This study explores the threshold of global existence and exponential decay versus finite-time blow-up for solutions to an inhomogeneous nonlinear bi-harmonic heat problem. The novelty is to consider the inhomogeneous source term. The method uses some standard stable sets under the flow of the fourth-order parabolic problem, due to Payne-Sattynger.
Citation: Saleh Almuthaybiri, Tarek Saanouni. Energy solutions to the bi-harmonic parabolic equations[J]. AIMS Mathematics, 2024, 9(12): 35264-35273. doi: 10.3934/math.20241675
This study explores the threshold of global existence and exponential decay versus finite-time blow-up for solutions to an inhomogeneous nonlinear bi-harmonic heat problem. The novelty is to consider the inhomogeneous source term. The method uses some standard stable sets under the flow of the fourth-order parabolic problem, due to Payne-Sattynger.
[1] | V. A. Galaktionov, Critical global asymptotics in higher-order semilinear parabolic equations, Int. J. Math. Math. Sci., 60 (2003), 3809–3825. https://doi.org/10.1155/S0161171203210176 doi: 10.1155/S0161171203210176 |
[2] | V. A. Galaktionov, J. L. Vázquez, The problem of blow-up in nonlinear parabolic equations, Discrete Cont. Dyn., 8, (2002), 399–433. https://doi.org/10.3934/dcds.2002.8.399 |
[3] | C. M. Guzmán, A. Pastor, On the inhomogeneous bi-harmonic nonlinear schrödinger equation: Local, global and stability results, Nonlinear Anal. Real, 56 (2020), 103–174. https://doi.org/10.1016/j.nonrwa.2020.103174 doi: 10.1016/j.nonrwa.2020.103174 |
[4] | Y. Z. Han, A class of fourth-order parabolic equation with arbitrary initial energy, Nonlinear Anal. Real, 43 (2018), 451–66. https://doi.org/10.1016/j.nonrwa.2018.03.009 doi: 10.1016/j.nonrwa.2018.03.009 |
[5] | Y. Z. Han, Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity, J. Dyn. Control Syst., 27 (2021), 261–270. https://doi.org/10.1007/s10883-020-09495-1 doi: 10.1007/s10883-020-09495-1 |
[6] | M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955–980. Available from: https://www.jstor.org/stable/25098630. |
[7] | B. B. King, O. Stein, M. Winkler, A fourth-order parabolic equation modeling epitaxial thin film growth, J. Math. Anal. Appl., 286 (2003), 459–490. https://doi.org/10.1016/S0022-247X(03)00474-8 doi: 10.1016/S0022-247X(03)00474-8 |
[8] | Q. Li, W. Gao, Y. Han, Global existence blow up and extinction for a class of thin-film equation, Nonlinear Anal. Theor., 147 (2016), 96–109. https://doi.org/10.1016/j.na.2016.08.021 doi: 10.1016/j.na.2016.08.021 |
[9] | M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Anal. Theor., 54 (2003), 1397–1415. https://doi.org/10.1016/S0362-546X(03)00192-5 doi: 10.1016/S0362-546X(03)00192-5 |
[10] | M. Ortiz, E. A. Repetto, H. Si, A continuum model of kinetic roughening and coarsening in thin films, J. Mech. Phys. Solids, 47 (1999), 697–730. https://doi.org/10.1016/S0022-5096(98)00102-1 doi: 10.1016/S0022-5096(98)00102-1 |
[11] | B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dynam. Part. Differ. Eq., 4 (2007), 197–225. https://dx.doi.org/10.4310/DPDE.2007.v4.n3.a1 doi: 10.4310/DPDE.2007.v4.n3.a1 |
[12] | L. E. Payne, D. H. Sattinger, Saddle points and instability of non-linear hyperbolic equations, Isr. J. Math., 22 (1976), 273–303. https://doi.org/10.1007/BF02761595 doi: 10.1007/BF02761595 |
[13] | L. Peletier, W. C. Troy, Higher order models in physics and mechanics, Boston-Berlin: Birkh Auser, 2001. |
[14] | G. A. Philippin, Blow-up phenomena for a class of fourth-order parabolic problems, P. Am. Math. Soc., 143 (2015), 2507–2513. https://doi.org/10.1090/S0002-9939-2015-12446-X doi: 10.1090/S0002-9939-2015-12446-X |
[15] | C. Y. Qu, W. S. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., 436 (2016), 796–809. https://doi.org/10.1016/j.jmaa.2015.11.075 doi: 10.1016/j.jmaa.2015.11.075 |
[16] | T. Saanouni, Global well-posedness of some high-order focusing semilinear evolution equations with exponential nonlinearity, Adv. Nonlinear Anal., 7 (2018), 67–84. https://doi.org/10.1515/anona-2015-0108 doi: 10.1515/anona-2015-0108 |
[17] | T. Saanouni, Global well-posedness and finite-time blow-up of some heat-type equations, P. Edinburgh Math. Soc., 2 (2017), 481–497. https://doi.org/10.1017/S0013091516000213 doi: 10.1017/S0013091516000213 |
[18] | T. Saanouni, R. Ghanmi, A note on the inhomogeneous fourth-order Schrödinger equation, J. Pseudo-Differ. Oper., 13 (2022). https://doi.org/10.1007/s11868-022-00489-0 |
[19] | R. Xu, T. Chen, C. Liu, Y. Ding, Global well-posedness and global attractor of fourth order semilinear parabolic equation, Math. Method. Appl. Sci., 38 (2015), 1515–1529. https://doi.org/10.1002/mma.3165 doi: 10.1002/mma.3165 |
[20] | A. Zangwill, Some causes and a consequence of epitaxial roughening, J. Cryst. Growth, 163 (1996), 8–21. https://doi.org/10.1016/0022-0248(95)01048-3 doi: 10.1016/0022-0248(95)01048-3 |
[21] | J. Zhou, Blow-up for a thin-film equation with positive initial energy, J. Math. Anal. Appl., 446 (2017), 1133–1138. https://doi.org/10.1016/j.jmaa.2016.09.026 doi: 10.1016/j.jmaa.2016.09.026 |