

AIMS Mathematics, 9(12): 35264–35273. DOI: 10.3934/[math.20241675](https://dx.doi.org/ 10.3934/math.20241675) Received: 21 October 2024 Revised: 28 November 2024 Accepted: 02 December 2024 Published: 17 December 2024

https://[www.aimspress.com](https://www.aimspress.com/journal/Math)/journal/Math

Research article

Energy solutions to the bi-harmonic parabolic equations

Saleh Almuthaybiri and Tarek Saanouni *

Department of Mathematics, College of Science, Qassim University, Saudi Arabia

* Correspondence: Email: t.saanouni@qu.edu.sa.

Abstract: This study explores the threshold of global existence and exponential decay versus finitetime blow-up for solutions to an inhomogeneous nonlinear bi-harmonic heat problem. The novelty is to consider the inhomogeneous source term. The method uses some standard stable sets under the flow of the fourth-order parabolic problem, due to Payne-Sattynger.

Keywords: inhomogeneous fourth-order parabolic problem; nonlinear equations; global/non-global solutions

Mathematics Subject Classification: 35K30, 35K25

1. Introduction

This note investigates the initial value problem for the inhomogeneous non-linear fourth-order parabolic equation

$$
\begin{cases} \partial_t u + \Delta^2 u + u = |x|^{-\varrho} |u|^{p-1} u; \\ u(0, \cdot) = u_0. \end{cases}
$$
 (IBMLH)

The wave function is $u : (t, x) \in \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}$ for some integer number $N \geq 3$. The inhomogeneous plinear source term satisfies $n > 1$ and $s > 0$. nonlinear source term satisfies $p > 1$ and $\rho > 0$.

The fourth-order parabolic problem models a variety of physical processes, such as phase transition, thin-film theory, and lubrication theory. In particular, it can be used to describe the evolution process of nanoscale thin films, with epitaxial growth; see, for instance, [\[7,](#page-8-0) [10,](#page-8-1) [13,](#page-8-2) [20\]](#page-9-0).

In recent years, fourth-order parabolic equations have been studied extensively. We refer the reader to the survey paper [\[2\]](#page-8-3), where Section 14 includes some higher-order parabolic problems. The global well-posedness and finite-time blow-up properties of solutions have been investigated by many authors. See [\[4,](#page-8-4) [5,](#page-8-5) [8,](#page-8-6) [14,](#page-8-7) [15,](#page-8-8) [17,](#page-8-9) [21\]](#page-9-1) and the references therein for the background for the study of bi-harmonic parabolic problems.

This note aims to obtain a threshold of global existence and exponential decay versus finite time blow-up of energy solutions to the inhomogeneous nonlinear bi-harmonic parabolic problem [\(IBNLH\)](#page-0-0). The novelty is to consider the inhomogeneous regime $\rho \neq 0$, which complements the results in [\[19\]](#page-9-2). The method uses the standard stable sets under the flow of [\(IBNLH\)](#page-0-0), due to Payne-Sattynger [\[12\]](#page-8-10).

The plan of this note is as follows: Section [2](#page-1-0) contains the main result and some standard estimates needed in the sequel. Section [3](#page-4-0) proves the main result.

Let us recall the standard Lebesgue space

$$
L^r := L^r(\mathbb{R}^N)
$$

 := { $u : \mathbb{R}^N \to \mathbb{C}$, measurable function, such that $\int_{\mathbb{R}^N} |u(x)|^r dx < \infty$ }

For $r \geq 1$, the usual Lebesgue norm reads

$$
||u||_r := ||u||_{L^r} := \Big(\int_{\mathbb{R}^N} |u(x)|^r dx\Big)^{\frac{1}{r}}.
$$

Finally, letting the standard Laplacian operator $\Delta := \sum_{k=1}^{N} \frac{\partial^2}{\partial x^2}$ $\frac{\partial^2}{\partial x_k^2}$, we denote the following Sobolev space and its usual norm

$$
H^{2} := \{ f \in L^{2}, \quad \Delta f \in L^{2} \};
$$

$$
\|\cdot\|_{H^{2}} := \left(\|\cdot\|^{2} + \|\Delta\cdot\|^{2} \right)^{\frac{1}{2}}.
$$

2. Background and main result

This section contains the main contribution of this note and some useful standard estimates.

2.1. Preliminary

Let us denote the free bi-harmonic heat kernel

$$
e^{-t\Delta^2}u := \mathcal{F}^{-1}\big(e^{-t|\cdot|^4}\mathcal{F}u\big),\tag{2.1}
$$

where $\mathcal F$ is the Fourrier transform. Thanks to the Duhamel formula, solutions to [\(IBNLH\)](#page-0-0) satisfy the integral equation

$$
u = e^{-\Delta^2} u_0 + \int_0^{\infty} e^{-(\cdot - s)\Delta^2} (|x|^{-\varrho}|u|^{p-1}u) ds.
$$
 (2.2)

If *u* resolves the equation [\(IBNLH\)](#page-0-0), then so does the family $u_k := \kappa^{\frac{4-\varrho}{p-1}} u(\kappa^4 \cdot, \kappa \cdot), \kappa > 0$. Moreover, there is only one invariant Sobolev norm under the above dilatation, precisely

$$
||u_{\kappa}(t)||_{\dot{H}^{s_c}} = ||u(\kappa^4 t)||_{\dot{H}^{s_c}}, \quad s_c := \frac{N}{2} - \frac{4-\varrho}{p-1}.
$$

So, the heat problem [\(IBNLH\)](#page-0-0) is said to be energy-sub-critical if

$$
s_c < 2 \Leftrightarrow p < p^c := 1 + \frac{2(4 - \varrho)}{N - 4},
$$
 (2.3)

where, we take $p^c = \infty$ if $1 \leq N \leq 4$. Let us denote the so-called action and constraint

$$
S(u) := \frac{1}{2} ||\Delta u||^2 + \frac{1}{2} ||u||^2 - \frac{1}{1+p} \int_{\mathbb{R}^N} |x|^{-\varrho} |u|^{1+p} dx; \tag{2.4}
$$

$$
K(u) := ||\Delta u||^2 + ||u||^2 - \int_{\mathbb{R}^N} |x|^{-\varrho} |u|^{1+p} dx.
$$
 (2.5)

A solution to [\(IBNLH\)](#page-0-0) formally satisfies

$$
\partial_t S(u(t)) = -||\partial_t u||^2; \tag{2.6}
$$

$$
-2K(u(t)) = \partial_t ||u(t)||^2.
$$
 (2.7)

Let us denote the minimization problem

$$
m := \inf_{0 \neq u \in H^2} \{ S(u) \quad s \text{ . t} \quad K(u) = 0 \}. \tag{2.8}
$$

Then, it is known [\[18,](#page-8-11) Theorem 2.17] that $m > 0$ is reached in a so-called ground state

$$
Q + \Delta^2 Q - |x|^{-\varrho} |Q|^{p-1} Q = 0, \quad 0 \neq Q \in H^2.
$$
 (2.9)

In the spirit of [\[12\]](#page-8-10), one defines some stable sets under the flow of [\(IBNLH\)](#page-0-0).

$$
\mathcal{P}S^{+} := \{ u \in H^{2} \text{ s.t } K(u) > 0 \text{ and } S(u) < m \};
$$
 (2.10)

$$
\mathcal{P} \mathcal{S}^- := \left\{ u \in H^2 \quad \text{s. t} \quad K(u) < 0 \quad \text{and} \quad S(u) < m \right\}. \tag{2.11}
$$

The so-called Strichartz estimates will be useful.

Definition 2.1. *A couple of real numbers* (*q*,*r*) *is said to be admissible if*

$$
2 \le r < \frac{2N}{N-4}
$$
, $2 \le q, r \le \infty$ and $N(\frac{1}{2} - \frac{1}{r}) = \frac{4}{q}$.

Denote the set of admissible pairs by Λ*. If I is a time slab, one denotes the Strichartz spaces*

$$
\Omega(I):=\bigcap_{(q,r)\in\Lambda}L^q(I,L').
$$

The Strichartz estimates read as follows.

Proposition 2.1. *Let* $N \geq 1$ *and* $T > 0$ *. Then,*

$$
\sup_{(q,r)\in\Lambda}||e^{-\Delta^2}f||_{L^q_T(L^r)} \lesssim ||f||; \tag{2.12}
$$

$$
\sup_{(q,r)\in\Lambda}||u - e^{-\Lambda^2}u_0||_{L^q_T(L^r)} \lesssim \inf_{(\tilde{q},\tilde{r})\in\Lambda} ||\partial_t u + \Delta^2 u||_{L^{q'}_T(L^{r'})};
$$
\n(2.13)

$$
\sup_{(q,r)\in\Lambda} ||\Delta u||_{L^q_T(L^r)} \lesssim ||\Delta u_0|| + ||\partial_t u + \Delta^2 u||_{L^2_T(\dot{W}^{1,\frac{2N}{2+N}})}, \quad \forall N \ge 3.
$$
 (2.14)

Proof. Let the free fourth order heat equation

$$
(\partial_t + \Delta^2)u = 0, \quad u(0, \cdot) = u_0.
$$

Taking the Fourrier part of *u*, yields

$$
u(t,x)=\mathcal{F}^{-1}\left(y\mapsto e^{-t|y|^4}\right)*u_0:=e^{-t\Delta^2}u_0.
$$

It's known [\[1\]](#page-7-0) that $\mathcal{F}^{-1}(y \mapsto e^{-t|y|^4})(x) = \frac{1}{\Delta}$ $\frac{1}{t^{\frac{N}{4}}}h(\frac{x}{t^{\frac{1}{4}}}$ $\frac{x}{t^{\frac{1}{4}}}$) for a certain function *h* satisfying $|h(y)| \le e^{-d|y|^{\frac{4}{3}}}$ for some $d > 0$. This implies that

$$
||e^{-t\Delta^2}u_0||_{L^{\infty}} \lesssim t^{-\frac{N}{4}}||u_0||_{L^1} \quad \text{and} \quad ||e^{-t\Delta^2}u_0||_{L^2} \lesssim ||u_0||_{L^2}.
$$

By interpolation, yields $||e^{-t\Delta^2}u_0||_{L^r} \leq t^{-\frac{N}{4}(1-\frac{2}{p})}||u_0||_{L^{r'}}$ for all $r \geq 2$. Thus, applying [\[6,](#page-8-12) Theorem 1.2], we get [\(2.12\)](#page-2-0) and [\(2.13\)](#page-2-1). Finally, [\(2.14\)](#page-2-2) follows arguing as in [\[11,](#page-8-13) (3.19)].

Using a contraction argument via Proposition [2.1](#page-2-3) and following lines in [\[3,](#page-8-14) Theorem 1.2], we obtain the existence of energy solutions to [\(IBNLH\)](#page-0-0).

Proposition 2.2. *Let* $N \ge 3$, $0 < \varrho < \min\{4, \frac{N}{2}\}$
 $T := T$ $\leq N$ and a unique local solution $\frac{N}{2}$ }, max{1, $\frac{2(1-\rho)}{N}$ } < *p* < *p^c* and *u*₀ ∈ *H*². Then, there exist tion of (IBNI H) in the space. $T := T_{N,Q,p,\|u_0\|_{H^2}} > 0$, and a unique local solution of [\(IBNLH\)](#page-0-0), in the space

$$
C([0,T],H^2)\bigcap_{(q,r)\in\Lambda}L^q_T(W^{2,r}).
$$

We end this sub-section with a useful ordinary differential inequality result [\[9,](#page-8-15) Lemma 4.2].

Lemma 2.1. *Letting a real decreasing function on* [0, [∞]) *such that*

$$
(g')^2 \ge A + B g^{2 + \frac{1}{\epsilon}},\tag{2.15}
$$

for certain $A > 0, B > 0$ *. Then, there exists* $T > 0$ *such that*

$$
\lim_{t \to T^{-}} g(t) = 0; \tag{2.16}
$$

$$
T \leq \epsilon 2^{\frac{1+3\epsilon}{2\epsilon}} A^{-\frac{1}{2}} (AB^{-1})^{2+\frac{1}{\epsilon}} \Big(1 - (1 + (AB^{-1})^{2+\frac{1}{\epsilon}} g(0))^{-\frac{1}{2\epsilon}} \Big). \tag{2.17}
$$

From now on, we hide the time variable *t* for simplicity, spreading it out only when necessary.

2.2. Main result

The contribution of this note is the next threshold of global existence and exponential decay versus finite time blow-up of solutions to [\(IBNLH\)](#page-0-0).

Theorem 2.1. *Let* $N \geq 3$, $0 < \rho < \min\{4, \frac{N}{2}\}$
solution of (IBNI H), denoted by $\mu \in C([0, 1])$ $\frac{N}{2}$ }, max {1, $\frac{2(1-\rho)}{N}$ } < *p* < *p*^{*c*} and *u*₀ ∈ *H*². Take the maximal T^+ , H^2 *solution of* [\(IBNLH\)](#page-0-0), *denoted by* $u \in C([0, T^+), H^2)$ *.*

I. If
$$
u_0 \in \mathcal{P}S^-
$$
, then $T^+ < \infty$ and

$$
\lim_{t \to T^+} \int_0^t \|u(s)\|^2 \, ds = \infty. \tag{2.18}
$$

2. If $u_0 \in PS^+$, then $T^+ = \infty$ and there is $\alpha > 0$ such that

$$
||u(t)|| \le ||u_0||e^{-\alpha t}, \quad \forall t \ge 0.
$$
 (2.19)

In view of the results stated in the above theorem, some comments are in order.

- The existence of the energy solution to [\(IBNLH\)](#page-0-0) is given by Proposition [2.2.](#page-3-0)
- The global solution with data in $\mathcal{P}S^+$ decays exponentially.
- Arguing as in [\[16,](#page-8-16) Lemma 5.1], it follows that \mathcal{PS}^{\pm} are stable sets under the flow of [\(IBNLH\)](#page-0-0).
- The above result complements [\[19\]](#page-9-2) in the inhomogeneous regime, namely $\rho \neq 0$.

3. Global/non global existence of energy solutions

In this section, we prove Theorem [2.1.](#page-3-1) Let us define, for $\lambda > 0, \tau > 0$, the real function on $t \in [0, T^+),$

$$
\varphi(t) := \int_0^t ||u(s)||^2 ds + (T^+ - t)||u_0||^2 + \lambda(\tau + t)^2.
$$
\n(3.1)

Taking account of [\(2.7\)](#page-2-4), we compute the derivatives

$$
\varphi'(t) = ||u(t)||^2 - ||u_0||^2 + 2\lambda(\tau + t); \tag{3.2}
$$

$$
\varphi''(t) = -2K(u(t)) + 2\lambda. \tag{3.3}
$$

Thus, by [\(2.4\)](#page-2-5), [\(2.6\)](#page-2-6), and [\(3.3\)](#page-4-1), we obtain for $\lambda > (1 + p)S(u_0)$,

$$
\varphi''(t) = -2(||u||_{H^2}^2 - \int_{\mathbb{R}^N} |x|^{-\varrho} |u|^{1+p} dx) + 2\lambda
$$

\n
$$
= -2(||u||_{H^2}^2 + (1+p)(S(u) - \frac{1}{2}||u||_{H^2}^2)) + 2\lambda
$$

\n
$$
= 2(\frac{p-1}{2}||u||_{H^2}^2 - (1+p)S(u)) + 2\lambda
$$

\n
$$
\ge -2(1+p)S(u_0) + 2(1+p)(\int_0^t ||u_t(s)||^2 ds + \lambda) - 2p\lambda
$$

\n
$$
> 0.
$$
\n(3.4)

So, [\(3.4\)](#page-4-2) implies that

$$
\min{\{\varphi, \varphi', \varphi''\}} > 0, \quad \text{on} \quad [0, T^+). \tag{3.5}
$$

Let us denote the quantities

$$
a := \int_0^t \|u(s)\|^2 \, ds + \lambda(\tau + t)^2; \tag{3.6}
$$

$$
b := \frac{1}{2}\varphi'(t) = \frac{1}{2}\int_0^t \partial_s ||u(s)||^2 \, ds + \lambda(\tau + t); \tag{3.7}
$$

35269

$$
c := \int_0^t ||\partial_t u(s)||^2 ds + \lambda.
$$
 (3.8)

Compute for $X \in \mathbb{R}$, the polynomial

$$
aX^{2} - 2bX + c = \int_{0}^{t} ||Xu(s)||^{2} ds + \lambda (X\tau + tX)^{2} - X(\int_{0}^{t} \partial_{s} ||u(s)||^{2} ds + 2\lambda(\tau + t))
$$

+
$$
\int_{0}^{t} ||\partial_{t}u(s)||^{2} ds + \lambda
$$

$$
\geq \int_{0}^{t} (||Xu(s)|| - ||\partial_{t}u(s)||)^{2} ds + \lambda (X(\tau + t) - 1)^{2}
$$

$$
\geq 0.
$$
 (3.9)

So, [\(3.9\)](#page-5-0) implies that

$$
b^2 - ac \le 0. \tag{3.10}
$$

Moreover, taking account of [\(3.4\)](#page-4-2), we write

$$
\varphi \varphi'' - \frac{1+p}{2} (\varphi')^2 \ge a(-2(1+p)S(u_0) + 2(1+p)c - 2p\lambda) - 2(1+p)b^2
$$

= 2(1+p)(ac - b²) - 2a((1+p)S(u_0) + p\lambda). (3.11)

Take the real function

$$
g := \varphi^{-\frac{p-1}{2}},\tag{3.12}
$$

with a derivative

$$
g' = -\frac{p-1}{2}\varphi'\varphi^{-\frac{1+p}{2}} < 0. \tag{3.13}
$$

Moreover, by [\(3.11\)](#page-5-1), we have

$$
g'' = -\frac{p-1}{2} (\varphi'' \varphi^{-\frac{1+p}{2}} - \frac{p+1}{2} (\varphi')^2 \varphi^{-\frac{3+p}{2}})
$$

=
$$
-\frac{p-1}{2} g^{\frac{3+p}{p-1}} (\varphi'' \varphi - \frac{p+1}{2} (\varphi')^2)
$$

$$
\leq -(p-1) g^{\frac{3+p}{p-1}} ((1+p)(ac-b^2) - a((1+p)S(u_0) + p\lambda)).
$$
 (3.14)

Integrating (3.14) in time after testing with g' , it follows that

$$
(g')^2 \ge (g'(0))^2 - \frac{(p-1)^2}{1+p} \left(g^{\frac{2(1+p)}{p-1}} - g^{\frac{2(1+p)}{p-1}}(0)\right) \left((1+p)(ac-b^2) - a((1+p)S(u_0) + p\lambda)\right)
$$

= $(g'(0))^2 + g^{\frac{2(1+p)}{p-1}}(0) \frac{(p-1)^2}{1+p} \left((1+p)(ac-b^2) - a((1+p)S(u_0) + p\lambda)\right)$
 $- \frac{(p-1)^2}{1+p} \left((1+p)(ac-b^2) - a((1+p)S(u_0) + p\lambda)\right)g^{\frac{2(1+p)}{p-1}}$

$$
:= A + Bg^{\frac{2(1+p)}{p-1}}.
$$
\n(3.15)

Moreover,

$$
A = (g'(0))^2 + g^{\frac{2(1+p)}{p-1}}(0) \frac{(p-1)^2}{1+p} \Big((1+p)(ac-b^2) - a((1+p)S(u_0) + p\lambda) \Big)
$$

\n
$$
\geq \lambda^2 \tau^2 (p-1)^2 (T^*||u_0||^2 + \lambda \tau)^{-(1+p)} - a \frac{(p-1)^2}{1+p} (T^*||u_0||^2 + \lambda \tau)^{-(1+p)} ((1+p)S(u_0) + p\lambda)
$$

\n
$$
= (p-1)^2 (T^*||u_0||^2 + \lambda \tau)^{-(1+p)} \Big(\lambda^2 \tau^2 - \frac{a}{1+p} ((1+p)S(u_0) + p\lambda) \Big).
$$
 (3.16)

So, [\(3.16\)](#page-6-0) implies that

$$
A > 0, \quad \text{for} \quad \lambda \gg 1. \tag{3.17}
$$

Thus, applying [\(2.16\)](#page-3-2), we get $T^+ < \infty$ and $\lim_{t \to T^+} \int_0^t ||u(s)||^2 ds = \infty$. This proves the finite time blow-up [\(2.18\)](#page-3-3). Now, if $u_0 \in \mathcal{PS}^+$, then,

$$
2m > ||u||_{H^2}^2 - \frac{2}{1+p} \int_{\mathbb{R}^N} |x|^{-\varrho} |u|^{1+p} dx
$$

>
$$
(1 - \frac{2}{1+p}) ||u||_{H^2}^2.
$$
 (3.18)

So, [\(3.18\)](#page-6-1) implies that $\sup_{t \in [0,T^+)} ||u(t)||_{H^2} < \sqrt{\frac{2m(1+p)}{p-1}}$ $\frac{u(1+p)}{p-1}$ and *u* is global. Thus, by the stability of \mathcal{PS}^+ under the flow of [\(IBNLH\)](#page-0-0) we get

$$
u(t) \in \mathcal{PS}^+, \quad \forall t \ge 0. \tag{3.19}
$$

Let us define for $\gamma > 0$ some modified functional and sets as follows:

$$
K_{\gamma}(u) := \gamma ||u||_{H^2}^2 - \int_{\mathbb{R}^N} |x|^{-\varrho} |u|^{1+p} dx; \tag{3.20}
$$

$$
m_{\gamma} := \inf_{0 \neq u \in H^2} \{ S(u), \quad K_{\gamma}(u) = 0 \};\tag{3.21}
$$

$$
\mathcal{P}\mathcal{S}_{\gamma}^{+} := \left\{ u \in H^{2} \quad \text{s. t} \quad K_{\gamma}(u) > 0 \quad \text{and} \quad S(u) < m_{\gamma} \right\};\tag{3.22}
$$

$$
\mathcal{P}S_{\gamma}^{-} := \left\{ u \in H^{2} \quad \text{s. t} \quad K_{\gamma}(u) \le 0 \quad \text{and} \quad S(u) < m \right\}. \tag{3.23}
$$

The next auxiliary result follows lines in [\[8,](#page-8-6) Preliminaries].

Lemma 3.1. *The next properties hold.*

- *1.* $\lim_{\gamma \to 0^+} m_{\gamma} = 0$, $\lim_{\gamma \to +\infty} m_{\gamma} = -\infty$;
2. $\gamma \to m$ is increasing on [0, 11 and de
- *2.* $\gamma \rightarrow m_{\gamma}$ *is increasing on* [0, 1] *and decreasing otherwise, and* $m_1 = m$;
- *3. Let* $u \in H^2$ *satisfy* $S(u) < m$ *and* $\gamma_1 < 1 < \gamma_2$ *be roots of* $m_\gamma = S(u)$ *; then,* $K_\gamma(u)$ *has a constant sign in* (γ_1, γ_2) *sign in* (γ_1, γ_2) *.*

Now, by [\(2.7\)](#page-2-4) via the last point in Lemma [3.1,](#page-6-2) we write for $\gamma \in (\gamma_1, 1)$,

$$
\frac{1}{2}\partial_t ||u||^2 = -K(u)
$$
\n
$$
= -||u||_{H^2}^2 + \int_{\mathbb{R}^N} |x|^{-\varrho} |u|^{1+p} dx
$$
\n
$$
= -(1 - \gamma)||u||_{H^2}^2 - \gamma ||u||_{H^2}^2 + \int_{\mathbb{R}^N} |x|^{-\varrho} |u|^{1+p} dx
$$
\n
$$
= -(1 - \gamma)||u||_{H^2}^2 - K_{\gamma}(u)
$$
\n
$$
< -(1 - \gamma)||u||^2. \tag{3.24}
$$

Finally, [\(3.24\)](#page-7-1) gives the requested estimate [\(2.19\)](#page-4-3). This ends the proof of Theorem [2.1.](#page-3-1)

4. Conclusions

This note gives a threshold of global existence and exponential decay versus finite time blow-up of energy solutions to the inhomogeneous nonlinear bi-harmonic parabolic problem [\(IBNLH\)](#page-0-0). The novelty is to consider the inhomogeneous regime $\rho \neq 0$, which complements the results in [\[19\]](#page-9-2). The method uses the standard stable sets under the flow of [\(IBNLH\)](#page-0-0), due to Payne-Sattynger [\[12\]](#page-8-10).

Author contributions

Saleh Almuthaybiri: Formal analysis, funding acquisition; Tarek Saanouni: Project administration, resources, supervision, validation, review. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024).

Conflict of interest

The authors declare no conflict of interest.

References

1. V. A. Galaktionov, Critical global asymptotics in higher-order semilinear parabolic equations, *Int. J. Math. Math. Sci.*, 60 (2003), 3809–3825. https://doi.org/10.1155/[S0161171203210176](https://dx.doi.org/https://doi.org/10.1155/S0161171203210176)

- 2. V. A. Galaktionov, J. L. Vázquez, The problem of blow-up in nonlinear parabolic equations, *Discrete Cont. Dyn.*, 8, (2002), 399–433. https://doi.org/10.3934/[dcds.2002.8.399](https://dx.doi.org/https://doi.org/10.3934/dcds.2002.8.399)
- 3. C. M. Guzmán, A. Pastor, On the inhomogeneous bi-harmonic nonlinear schrödinger equation: Local, global and stability results, *Nonlinear Anal. Real*, 56 (2020), 103–174. https://doi.org/10.1016/[j.nonrwa.2020.103174](https://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2020.103174)
- 4. Y. Z. Han, A class of fourth-order parabolic equation with arbitrary initial energy, *Nonlinear Anal. Real*, 43 (2018), 451–66. https://doi.org/10.1016/[j.nonrwa.2018.03.009](https://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2018.03.009)
- 5. Y. Z. Han, Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity, *J. Dyn. Control Syst.*, 27 (2021), 261–270. https://doi.org/10.1007/[s10883-020-09495-1](https://dx.doi.org/ https://doi.org/10.1007/s10883-020-09495-1)
- 6. M. Keel, T. Tao, Endpoint Strichartz estimates, *Amer. J. Math.*, 120 (1998), 955–980. Available from: <https://www.jstor.org/stable/25098630.>
- 7. B. B. King, O. Stein, M. Winkler, A fourth-order parabolic equation modeling epitaxial thin film growth, *J. Math. Anal. Appl.*, 286 (2003), 459–490. https://doi.org/[10.1016](https://dx.doi.org/https://doi.org/10.1016/S0022-247X(03)00474-8)/S0022- [247X\(03\)00474-8](https://dx.doi.org/https://doi.org/10.1016/S0022-247X(03)00474-8)
- 8. Q. Li, W. Gao, Y. Han, Global existence blow up and extinction for a class of thin-film equation, *Nonlinear Anal. Theor.*, 147 (2016), 96–109. https://doi.org/10.1016/[j.na.2016.08.021](https://dx.doi.org/https://doi.org/10.1016/j.na.2016.08.021)
- 9. M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, *Nonlinear Anal. Theor.*, 54 (2003), 1397–1415. https://doi.org/[10.1016](https://dx.doi.org/https://doi.org/10.1016/S0362-546X(03)00192-5)/S0362- [546X\(03\)00192-5](https://dx.doi.org/https://doi.org/10.1016/S0362-546X(03)00192-5)
- 10. M. Ortiz, E. A. Repetto, H. Si, A continuum model of kinetic roughening and coarsening in thin films, *J. Mech. Phys. Solids*, 47 (1999), 697–730. https://doi.org/10.1016/[S0022-5096\(98\)00102-1](https://dx.doi.org/https://doi.org/10.1016/S0022-5096(98)00102-1)
- 11. B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, *Dynam. Part. Di*ff*er. Eq.*, 4 (2007), 197–225. https://dx.doi.org/10.4310/[DPDE.2007.v4.n3.a1](https://dx.doi.org/https://dx.doi.org/10.4310/DPDE.2007.v4.n3.a1)
- 12. L. E. Payne, D. H. Sattinger, Saddle points and instability of non-linear hyperbolic equations, *Isr. J. Math.*, 22 (1976), 273–303. https://doi.org/10.1007/[BF02761595](https://dx.doi.org/https://doi.org/10.1007/BF02761595)
- 13. L. Peletier, W. C. Troy, *Higher order models in physics and mechanics*, Boston-Berlin: Birkh Auser, 2001.
- 14. G. A. Philippin, Blow-up phenomena for a class of fourth-order parabolic problems, *P. Am. Math. Soc.*, 143 (2015), 2507–2513. https://doi.org/10.1090/[S0002-9939-2015-12446-X](https://dx.doi.org/https://doi.org/10.1090/S0002-9939-2015-12446-X)
- 15. C. Y. Qu, W. S. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, *J. Math. Anal. Appl.*, 436 (2016), 796–809. https://doi.org/10.1016/[j.jmaa.2015.11.075](https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2015.11.075)
- 16. T. Saanouni, Global well-posedness of some high-order focusing semilinear evolution equations with exponential nonlinearity, *Adv. Nonlinear Anal.*, 7 (2018), 67–84. https://doi.org/10.1515/[anona-2015-0108](https://dx.doi.org/https://doi.org/10.1515/anona-2015-0108)
- 17. T. Saanouni, Global well-posedness and finite-time blow-up of some heat-type equations, *P. Edinburgh Math. Soc.*, 2 (2017), 481–497. https://doi.org/10.1017/[S0013091516000213](https://dx.doi.org/https://doi.org/10.1017/S0013091516000213)
- 18. T. Saanouni, R. Ghanmi, A note on the inhomogeneous fourth-order Schrödinger equation, *J. Pseudo-Di*ff*er. Oper.*, 13 (2022). https://doi.org/10.1007/[s11868-022-00489-0](https://dx.doi.org/ https://doi.org/10.1007/s11868-022-00489-0)

35272

- 19. R. Xu, T. Chen, C. Liu, Y. Ding, Global well-posedness and global attractor of fourth order semilinear parabolic equation, *Math. Method. Appl. Sci.*, 38 (2015), 1515–1529. https://doi.org/10.1002/[mma.3165](https://dx.doi.org/https://doi.org/10.1002/mma.3165)
- 20. A. Zangwill, Some causes and a consequence of epitaxial roughening, *J. Cryst. Growth,* 163 (1996), 8–21. https://doi.org/10.1016/0022-0248(95)01048-3
- 21. J. Zhou, Blow-up for a thin-film equation with positive initial energy, *J. Math. Anal. Appl.*, 446 (2017), 1133–1138. https://doi.org/10.1016/[j.jmaa.2016.09.026](https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2016.09.026)

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://[creativecommons.org](https://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)