributions, such as the bivariate exponentiated inverse exponential, bivariate inverse
exponential, and bivariate inverse Weibull distributions. This versatility allows it to fit a wide range
of real data sets. However, a key disadvantage is its singularity, which complicates the theoretical
calculations of certain statistical properties, such as expectations, variances, correlation coefficient,
and entropy of its variables.

In some applications, we may encounter bivariate data where one variable is discrete and the other is
continuous. In such cases, semiparametric approaches for bivariate modeling are highly recommended.
Examples include Copula-Based semiparametric models (see Genest et al. [11]) and semiparametric
transformation models (see Chen et al. [7]).

An alternative approach for proposing bivariate distributions involves the use of copulas. Several
studies have employed this method, including a recent work by Al-Shomrani [4], which introduces
a new bivariate family of distributions based on a copula function. As a special case of this family,
Al-Shomrani proposed the bivariate Topp-Leone-Exponential-Exponential (BFGMTLEE) distribution.
However, they did not apply the BFGMTLEE to fit any real data. In this manuscript, we will compare
the performance of our newly proposed model with the BFGMTLEE distribution in fitting real data.

The rest of the paper is organized as follows. Section 2 introduces the BEGIE distribution and
discusses some of its fundamental properties. Dependence measures, including correlation, joint
entropy, and positively likelihood ratio dependent, are discussed in Section 3. Random samples
generation from the proposed model is discussed in Section 4. Section 5 discusses the maximum
likelihood method using bivariate data and dependent competing risks data. Section 6 discusses
the Bayesian estimation of the model parameters. A simulation study is presented in Section 7. In
Section 8, we analyze three real-world data sets using the new suggested distribution and compare it
to the IE distribution and GIE distribution as sub-models and some other non-nested models. Section
9 concludes the paper.

2. BEGIE distribution

Now, we introduce the new bivariate exponentiated generalized inverted exponential (BEGIE)
distribution as a mathematical model. Consider three independent random variables, denoted as U j,
j = 1, 2, 3. Each U j follows an EGIE distribution with parameters (λ, γ, α j) for j = 1, 2, 3. Define
Xi = max(Ui,U3) for i = 1, 2. In this scenario, the pair of random variables (X1, X2) follows the BEGIE
distribution with parameters (λ, γ, α1, α2, α3).

In a reliability context, this distribution can be understood as follows: Imagine a reliability system
consisting of two units. These system units are exposed to three independent sources of shocks. In
this scenario, a shock originating from the first source targets unit 1, a shock from the second source
targets unit 2, and a shock from the third source affects both units. Unit 1 is considered destroyed when
it receives shocks from both sources 1 and 3, while unit 2 is considered destroyed upon experiencing
shocks from both sources 2 and 3. Let X1 and X2 represent the lifetimes of system units 1 and 2,
respectively. In this context, we have X1 = max(U1,U3) and X2 = max(U2,U3), where U1,U2, and
U3 represent the times at which the shocks occur and are assumed to follow EGIE distributions, as
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previously described. As a consequence of this assumption, the joint distribution of (X1, X2) will follow
the BEGIE distribution.

The main characteristics of the BEGIE distribution are outlined in the following theorem. The
proofs, which are straightforward, are omitted for brevity.

Theorem 1. Suppose (X1, X2) ∼ BEGIE(λ, γ, α1, α2, α3). Then,

1) The bivariate cumulative distribution function (cdf) of (X1, X2) is

F1,2(x1, x2) =
{

G(x1; λ, γ, α1 + α3) G(x2; λ, γ, α2), 0 < x1 ≤ x2,

G(x1; λ, γ, α1) G(x2; λ, γ, α2 + α3), 0 < x2 < x1.
(2.1)

2) The bivariate probability density function (pdf) of (X1, X2) is

f1,2(x1, x2) =


f1(x1, x2) = g(x1; λ, γ, α1 + α3) g(x2; λ, γ, α2), 0 < x1 < x2 ,

f2(x1, x2) = g(x1; λ, γ, α1) g(x2; λ, γ, α2 + α3), 0 < x2 < x1 ,

f3(x) =
α3

α1 + α2 + α3
g(x; λ, γ, α1 + α2 + α3), 0 < x1 = x2 = x .

(2.2)

3) The marginal distribution of X j follows EGIE(λ, γ, α j + α3), j = 1, 2.

It is important to note that due to the relationship P (X1 = X2) = α3
α1+α2+α3

and the set A = {(x1, x2) |
x1 = x2 > 0} having Lebesgue measure zero, the BEGIE distribution contains both absolutely
continuous and singular components. As a result, the BEGIE distribution is continuous, but not
absolutely continuous with respect to the standard Lebesgue measure on (0,∞) × (0,∞).

Substituting from (1.2) into (2.2), we can derive f1(x1, x2), f2(x1, x2), and f3(x) in the following
forms:
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and
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x
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. (2.5)

Figure 1 portrays the continuous components of the joint pdf (jpdf) for (X1, X2), accompanied
by corresponding contour plots illustrating various parameter values of the model. Simultaneously,
Figure 2 displays the pdf and hrf of the marginal distribution for X1, while Figure 3 showcases the
singular segments of the jpdf, utilizing three distinct sets of parameter values to emphasize diverse
hazard function shapes. These figures were generated using MATLAB. It becomes evident from these
figures that the distribution’s support varies in response to the model parameters’ values and the profiles
of the pdf and hrf.
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Figure 1. The absolutely continuous parts of the joint pdf and the corresponding contour
plots of the BEGIE distribution at different values for the model parameters: (1) Set 1: λ =
0.01, γ = 0.5, α1 = 2, α2 = 3, α3 = 2.5; (2) Set 2: λ = 69; γ = 2; a1 = .4; a2 = .3; a3 = .5; (3)
Set 3: λ = 69; γ = 2; a1 = 2.4; a2 = 2.3; a3 = 2.5 (from top to bottom).

AIMS Mathematics Volume 9, Issue 10, 29439–29473.



29444

Figure 2. The pdf and the hrf of the marginal distribution of X1 when: (1) Set 1: λ =
0.01, γ = 0.5, α1 = 2, α2 = 3, α3 = 2.5; (2) Set 2: λ = 69; γ = 2; a1 = .4; a2 = .3; a3 = .5; (3)
Set 3: λ = 69; γ = 2; a1 = 2.4; a2 = 2.3; a3 = 2.5 (from top to bottom).
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Figure 3. The singular part of the BEGIE(λ, γ, α1, α2, α3) when: (1) Set 1: λ = 0.01, γ =
0.5, α1 = 2, α2 = 3, α3 = 2.5; (2) Set 2: λ = 69; γ = 2; a1 = .4; a2 = .3; a3 = .5; (3) Set 3:
λ = 69; γ = 2; a1 = 2.4; a2 = 2.3; a3 = 2.5 (from left to right).

The BEGIE(λ, γ, α1, α2, α3) distribution generalizes the following distributions:

1) Bivariate inverted exponential distribution, denoted by BIE(λ, α1, α2, α3), by setting γ = 1;
2) Bivariate exponentiated inverted exponential distribution, denoted by BEIE(γ, α1, α2, α3), by

setting λ = 1.

Alqallaf and Kundu [5] applied a similar concept to propose a bivariate inverse generalized
exponential (BIGE) distribution by combining three independent inverse generalized exponential (IGE)
distributions. While the IGE distribution is a submodel of the EGIE distribution when α = 1, the BIGE
is not a submodel of the BEGIE.

Now, we discuss the Marshall–Olkin (MO) copula associated with the BEGIE distribution.
The BEGIE distribution can be derived by applying the MO copula to EGIE distributions as the
marginals. For any bivariate distribution function F1,2(x1, x2) with marginals FX1(x1) and FX2(x2),
there exists a unique copula C : [0, 1]2 → [0, 1] that has uniform margins, satisfying F1,2(x1, x2) =
C(FX1(x1), FX2(x2)) for all (x1, x2) ∈ R2, see Nelson [22]. The MO copula is given by

Cθ1, θ2(u1, u2) = u1−θ1
1 u1−θ2

2 min
(
uθ11 , u

θ2
2

)
,

for 0 < θ1, θ2 < 1. By setting u j = FX j(x j), j = 1, 2, where X j ∼ EGIE(λ, γ, α j + α3) and θ j =
α3
α j+α3

, we
obtain the same joint cumulative distribution function F1,2(x1, x2) as in (2.1).

3. Dependence and information

This section discusses three mathematical properties of the BEGIE distribution. Correlation
measures the linear relationship between two random variables, while joint entropy captures their
combined uncertainty. Positively likelihood ratio dependent variables show a form of positive
dependence.
Correlation coefficient: The correlation coefficient of X1 and X2, which has a joint pdf f1,2(x1, x2), is

ρ =
Cov(X1, X2)
σX1 σX2

, (3.1)

where Cov(X1, X2) = E(X1 X2) − E(X1) E(X2) and

E(Xi) =
∫ ∞

0

∫ ∞

0
xi f1,2(x1, x2) dx2dx1, i = 1, 2,
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E(X1 X2) =
∫ ∞

0

∫ ∞

0
x1 x2 f1,2(x1, x2) dx2dx1 ,

σ2
Xi
=

∫ ∞

0

∫ ∞

0
(xi − E(Xi))2 f1,2(x1, x2)dx2dx1, i = 1, 2.

Substituting from (2.2) into the above equations, we can get E(Xi), E(X1X2), and σXi , and then we
use (3.1) to get ρ. Unfortunately, those integrals cannot be computed analytically. Therefore, we
should use numerical methods to get ρ.
Joint entropy: Joint entropy for bivariate distributions is a measure of the uncertainty or randomness
associated with the joint distribution of two random variables. In information theory, entropy provides
a quantitative way to capture the amount of information in a distribution. For bivariate distributions,
this concept extends to joint entropy. The joint entropy H(X1, X2) of two random variables X1 and X2

is a measure of the uncertainty associated with their joint distribution. It is defined as (see Cover and
Thomas [6]):

H(X1, X2) = E
[
log f1,2(x1, x2)

]
. (3.2)

For the underlying model, H does not have an analytical solution. Therefore, as for ρ, numerical
methods must be used to compute H for specific parameter values.

We performed numerical calculations for the marginal means, standard deviations, covariance of
(X1, X2), correlation, and joint entropy for two parameter sets: Set I (λ = 69, γ = 2, α1 = .4, α2 = .3)
and Set II (λ = 69, γ = 2, α1 = 2.4, α2 = 2.3), with varying values of α3 = 0.1, 0.2, · · · , 3.5. The results
are presented in Tables 1 and 2. Additionally, Figure 4 illustrates the behavior of ρ and H as functions
of α3. From these results, we observe a positive correlation between the two variables that decreases
with α3. A decreasing correlation does not necessarily imply that there is no relationship between the
variables, it simply means the linear relationship is weakening. We also observe that H increases and
then decreases as α3 increases. The “up then down” pattern in H indicates that the variables initially
move towards independence (increasing uncertainty) but later exhibit stronger dependence, reducing
uncertainty. This pattern often reflects dynamic interactions between variables as their relationship
evolves under changing conditions.
Positively likelihood ratio dependent (PLRD): PLRD is a concept in probability and statistics
that refers to a specific type of dependence between two random variables; for more details, see
Lehmann [17]. It is a form of positive dependence that is stronger than simple positive correlation.
Two random variables X1 and X2 are said to be PLRD if for any values x11 < x12 and any value x2,
the likelihood ratio LR = f2|1(x2 |x12)

f2|1(x2 |x11) is non-decreasing in x2. Here, f2|1(x2|x1) is the conditional pdf
of X2, given X1 = x1. The following theorem summarizes PLRD in the BEGIE case. The proof is
straightforward, so it is omitted for brevity.

Theorem 2. Let (X1, X2) follow BEGIE(λ, γ, α1, α2, α3). Then, X1 and X2 are PLRD if α2 ≤ α1 + α3.

It is important to note that PLRD is a stronger condition than positive correlation. While positive
correlation implies that higher values of one variable are associated with higher values of another,
PLRD imposes a stricter requirement on how their joint distribution behaves.
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Table 1. The marginal mean, variance, covariance, and correlation of X1 and X2 using Set I
of parameters’ values: λ = 69, γ = 2, α1 = .4, α2 = .3, and different values of α3.

α3 E(X1) E(X2) E(X1X2) Cov(X1, X2) σX1 σX2 ρ H
0.1 12.5 11.6 238.2 93.2 14.2 12.8 0.524 −9.343
0.2 18 16.3 397.5 103.6 17.1 15.8 0.389 −8.906
0.3 21.5 19.4 520 102.5 19.4 17.8 0.302 −8.702
0.4 24.2 21.6 618.7 97 21.2 19.4 0.239 −8.914
0.5 26.2 23.3 702.3 91.8 22.6 21 0.196 −9.256
0.6 27.9 24.6 774 87.4 23.8 22.1 0.166 −9.652
0.7 29.3 25.7 832.4 80.8 24.9 23.1 0.142 −10.076
0.8 30.5 26.7 888.4 76.6 26.1 24.1 0.123 −10.496
0.9 31.4 27.4 934.9 73 26.9 25 0.108 −10.932
1 32.4 28.1 978.5 67 28.1 25.8 0.093 −11.366
1.1 33.2 28.8 1018.8 64.4 28.7 26.6 0.084 −11.794
1.2 33.9 29.3 1054.7 60.8 29.8 27.4 0.075 −12.22
1.3 34.5 29.9 1089.5 58.5 30.3 28.2 0.069 −12.643
1.4 35.1 30.3 1119.3 56 31 28.9 0.063 −13.084
1.5 35.7 30.7 1152.3 56.3 32.1 29.4 0.06 −13.514
1.6 36.1 31.1 1174.4 50.6 32.2 30 0.052 −13.921
1.7 36.6 31.5 1196.9 46.3 33 30.5 0.046 −14.343
1.8 37 31.9 1225.5 48 33.3 31.2 0.046 −14.778
1.9 37.3 32.1 1243.7 45.3 34.1 31.6 0.042 −15.207
2 37.7 32.3 1264.7 44.2 34.8 31.9 0.04 −15.627
2.1 38 32.6 1283.6 43.2 35.1 32.8 0.038 −16.046
2.2 38.4 32.9 1303.8 42.1 35.5 33.2 0.035 −16.46
2.3 38.8 33.1 1321.2 39.8 36.4 33.2 0.032 −16.891
2.4 39 33.3 1337.2 37.3 36.7 33.8 0.03 −17.309
2.5 39.2 33.6 1350.9 36.4 36.9 34.2 0.028 −17.729
2.6 39.5 33.7 1367.6 35.5 37.7 34.5 0.027 −18.173
2.7 39.7 33.9 1381 33.9 37.9 35.2 0.026 −18.593
2.8 40 34.1 1394 31.9 38.5 35.1 0.025 −19.004
2.9 40.2 34.2 1409.7 34.2 38.6 35.7 0.024 −19.426
3 40.4 34.4 1422.6 31.7 39.1 35.8 0.023 −19.85
3.1 40.5 34.6 1428.8 28.4 39.2 36.4 0.022 −20.294
3.2 40.8 34.7 1446.2 30.3 39.7 36.7 0.021 −20.703
3.3 41 34.8 1460.1 32.2 40.2 37.1 0.021 −21.126
3.4 41.1 35 1468.1 29 40.5 37.2 0.019 −21.532
3.5 41.3 35.1 1477.3 28 40.6 37.8 0.018 −21.964
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Table 2. The marginal mean, variance, covariance, and correlation of X1 and X2 using Set II
of parameters’ values: λ = 69, γ = 2, α1 = 2.4, α2 = 2.3, and different values of α3.

α3 E(X1) E(X2) E(X1X2) Cov(X1, X2) σX1 σX2 ρ H
0.1 17 16.9 740.8 453.1 23.7 23.5 0.819 −35.213
0.2 26.3 26.2 1360.4 671 30 29.6 0.763 −27.834
0.3 33.3 33.2 1912.1 805.7 33.8 33.5 0.718 −20.501
0.4 39 38.7 2399.5 887.7 36.9 36.3 0.674 −16.933
0.5 43.8 43.4 2860.7 955.9 39 38.5 0.643 −14.875
0.6 48 47.5 3263 984.8 40.6 39.9 0.612 −13.581
0.7 51.5 51.1 3649.7 1015.3 42.4 41.9 0.579 −12.705
0.8 54.8 54.2 3999.6 1027.8 43.7 43.1 0.552 −12.085
0.9 57.7 57.1 4323.3 1027 44.9 44.4 0.522 −11.648
1 60.3 59.7 4638.6 1035.6 45.9 45.2 0.505 −11.328
1.1 62.7 62.1 4932.8 1035.2 47.1 46.2 0.482 −11.101
1.2 65.1 64.4 5222.9 1029 48.1 47.3 0.456 −10.922
1.3 67.2 66.5 5498 1026.4 49 48.6 0.438 −10.801
1.4 69 68.3 5731.6 1014.9 49.6 49.2 0.42 −10.716
1.5 71.1 70.1 5999.1 1012.6 50.7 49.8 0.405 −10.654
1.6 72.7 71.8 6222.1 1000.9 51.6 50.9 0.385 −10.62
1.7 74.3 73.3 6433.5 984 52.3 51.6 0.37 −10.593
1.8 75.9 74.9 6668.2 983.8 53.2 52.2 0.358 −10.596
1.9 77.3 76.4 6888.5 978.5 53.7 53.5 0.344 −10.602
2 78.6 77.6 7059.3 961 54.7 53.6 0.332 −10.617
2.1 80 78.9 7260.8 945 55.2 54.8 0.316 −10.638
2.2 81.2 80.1 7430 927.2 55.6 55.2 0.306 −10.668
2.3 82.2 81.2 7593.8 916.2 56.3 55.5 0.296 −10.706
2.4 83.4 82.2 7752.4 897.6 57.2 56.4 0.281 −10.751
2.5 84.4 83.3 7926.9 893.5 57.3 57.1 0.276 −10.796
2.6 85.5 84.3 8097.6 886.3 58.3 57.3 0.268 −10.839
2.7 86.6 85.3 8252.2 864.9 59 58.1 0.255 −10.892
2.8 87.5 86.2 8396.1 851.3 59.7 59.2 0.244 −10.949
2.9 88.4 87.2 8548 842.4 60.1 59.5 0.238 −11.002
3 89.3 88 8707.3 847.6 61 60.1 0.234 −11.063
3.1 90.1 88.8 8823.5 824.5 61.2 60.4 0.225 −11.115
3.2 90.8 89.7 8946.3 804.5 61.2 61.3 0.217 −11.176
3.3 91.7 90.4 9108.4 809.2 62.3 61.5 0.213 −11.232
3.4 92.4 91.1 9220.6 798.3 62.8 62 0.206 −11.295
3.5 93.3 91.8 9345.3 786 63.4 62.4 0.2 −11.357
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Figure 4. The correlation coefficient of X1 and X2 (left) and entropy (right) as functions of
α3 at different values of the other four parameters.

4. Random samples generation

When generating random numbers from the EGIE(λ, γ, α) distribution, if X follows EGIE(λ, γ, α),
the subsequent equation provides the qth quantile of X:

x =
[
−

1
λ

log
(
1 −

(
1 − q

1
α

) 1
γ

)]−1

, q ∈ (0, 1). (4.1)

The following algorithm can be followed to generate bivariate data from the BEGIE(λ, γ, α1, α2, α3)
distribution.

1) Specify the sample size n;
2) Specify the values of the model parameters λ, γ, α1, α2, α3;
3) Generate the samples, each with size n, from EGIE(λ, γ, α j), j = 1, 2, 3, according to Eq (4.1).

Use U j, j = 1, 2, 3, to denote these three generated samples respectively. That is, for j = 1, 2, 3,
the jth element in vector U j, is

U ji =

−1
λ

log

1 − (
1 − q

1
α j

ji

) 1
γ



−1

, i = 1, 2, · · · , n;

where q ji is randomly generated from a uniform distribution on the (0, 1) interval.
4) Generate a sample with size n of (X1, X2) by applying the following relationships:

X1i = max(U1i,U3i), and X2i = max(U2i,U3i), i = 1, 2, · · · , n.

The random sample (X1i, X2i) obtained from this algorithm follow a BEGIE(λ, γ, α1, α2, α3)
distribution. This bivaraite sample of (X1, X2) can be used to generate a dependent competing risks
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sample, say (Ti, δi), i = 1, 2, · · · , n, from the underlying distribution by setting Ti = min(X1i, X2i) and

δi =


1 if X1i < X2i (risk 1 causes the failure);
2 if X2i < X1i (risk 2 causes the failure);
3 if X1i = X2i (both risks 1 & 2 cause the failure).

5. Maximum likelihood estimation

In this section, we estimate the model parameters Θ = (α1, α2, α3, λ, γ) using two different types
of data. Type I data consists of simple random samples of the bivariate vector (X1, X2) that follows
the new bivariate distribution. Type II data consists of dependent competing risks data (T, δ), with
T = min(X1, X2), where (X1, X2) follows a bivariate lifetime distribution and δ ∈ {1, 2, 3} represents the
cause of failure. Theorem 1 will be helpful to estimate the model parameters using data of Type I. The
following theorem is needed for Type II data.

Theorem 3. The pdf of T = min(X1, X2), for a given cause of failure δ ∈ {1, 2, 3}, is

f ∗(t; δ) =


f ∗1 (t) if δ = 1,
f ∗2 (t) if δ = 2,
f ∗3 (t) if δ = 3,

(5.1)

where

f ∗j (t) =
α jλγ

t2 e−
λ
t
(
1 − e−

λ
t
)γ−1 [

1 −
(
1 − e−

λ
t
)γ]α j−1

{
1 −

[
1 −

(
1 − e−

λ
t
)γ]α3− j

} {
1 −

[
1 −

(
1 − e−

λ
t
)γ]α3

}
, j = 1, 2, (5.2)

and

f ∗3 (t) =
α jλγ

t2 e−
λ
t
(
1 − e−

λ
t
)γ−1 [

1 −
(
1 − e−

λ
t
)γ]α1+α2+α3−1

. (5.3)

Proof. Based on (2.1), one can show that the pdf of T = min(X1, X2) is

f ∗(t; δ) =


f ∗1 (t) = g(t; λ, γ, α1) G(t; λ, γ, α2) G(t; λ, γ, α3) if δ = 1,
f ∗2 (t) = g(t; λ, γ, α2) G(t; λ, γ, α1) G(t; λ, γ, α3) if δ = 2,
f ∗3 (t) = α3

α1+α2+α3
g(t; λ, γ, α1 + α2 + α3) if δ = 3,

(5.4)

where G(t; λ, γ, α j) = 1−G(t; λ, γ, α j) is the survival function of U j, j = 1, 2, 3. Substituting from (1.2)
and (1.1) into (5.4), we complete the proof.

The maximum likelihood method is utilized for estimating model parameters, employing both types
of data. Additionally, we also apply the Bayesian method, specifically for bivariate data. Although the
Bayesian method could similarly be applied to dependent competing risks data, it was omitted from
the paper due to length constraints. For more details on estimation methods, we refer to Wang et al. [8]
and Albert (2009) [3].
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5.1. Bivariate data

Let us assume that (X11, X21), (X12, X22), · · · , (X1n, X2n) is an independent and identically distributed
random sample of (X1, X2) that follows BEGIE(α1, α2, α3, λ, γ). For simplicity, let us introduce the
indicator variables δi, i = 1, 2, ..., n, where

δi =


1 if X1i < X2i,

2 if X1i > X2i,

3 if X1i = X2i.

Using the above bivariate sample, the likelihood function can be expressed as

L1(Θ) =
n∏

i=1

[ f1(x1i, x2i)]I[δi=1][ f2(x1i, x2i)]I[δi=2][ f3(x1i]I[δi=3]. (5.5)

Substituting from (2.3)–(2.5) into (5.5), we get the log-likelihood function as

L1 =

3∑
j=1

n j logα j + (2n − n3) log(λ γ) + (n1 + n2) log(α j + α3)

−2
n∑

i=1

I[δi = 3] log x1i +

2∑
j=1

I[δi = j] log(x1ix2i)


+

n∑
i=1

I[δi = 3]
(
−λ

x1i
+ (γ − 1) log(1 − e−

λ
x1i )

)

+

n∑
i=1

2∑
j=1

I[δi = j]

 2∑
ℓ=1

−λ

xℓi
+ (γ − 1) log(1 − e−

λ
xℓi )


+(α2 − 1)

n∑
i=1

I[δi = 1] log
(
1 − (1 − e−

λ
x2i )γ)

)
+

n∑
i=1

2∑
j=1

(α j + α3 − 1)I[δi = j] log(1 − (1 − e−
λ

x ji )γ)

+

n∑
i=1

I[δi = 3]

 3∑
j=1

α j − 1

 + I[δi = 2](α1 − 1)

 log
(
1 −

(
1 − e−

λ
x1i

)γ)
,

(5.6)

where n j =
∑n

i=1 I[δi = j], j = 1, 2, 3 with I[A] = 1 if A is true and 0 otherwise.
Consequently, the maximum likelihood estimates (MLEs) of the unknown parameters can be

determined by maximizing the log-likelihood function pertaining to the given data in relation to these
parameters. Similarly, we can formulate the likelihood equations, which result from equating the first
partial derivatives of the log-likelihood function concerning the unknown parameters to zero. The
MLEs correspond to the solutions of these derived likelihood equations, at which point the Fisher
information matrix should exhibit positive definiteness. This Fisher information matrix encompasses
the second partial derivatives of the log-likelihood function with respect to the parameters.
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In the case of the distribution under consideration, the likelihood equations are not amenable to
an analytical solution. Consequently, we have resorted to employing numerical techniques within
the R software framework to solve the system of five non-linear equations involving five unknown
parameters.

5.2. Dependent competing risks data

In this type of data, we observe a pair of quantities: T, the system time to failure, and δ, an
indicator of the cause of failure. This means that the observations in this case are (Ti, δi), i = 1, 2, ..., n.
The lifetime experiment that produces this type of data can be illustrated as follows: (1) we put n
independent and identical devices (system/objects) on the life test; (2) each system is under attack from
two dependent competing risks which occur at times X1 and X2, and the system will fail once it receives
one of the two attacks; (3) (X1, X2) follows the BEGIE distribution; (4) we observe (Ti, δi), i = 1, 2, ..., n,
where Ti = min(X1i, X2i), and δi is defined as δi = 1 if risk 1 causes the failure (X1i < X2i), δi = 2 if risk
2 causes the failure (X2i < X1i), and δi = 3 if both risks cause the failure (X1i = X2i). The likelihood
function using such dependent competing risks data is

L2(Θ) =
n∏

i=1

 3∏
j=1

[ f ∗j (ti)]I[δi= j]

 , (5.7)

where f ∗j (t) are given in Theorem 3. Substituting (5.2) and (5.3) into (5.7), we can get the log-likelihood
function as

L2 =

3∑
j=1

n j logα j + n log(λγ) − 2
n∑

i=1

log ti −

n∑
i=1

λ

ti
+ (γ − 1)

n∑
i=1

log(1 − e−
λ
ti )

+

2∑
j=1

(α j − 1)
n∑

i=1

I[δi = j] log
[
1 −

(
1 − e−

λ
ti

)γ]
+(α1 + α2 + α3 − 1)

n∑
i=1

I[δi = 3] log
[
1 −

(
1 − e−

λ
ti

)γ]
, (5.8)

where n j =
∑n

i=1 I[δi = j], j = 1, 2, 3.
To get the MLE of the model parameters, using dependent competing risks data, we set the first

partial derivatives of L2 with respect to the five parameters α1, α2, α3, λ, γ equal to zero, and we get a
system of five non-linear equations in five unknowns. Solving the first three equations in α j, j = 1, 2, 3,
we get α j as a function of (λ, γ):

α j(λ, γ) =
−n j∑n

i=1 (I[δi = j] + I[δi = 3]) log(1 − (1 − e−
λ
ti )γ)
, j = 1, 2. (5.9)

and
α3(λ, γ) =

−n3∑n
i=1 I[δi = 3] log(1 − (1 − e−

λ
ti )γ)
. (5.10)

Substituting (5.9) and (5.10) into (5.8), we can express the log-likelihood function as a function of two
parameters (λ, γ) , say L∗2(λ, γ). This will make the optimization of the log-likelihood function much
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easier since we will deal only with two parameters instead of five. Once we get the MLE of λ and γ,
we can use (5.9) and (5.10) to get the MLE of α j, j = 1, 2, 3.

Since the MLE of the parameters using either type of data are not obtained in closed form, we
cannot get the explicit sampling distributions of the MLEs of these parameters. Therefore, we cannot
obtain exact confidence intervals for the model parameters. Alternatively, we can use the large
sample distribution of the MLE and the corresponding observed Fisher information matrix to derive
approximate confidence intervals for the model parameters.

6. Bayesian estimation

In this section, we implement a Bayesian approach to estimate the model parameters. We will
demonstrate this method using the two types of data previously discussed. To derive Bayesian
estimations, we assume independence among the five model parameters: λ, γ, α1, α2, and α3,
considering them as independent random variables following gamma prior distributions. These gamma
prior distributions have the hyperparameters (ai, bi), where i = 1, 2, · · · , 5, respectively. This implies
that the logarithm of the joint prior density of these five parameters, referred to as g(θ), is up to a
normalized constant, given by

log g(θ) ∝
5∑

j=1

{
(a j − 1) log θ j − b j θ j

}
(6.1)

where, θ j is the jth component in the vector of unknown parameter θ. Combining the logarithm of
the joint prior density function with the logarithm of likelihood function allows us to formulate the
logarithm of the joint posterior density function of θ, given data, up to a normalized constant as

log g(θ|data) = log g(θ) +L(data, θ). (6.2)

Substituting (6.1) and (5.6) into (6.2), we can obtain the log g(θ|data) for the bivariate data, as

log gI(θ|data) = log g(θ) +LI(data, θ). (6.3)

While substituting (6.1) and (5.8) into (6.2), we can obtain the log g(θ|data) for the dependent
competing risks data, as

log gII(θ|data) = log g(θ) +LII(data, θ). (6.4)

The logarithm of the posterior density functions, log gI(θ|data) and log gII(θ|data) does not take the
form of well-known multivariate distributions, making it challenging to derive analytic solutions for
the Bayesian analysis of the model parameters. Consequently, we will need to resort to numerical
computational methods. Specifically, in this paper, we will utilize the Markov chain Monte Carlo
(MCMC) and sampling importance resampling (SIR) methods to approximate Bayesian estimations for
the model parameters. Within MCMC, our primary task involves simulating samples from a proposal
distribution that closely resembles the posterior distribution. For more comprehensive insights, readers
are directed to Albert [3]. Typically, multivariate normal and t distributions serve as common proposal
distributions. However, as the underlying parameters are all positive, whereas these distributions have
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real-valued support, we need to re-parameterize θ into ϕ = log(θ) ∈ R5. Through this logarithmic
transformation of θ, we can derive the logarithm of the posterior density functions, of ϕ, as

log gT
I (ϕ|data) = log gI(θ = eϕ|data) +

5∑
j=1

ϕ j , (6.5)

and

log gT
II(ϕ|data) = log gII(θ = eϕ|data) +

5∑
j=1

ϕ j . (6.6)

We will also consider the normal prior distribution of ϕ j = log θ j ∼ N(µ j, σ j). In this case, log g(θ),
given in (6.1), will be replaced with

log g(ϕ) ∝ −
5∑

j=1

(ϕ j − µ j)2 .

7. Simulation study

To demonstrate the robustness of the model and its practical implications under various theoretical
conditions, we conduct a simulation study of the bivariate model using two different sets of model
parameters. The study follows the steps outlined below:

1) Specify the parameter values: Define the sample size n and the model parameters λ, γ, α1, α2,
and α3.

2) Generate random samples: Using the random sample generation method outlined in Section 3,
generate M random samples of (X1, X2).

3) Estimate parameters: For each sample generated in Step 2, compute the MLE, Bayes estimate
(BE) of each parameter, and the corresponding asymptotic 95% confidence interval and 95%
credible interval.

4) Compute performance metrics: Using the M results from Step 3, calculate the following:

(a) The average of the point estimation (APE), using the MLE and BE.
(b) The mean squared error (MSE), using the MLE and BE.
(c) The average length of the confidence/credible interval (ALCI).
(d) The coverage probability (CP) for both maximum likelihood and Bayes methods.

The mean squared error (MSE) and average of the point estimations (APE) are calculated as

APE =
∑M

i=1 θ̂
(i)

M
, MSE =

∑M
i=1

(
θ − θ̂(i)

)2

M
,

where θ̂(i) is the either the MLE or BE of the parameter θ, θ = λ, γ, α1, α2, α3, for the i-th sample,
i = 1, 2, · · · ,M.
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Table 3. The estimation results for two sets of model parameters: Set I: λ = 69, γ = 2, α1 =

.4, α2 = .3, α3 = .5 and Set II: λ = 69, γ = 2, α1 = 2.4, α2 = 2.3, α3 = 2.5.

n Par AMLE MSE ALCI CP AMLE MSE ALCI CP
Set I Set II

50 λ 70.4797 108.0786 39.0713 94.78 70.2358 107.3271 38.936 94.84
70.3798 107.1782 38.9473 94.4 70.1365 106.4778 38.8127 94.82

γ 2.0446 0.08677 1.1335 95.2 2.0435 0.08892 1.1328 94.96
2.0446 0.08675 1.1315 94.94 2.0435 0.08891 1.1308 94.88

α1 0.4081 0.00356 0.2262 95.54 2.4474 0.1279 1.3567 95.12
0.4081 0.00356 0.2258 95.08 2.4473 0.12787 1.3543 95.1

α2 0.3062 0.00198 0.1698 95.46 2.3489 0.11669 1.3022 94.98
0.3062 0.00198 0.1695 95.2 2.3489 0.11667 1.2998 95.16

α3 0.5096 0.00547 0.2825 95.56 2.5462 0.13861 1.4115 94.94
0.5096 0.00547 0.282 95.44 2.5461 0.13858 1.409 95

75 λ 69.9846 69.88682 31.6775 94.92 69.9421 66.7908 31.6582 95.58
69.9194 69.50135 31.6108 94.68 69.877 66.42289 31.5916 95.42

γ 2.0285 0.0574 0.9182 94.86 2.0307 0.05747 0.9192 95.38
2.0285 0.05739 0.9171 94.58 2.0307 0.05747 0.9181 95.04

α1 0.4046 0.00221 0.1832 95.2 2.4363 0.08479 1.1028 94.48
0.4046 0.00221 0.1829 95.24 2.4363 0.08478 1.1015 94.68

α2 0.3045 0.00133 0.1378 94.88 2.3315 0.07415 1.0553 95.16
0.3045 0.00133 0.1377 94.94 2.3315 0.07414 1.0541 95.1

α3 0.5062 0.00355 0.2291 94.98 2.5338 0.09091 1.1469 95.36
0.5062 0.00355 0.2289 95 2.5338 0.09089 1.1455 95.06

100 λ 69.7553 49.43844 27.3436 94.92 69.7013 49.31247 27.3224 95.06
69.7068 49.2296 27.3005 95.1 69.6529 49.10912 27.2794 95.16

γ 2.0224 0.04295 0.7928 94.96 2.0241 0.04206 0.7934 95.5
2.0224 0.04295 0.7921 94.74 2.0241 0.04206 0.7927 95.32

α1 0.4046 0.00171 0.1586 95.08 2.421 0.05836 0.949 95.64
0.4046 0.00171 0.1585 95.28 2.421 0.05835 0.9482 95.72

α2 0.3029 0.00091 0.1187 95.6 2.3216 0.05465 0.9101 95.28
0.3029 0.00091 0.1186 95.48 2.3216 0.05464 0.9092 95.34

α3 0.5053 0.00275 0.1981 94.82 2.5276 0.06571 0.9908 95.26
0.5053 0.00275 0.1979 94.8 2.5275 0.0657 0.9899 95.18

150 λ 69.4208 32.23925 22.2189 95.36 69.3671 31.94475 22.2017 94.88
69.3889 32.15379 22.1956 95.38 69.3353 31.86328 22.1785 94.62

γ 2.0114 0.0268 0.6438 95.18 2.0146 0.02736 0.6448 95.08
2.0114 0.0268 0.6434 95.34 2.0146 0.02736 0.6444 95

α1 0.4022 0.00113 0.1287 94.48 2.4182 0.03949 0.774 94.96
0.4022 0.00113 0.1286 94.58 2.4182 0.03949 0.7735 95.1

α2 0.3017 0.00062 0.0965 94.86 2.3117 0.03587 0.7399 95.04
0.3017 0.00062 0.0965 94.84 2.3117 0.03586 0.7395 94.94

α3 0.5032 0.0017 0.1611 95.26 2.5145 0.04243 0.8048 94.94
0.5032 0.0017 0.161 95.36 2.5145 0.04243 0.8043 94.92
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Table 3 presents the results of the simulation study for sample sizes n = 50, 75, 100, and 150, with
M = 5000, using two sets of model parameter values. Based on the results in Table 3, we observe the
following trends for each parameter:

1. APE approaches actual value: As the sample size increases, both the average MLE and
Bayesian estimate (APE) converge toward the true parameter value.

2. MSE decreases: The mean squared error (MSE) associated with the point estimates, using
both MLE and Bayesian estimates, decreases with increasing sample size, indicating improved
estimation accuracy.

3. ALCI decreases: The average length of the confidence/credible interval (ALCI) decreases as the
sample size increases, reflecting greater precision in the intervals.

4. CP aligns with nominal confidence level: The coverage probability (CP), using either method,
remains very close to the nominal confidence level, confirming the reliability of the intervals.

5. No significant difference between methods: There is no significant difference between the
results obtained from the maximum likelihood and Bayesian methods.

8. Applications

To demonstrate the applicability of the proposed model, this section focuses on the analysis of
three distinct real data sets: two bivariate data and one dependent competing risks data. The primary
objective is to illustrate the practical application and effectiveness of the proposed model in a real-
world context. By examining these data sets, we aim to demonstrate how the proposed model can be
applied to address complex scenarios and provide valuable insights in practical settings.

8.1. Bivariate data

First bivariate data set (UEFA Champions League): The UEFA Champions League data, sourced
from Meintanis [21] and displayed in Table 4, pertains to soccer matches. This data set captures
instances where the home team scores at least one goal, as well as instances where a goal is scored
directly from a penalty kick, foul kick, or any other direct kick (referred to as kick goals) by any team
under consideration. In this data set, the variable X1 represents the time in minutes when the first kick
goal is scored by any team, while X2 represents the time in minutes when the first goal of any type is
scored by the home team.

The initial step in analyzing this dataset involved constructing a non-parametric and parametric
scaled TTT-transform plot, using the EGIE distribution, for the marginal variables X1 and X2, as
illustrated in Figure 5.

The visual analysis of the plot in Figure 5 leads to the inference that (for illustration see Aarset [1])
the hazard rate initially exhibits an upward trend and subsequently experiences a decline as time
progresses or aging occurs. Consequently, considering the discerned pattern in the hazard rate, it is
reasonable to anticipate that the EGIE distribution would be well-suited for modeling the marginal
distribution of the data.
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Table 4. UEFA Champion’s League data.

2005-2006 X1 X2 2004-2005 X1 X2

Lyon-Real Madrid 26 20 Internazionale-Bremen 34 34
Milan-Fenerbahce 63 18 Real Madrid-Roma 53 39
Chelsea-Anderlecht 19 19 Man. United-Fenerbahce 54 7
Club Brugge-Juventus 66 85 Bayern-Ajax 51 28
Fenerbahce-PSV 40 40 Moscow-PSG 76 64
Internazionale-Rangers 49 49 Barcelona-Shakhtar 64 15
Panathinaikos-Bremen 8 8 Leverkusen-Roma 26 48
Ajax-Arsenal 69 71 Arsenal-Panathinaikos 16 16
Man. United-Benfica 39 39 Dynamo Kyiv-Real Madrid 44 13
Real Madrid-Rosenborg 82 48 Man. United-Sparta 25 14
Villarreal-Benfica 72 72 Bayern-M. Tel Aviv 55 11
Juventus-Bayern 66 62 Bremen-Internazionale 49 49
Club Brugge-Rapid 25 9 Anderlecht-Valencia 24 24
Olympiacos-Lyon 41 3 Panathinaikos-PSV 44 30
Internazionale-Porto 16 75 Arsenal-Rosenborg 42 3
Schalke-PSV 18 18 Liverpool-Olympiacos 27 47
Barcelona-Bremen 22 14 M. Tel Aviv-Juventus 28 28
Milan-Schalke 42 42 Bremen-Panathinaikos 2 2
Rapid–Juventus 36 52

Figure 5. The scaled TTT-transform plot for the marginal data X1 and X2 and the
fitted marginal distributions using UEFA data. NP means non-parametric, while P means
parametric.

To facilitate a thorough comparison between the EGIE distribution and its sub-model distributions,
to fit the marginal data, we conducted the following two hypotheses:
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1) X1 and/or X2 follows IE vs they follow EGIE, by testing H0 : γ = 1 vs H1 : γ , 1.
2) X1 and/or X2 follows GIE vs they follow EGIE, by testing H0 : λ = 1 vs H1 : λ , 1.

To accomplish this objective, the likelihood ratio test statistic, Λ = −2(L0 − L1), is used. Table 5
displays the model, null hypothesis, MLE, negative log-likelihood value, the likelihood ratio statistic
value, degrees of freedom (df), and p-value using marginal data.

Table 5. Statistical analysis of the marginal data values X1 and X2.

Model H0 MLE −L Λ df p-value

X1

IE γ = 1 λ̂ = 10.913, α̂ = 2.0783 183.184 9.367 1 0.00221

GIE λ = 1 γ̂ = 1.017, α̂ = 23.773 183.173 9.344 1 0.00224

EGIE – λ̂ = 72.663, γ̂ = 2.999, α̂ = 0.4372 178.501 – – –

X2

IE γ = 1 λ̂ = 10.033, α̂ = 1.374 173.897 3.730219 1 0.05343

GIE λ = 1 γ̂ = 0.958, α̂ = 12.508 173.838 3.61268 1 0.05734

EGIE – λ̂ = 71.641, γ̂ = 2.5116, α̂ = 0.229 172.032 – –

From Table 5, it can be concluded that for both X1 and X2, at any significance level greater than or
equal to 0.00224(0.0573), the IE and GIE distributions are rejected in favor of the EGIE distribution as
a better fit for the marginal data. This suggests that the BEGIE distribution may be more appropriate
for fitting the current bivariate data set. To further investigate, the BGIE, BIE, and BEGIE distributions
were applied, with the results summarized in Table 6. Based on these findings, there is significant
evidence to reject both the BIE and BGIE distributions in favor of the BEGIE distribution for fitting
the current dataset.

Table 6. Statistical results for the UEFA Champion’s League data.

Model H0 MLE −L Λ df p-value

BIE γ = 1 λ̂ = 70.211, α̂1 = 0.177, α̂2 = 0.057, 318.3554 6.429 1 0.0112
α̂3 = 0.148

BGIE λ = 1 γ̂ = 0.938, α̂1 = 10.453, α̂2 = 3.443, 318.1551 6.028 1 0.0141
α̂3 = 9.079

BEGIE – λ̂ = 70.311 γ̂ = 2.099, α̂1 = 0.223, 315.1409 – – –
α̂2 = 0.066, α̂3 = 0.169

Moreover, we compare the goodness of fit of the BEGIE model with the BFGMTLEE and BIGE
distributions, whose joint PDFs are provided in Appendix A. This comparison is conducted using the
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Akaike information criterion (AIC). Table 7 displays the MLE, −L, and AIC values for BFGMTLEE
and BIGE. The AIC for the BEGIE is 640.282. Based on the AIC values, we can conclude that the
BEGIE model provides a better fit for the current data set than both the BFGMTLEE and BIGE models.

Table 7. MLE, negative log-likelihood value, and AIC for the BFGMTLEE and BIGE
models, using the UEFA Champion’s League data.

Model MLE −L AIC

BFGMTLE α̂1 = 3.27, α̂2 = 1.85, λ̂1 = 0.026, λ̂2 = 0.022, δ̂ = 0.99 372.397 754.794

BIGE λ̂ = 2.1943, α̂1 = 0.3582, α̂2 = 0.8402, α̂3 = 0.8902 419.006 846.012

We also used the Bayesian approach to estimate the five parameters of the BEGIE distribution by
adopting two sets of the hyperparameters for both the two types of prior distributions (gamma on the
original parameters and normal on the log-transformed ones), as shown in Table 8.

Table 8. Sets of hyperparameter values of gamma and normal prior distributions.

Set θi ∼ Gamma(ai, bi) ϕi = log θi ∼ N(µi, σi), i = 1, 2, · · · , 5 E(θi) Var(θi)
I ai = bi = 0.001 µi = −.0445, σi = 0.77 1 1000
II a1 = 20973, b1 = 289 ϕ1 = log λ ∼ N(4.284, 0.012) 72.57 0.251

a2 = 16, b2 = 7 ϕ2 = log γ ∼ N(0.9196, 0.020) 2.286 0.327
a3 = 13, b3 = 60 ϕ3 = logα1 ∼ N(−1.641, 0.225) 0.217 0.004
a4 = 8, b4 = 121 ϕ2 = logα2 ∼ N(−2.629, 0.401) 0.066 0.001
a5 = 21, b5 = 123 ϕ3 = logα3 ∼ N(−1.817, 0.216) 0.171 0.001

Under the above two sets of hyperparameters and the two types of prior distributions, we conducted
50,000 random draws from the joint posterior distribution using the MCMC and SIR algorithms. For
the MCMC, we used the multivariate normal distribution with mean vector equal to the MLE of the
logarithm of the vector of the five unknown parameters and variance-covariance matrix equal to 2 times
the Fisher information matrix associated with the MLE. Subsequently, we approximated the posterior
mean, median, and 95% credible interval “the 2.5th and 97.5th percentiles” for each parameter. The
results are shown in Table 9.

As diagnostic tests for the random draws using the MCMC and SIR methods from the posterior
distribution, we present trace plots for 2,000 draws out of the 50,000 generated draws using two sets of
hyperparameters, as shown in Figures 6 and 7. These figures demonstrate well-mixed draws, indicating
that the samples are randomly generated from the posterior distribution. Additionally, the trace plots
suggest that the acceptance rate is higher for Set II of hyperparameters compared to Set I.

Utilizing the draws generated through the MCMC and SIR algorithms, we present histograms
that illustrate the marginal posterior distributions of the model parameters as shown in Figures 8–
11. The figures suggest that the normal prior distribution, particularly in scenarios with limited prior
information about the parameters, does not perform as effectively as when more substantial prior
information is available. However, this discrepancy is not observed when using the gamma prior
distribution.
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Table 9. Bayesian results of the model parameters using different sets of the hyperparameters
for the gamma and normal prior distributions, using the MCMC and SIR algorithms.

Algorithm Hyper Statistic λ γ α1 α2 α3

MCMC Gamma prior for the parameters
Set I 2.5th percentile 71.523 1.214 0.122 0.025 0.101

Median 72.710 2.109 0.213 0.061 0.159
Mean 72.675 2.243 0.215 0.063 0.163
97.5th percentile 73.791 3.530 0.329 0.116 0.240

Set II 2.5th percentile 71.619 1.501 0.148 0.036 0.120
Median 72.800 2.134 0.215 0.065 0.161
Mean 72.807 2.209 0.217 0.065 0.164
97.5th percentile 73.930 3.054 0.293 0.099 0.215

Normal prior for the logarithm of parameters
Set I 2.5th percentile 70.972 2.421 0.142 0.033 0.109

Median 72.576 2.512 0.234 0.071 0.164
Mean 72.538 2.509 0.237 0.078 0.166
97.5th percentile 74.020 2.586 0.350 0.141 0.248

Set II 2.5th percentile 72.218 2.485 0.167 0.036 0.122
Median 72.541 2.508 0.235 0.072 0.167
Mean 72.542 2.508 0.238 0.074 0.169
97.5th percentile 72.860 2.532 0.327 0.123 0.227

SIR Gamma prior for the parameters
Set I 2.5th percentile 71.148 1.182 0.125 0.024 0.102

Median 72.853 2.245 0.218 0.061 0.166
Mean 72.819 2.260 0.219 0.063 0.168
97.5th percentile 74.295 3.538 0.327 0.118 0.256

Set II 2.5th percentile 71.553 1.486 0.148 0.034 0.118
Median 72.768 2.227 0.214 0.062 0.163
Mean 72.744 2.250 0.217 0.063 0.165
97.5th percentile 73.909 3.137 0.298 0.100 0.217

Normal prior for the logarithm of parameters
Set I 2.5th percentile 67.040 2.401 0.175 0.027 0.118

Median 70.540 2.661 0.313 0.049 0.196
Mean 70.199 2.622 0.280 0.056 0.176
97.5th percentile 74.371 2.715 0.349 0.113 0.222

Set II 2.5th percentile 72.212 2.485 0.167 0.036 0.121
Median 72.542 2.508 0.235 0.072 0.169
Mean 72.536 2.508 0.237 0.075 0.170
97.5th percentile 72.847 2.533 0.319 0.121 0.225
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Figure 6. Trace plots for the early 2000 random draws from the posterior distribution using
gamma prior (top row) and normal prior (bottom row) using Set I (left) and Set II (right) of
the hyperparameters.
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Figure 7. Trace plots for the early 2000 SIR random draws from the posterior distribution
using gamma prior (top row) and normal prior (bottom row) using Set I (left) and Set II
(right) of the hyperparameters.
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Figure 8. Histogram plots for the marginal distributions of the model parameters using
the MCMC algorithm assuming gamma prior distribution of the parameters for two sets of
hyperparameters, Set I (left) and Set II (right).
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Figure 9. Histogram plots for the marginal distributions of the model parameters using the
MCMC algorithm assuming normal prior distribution of the log parameters for two sets of
hyperparameters, Set I (left) and Set II (right).
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Figure 10. Histogram plots for the marginal distributions of the model parameters using the
SIR algorithm under the assumption of gamma prior distribution of the parameters for two
sets of hyperparameters, Set I (left) and Set II (right).
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Figure 11. Histogram plots for the marginal distributions of the model parameters using the
SIR algorithm under the assumption of normal prior distribution of the log parameters for
two sets of hyperparameters, Set I (left) and Set II (right).

Second bivariate data set (cholesterol data set): This dataset includes cholesterol levels measured
at 5 and 25 weeks after treatment in 30 patients. Shoaee [32] applied three bivariate distributions of
the Marshall-Olkin type to model this data: the bivariate Weibull (BWG), bivariate Chen (BCHG),
and bivariate Gompertz (BGG) distributions. For computational reasons, Shoaee [32] transformed the
marginal data values using the formula (X−150)

100 before conducting the analysis. The transformed data
are presented in Table 10.
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Table 10. The transformed cholesterol levels of 30 patients after 5 and 25 weeks of treatment.

5th 25th 5th 25th 5th 25th 5th 25th 5th 25th 5th 25th

1.75 0.96 0.42 0.42 1.59 0.82 0.65 1.11 0.75 0.75 0.48 0.48
0.64 1.24 0.93 0.95 0.93 0.97 1.65 1.05 1.28 0.95 1.26 1.75
1.37 1.37 0.67 1.02 1.37 0.58 0.79 0.29 1.03 0.59 1.55 1.22
1.65 1.33 1.13 0.65 1.07 0.62 1.12 1.44 1.54 0.95 0.98 1.55
0.83 0.67 1.60 2.02 1.66 1.33 0.47 0.47 0.55 0.55 0.60 1.21

Based on AIC statistics, Shoaee [32] reported that the BCHG model is the best fit for this dataset.
In the current work, we use the BEGIE model to reanalyze this data and compare its performance with
the aforementioned three models, as well as the BFGMTLEE model by Al-Shomrani [4]. Table 11
presents the MLE, negative log-likelihood values, and AIC for the five models used to analyze this
dataset. It is important to note that the results for the BWG, BCHG, and BGG models are sourced
from Shoaee [32]. Based on the AIC criterion, the BEGIE model provides a better fit for this data than
the other four models.

Table 11. MLE, negative log-likelihood values, and AIC based on the cholesterol data set.

Model MLE −L AIC

BFGMTLE α̂1 = 10.783, α̂2 = 8.876, λ̂1 = 1.441, λ̂2 = 1.443, δ̂ = 0.990 64.046 138.092
BWG α̂ = 2.898, λ̂1 = 0.134, λ̂1 = 0.272, λ̂2 = 0.307, θ̂ = 0.300 47.345 104.689
BCHG α̂ = 1.581, λ̂1 = 0.039, λ̂1 = 0.084, λ̂2 = 0.089, θ̂ = 0.282 47.322 104.665
BGG α̂ = 2.034, λ̂1 = 0.019, λ̂1 = 0.041, λ̂2 = 0.040, θ̂ = 0.683 55.940 128.885
BEGIE λ̂ = 9.778, γ̂ = 334.075, α̂1 = 0.130, α̂2 = 0.093, α̂3 = 0.067 46.615 103.230

A Bayesian analysis can be conducted similarly to how we approached the first dataset. However,
we have not included the Bayesian component for the second dataset due to the appropriate length
considerations.

8.2. Diabetic retinopathy application

Diabetic retinopathy is a significant ocular condition capable of inducing vision loss and blindness
in individuals with diabetes. It affects the blood vessels within the retina, which is the light-sensitive
tissue layer at the back of the eye. The National Eye Institute in Bethesda, Maryland, conducted an
experiment involving 71 patients to investigate the impact of laser treatment on reducing the risk of
blindness associated with diabetic retinopathy. In this study, laser treatment was administered to a
randomly selected eye for each patient. The study recorded the time to blindness and whether one
or both eyes became blind. The recorded data are presented in Table 12. This data was analyzed by
Sarhan, Apaloo, and Kundu [27] and Manshi, Sarhan, and Smith [20]. For more information about
diabetic retinopathy, we refer the readers to [23].

AIMS Mathematics Volume 9, Issue 10, 29439–29473.



29468

Table 12. Diabetic retinopathy data.

i 1 2 3 4 5 6 7 8 9 10 11 12
ti 266 91 154 285 583 547 79 622 707 469 93 1313
δi 1 2 2 0 1 2 1 0 2 2 1 2
i 13 14 15 16 17 18 19 20 21 22 23 24
ti 805 344 790 125 777 306 415 307 637 577 178 517
δi 1 1 2 2 2 1 1 2 2 2 1 2
i 25 26 27 28 29 30 31 32 33 34 35 36
ti 272 1137 1484 315 287 1252 717 642 141 407 356 1653
δi 0 0 1 1 2 1 2 1 2 1 1 0
i 37 38 39 40 41 42 43 44 45 46 47 48
ti 427 699 36 667 588 471 126 350 350 663 567 966
δi 2 1 2 1 2 0 1 2 1 0 2 0
i 49 50 51 52 53 54 55 56 57 58 59 60
ti 203 84 392 1140 901 1247 448 904 276 520 485 248
δi 0 1 1 2 1 0 2 2 1 1 2 2
i 61 62 63 64 65 66 67 68 69 70 71
ti 503 423 285 315 727 210 409 584 355 1302 227
δi 1 2 2 2 2 2 2 1 1 1 2

The primary objective of this experiment was to assess whether the laser treatment could effectively
delay the onset of blindness in individuals with diabetic retinopathy. The dataset derived from this
study can be treated as one involving dependent competing risks data, with two potential causes of
failure (blindness).

We utilize the BEGIE distribution along with its sub-models (BIE and BGIE) to perform fitting
on this dataset, followed by a subsequent comparison. To facilitate this comparative analysis,
Table 13 provides the MLEs, corresponding log-likelihood functions, and Akaike information criterion
(AIC) for all the aforementioned models. Additionally, the likelihood ratio test (LRT) statistic and
corresponding p-values for the sub-models are also included in the table. The outcomes presented
in Table 13 lead us to the conclusion that the sub-models BIE and BGIE distributions exhibit
statistical significance in their rejection, favoring the BEGIE distribution instead, as evidenced by their
considerably small p-values.

Table 13. Statistical analysis of the diabetic retinopathy data.

Model MLE L AIC Λ P-value

BIE λ̂ = 5.278, â1 = 0.692, â2 = 0.562, −590.49 1188.98 5.319 0.0211
â3 = 1.774

BGIE γ̂ = 1.03 × 10−5, â1 = 5.969, â2 = 5.839, −592.04 1188.98 8.416 0.0037
â3 = 7.053

BEGIE λ̂ = 1307.93, γ̂ = 1.464, â1 = 0.330, −587.83 1185.66 – –
â2 = 0.283, â3 = 0.976
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To ascertain whether the laser treatment significantly contributes to delaying blindness among
individuals with Diabetic Retinopathy, a straightforward hypothesis testing approach can be employed.
Previous studies conducted by Sarhan, Apaloo, and Kundu [27] and Manshi, Sarhan, and Smith [20]
concluded that the laser treatment does not yield a substantial impact in delaying blindness in these
patients. In this study, we address the same question by utilizing the BEGIE distribution. To this end,
we consider the following hypotheses for testing:

Null Hypothesis (H0): The laser surgery does not exhibit a significant effect in delaying blindness
(α1 = α2).

Alternative Hypothesis (H1): The laser surgery has a meaningful impact in delaying blindness (α1 ,

α2).
We can employ the likelihood ratio test to assess the aforementioned hypotheses, defined as Λ =

−2(L̂02−L̂2), which conforms to a chi-square distribution with one degree of freedom. In this context,
L̂02 and L̂2 signify the maximum values of the log-likelihood functions under H0 and H1, respectively.

Deriving the log-likelihood function under H0 involves a special case of Eq (5.8), where we assume
α1 = α2 = α, thus yielding:

L02(θ) = (n1 + n2) logα + n3 logα3 + n log(λγ) − 2
n∑

i=1

log ti −

n∑
i=1

λ

ti

+(γ − 1)
n∑

i=1

log
(
1 − e−

λ
ti

)
+ (2α + α3 − 1)

n∑
i=1

log
[
1 −

(
1 − e−

λ
ti

)γ]
. (8.1)

Under the null hypothesis, the MLEs of the unknown parameters are as follows: λ̂ = 1308.073,
γ̂ = 1.382, α̂1 = α̂2 = 0.301, and α̂3 = 0.982. The corresponding log-likelihood value is calculated
as −588.06. Consequently, the test statistic value is determined as Λ = −2(−588.06 + 587.83) =
0.46, and the resulting p-value is remarkably small at 0.498. This leads us to the conclusion
that the null hypothesis (H0) cannot be significantly rejected in favor of the alternative hypothesis
(H1). Consequently, we can confidently affirm that the laser treatment does not exhibit a significant
effectiveness in delaying the onset of blindness.

9. Conclusions

In this study, we harnessed the fatal shock model concept to introduce a fresh bivariate distribution
in the realm of the Marshall-Olkin type. This distribution incorporates three independent univariate
random variables following the exponentiated generalized inverted exponential distribution. Termed
the “bivariate exponentiated generalized inverted exponential distribution” (BEGIE), this novel
proposal extends the scope of both the bivariate inverted exponential (BIE) and bivariate exponentiated
inverted exponential (BGIE) distributions. We explore several statistical properties inherent to this
newly introduced distribution.

The versatility of the BEGIE distribution is demonstrated through its application in modeling
dependent competing risks data and bivariate data scenarios. Estimation of the unknown parameters
within the BEGIE distribution was achieved via the maximum likelihood method, effectively applied
to both bivariate and dependent competing risks datasets.

A Bayesian technique is applied on the dependent competing risks data. Additionally, the
performance of the BEGIE distribution was evaluated using real datasets, comparing its effectiveness
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against the BIE and BGIE distributions. The results prominently indicated the BEGIE distribution’s
superior fit for these datasets.

Looking ahead, we are considering the utilization of step-stress acceleration life test plans or
progressively type-II censored data as part of our future research trajectory. These approaches will
aid in estimating BEGIE distribution parameters, particularly in scenarios involving bivariate data or
dependent competing risks data.
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Appendix

A. The joint pdf of non-nested models

The joint probability density function (pdf) of the BFGMTLEE, as introduced by Al-Shomrani [4]:

f (x, y) = 4α1α2λ1λ2e−2λ1 x−2λ2y
[
1 − e−2λ1 x

]α1−1 [
1 − e−2λ2y

]α2−1(
1 + δ

(
1 − 2

[
1 − e−2λ1 x

]α1
) (

1 − 2
[
1 − e−2λ2y

]α2
))
, x, y ≥ 0,
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where α1, α2, λ1, λ2 > 0, and −1 ≤ δ ≤ 1.

The joint pdf of the BIGE, as given by Alqallaf and Kundu [5], is

fX,Y(x, y) =


fIGE(x;α1, λ) fIGE(y;α2 + α3, λ), 0 < x < y < ∞
fIGE(x;α1 + α2, λ) fIGE(y;α2, λ), 0 < y < x < ∞
α3

α1+α2+α3
fIGE(x;α1 + α2 + α3, λ), 0 < x = y < ∞

where
fIGE(x;α, λ) =

αλ

x2 e−
λ
x
(
1 − e−

λ
x
)α−1
, x ≥ 0, α, λ > 0.

Note: fIGE(x;α, λ) can be obtained from (1.2) by setting γ = α and α = 1.
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