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1. Introduction

This note investigates the initial value problem for the inhomogeneous non-linear fourth-order
parabolic equation
O+ N*u+u = x| ulPu;

The wave function is u : (¢, x) € R, xR — R for some integer number N > 3. The inhomogeneous
nonlinear source term satisfies p > 1 and o > 0.

The fourth-order parabolic problem models a variety of physical processes, such as phase transition,
thin-film theory, and lubrication theory. In particular, it can be used to describe the evolution process
of nanoscale thin films, with epitaxial growth; see, for instance, [7, 10, 13,20].

In recent years, fourth-order parabolic equations have been studied extensively. We refer the reader
to the survey paper [2], where Section 14 includes some higher-order parabolic problems. The global
well-posedness and finite-time blow-up properties of solutions have been investigated by many authors.
See [4,5,8,14,15,17,21] and the references therein for the background for the study of bi-harmonic
parabolic problems.
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This note aims to obtain a threshold of global existence and exponential decay versus finite time
blow-up of energy solutions to the inhomogeneous nonlinear bi-harmonic parabolic problem (IBNLH).
The novelty is to consider the inhomogeneous regime o # 0, which complements the results in [19].
The method uses the standard stable sets under the flow of (IBNLH), due to Payne-Sattynger [12].

The plan of this note is as follows: Section 2 contains the main result and some standard estimates
needed in the sequel. Section 3 proves the main result.

Let us recall the standard Lebesgue space

L :=L'[RY)

:= {u: RY — C, measurable function, such that f lu(x)|" dx < oo},
RN

For r > 1, the usual Lebesgue norm reads

= Nl o= ([ ucor as)
RN

Finally, letting the standard Laplacian operator A := YN | %, we denote the following Sobolev
k

space and its usual norm
H?:={fel? Afel?;
I M = (I - 1P+ 1A ||2)%.
2. Background and main result

This section contains the main contribution of this note and some useful standard estimates.

2.1. Preliminary

Let us denote the free bi-harmonic heat kernel
e u = F (e Fu), 2.1)

where ¥ is the Fourrier transform. Thanks to the Duhamel formula, solutions to (IBNLH) satisfy the
integral equation

u=e"uy+ f e-<'-s>A2(|x|-@|u|P-lu) ds. (2.2)
0

4-0
If u resolves the equation (IBNLH), then so does the family u, := x> u(«*-, k-),k > 0. Moreover,
there is only one invariant Sobolev norm under the above dilatation, precisely

N 4-p
e Ollgse = N Ollgse, 8¢ 1= > = —.
2 p-1
So, the heat problem (IBNLH) is said to be energy-sub-critical if
24-0
<2 p<pii=1+ , )3
S p<p N_14 (2.3)
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where, we take p¢ = o if 1 < N < 4. Let us denote the so-called action and constraint

1 1 1
S@) = =||Aul? + = 2——f 0| dx;
(u) 2|| ul| 2||u|| T+ Jo | 7€ | X
K(u) = ||Aull* + ||u||2—f |x[2|ul"*? dx.
RN

A solution to (IBNLH) formally satisfies

0;S (u(t)) = —|9ull*;
—2K(u(t) = d/llu(o)|.

Let us denote the minimization problem

m:= inf {S(u) s.t K(u):o}.

0+ucH?

Then, it is known [18, Theorem 2.17] that m > 0 is reached in a so-called ground state
Q+ANQ-xQPF'Q0=0, 0+QeH".
In the spirit of [12], one defines some stable sets under the flow of (IBNLH).
PS":={ueH st Ku>0 and S(u)<ml;
PS :={ueH* s.t Ku<0 and S(u)<m).
The so-called Strichartz estimates will be useful.

Definition 2.1. A couple of real numbers (q, r) is said to be admissible if

2N 1 1 4
2SI"<N 1 ZSq,rSOO and N(E—;):g

Denote the set of admissible pairs by A. If I is a time slab, one denotes the Strichartz spaces

Q) := ﬂ L4, L.

(g.r)eA
The Strichartz estimates read as follows.

Proposition 2.1. Let N > 1 and T > 0. Then,

—.A2 .
sup lle™ fllys iy < 11
(g,nEA

—A? . s
sup llu—e ¥ uollary s inf (10w + Aull,z ;0 ;
(q,r)gA Ly = Gmen' " 1217y’

VN > 3.

2
sup [|Aullzszry < NAugll + l10,u + A”ul|

LW 5N’
(g.r)eA T

(2.4)

(2.5)

(2.6)
2.7)

(2.8)

(2.9)

(2.10)
(2.11)

(2.12)
(2.13)

(2.14)
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Proof. Let the free fourth order heat equation
@+ Mu=0, u0,) = u.
Taking the Fourrier part of u, yields

u(t, x) = T_l(y — e"'yl4) * U 1= e‘mzuo.
4
It’s known [1] that T‘](y - e"'Y|4)(x) = 1-h(%) for a certain function A satisfying |h(y)| < e
t4 t4
for some d > 0. This implies that

—1A?

—tA2 _N
lle™ ugllz < 1% llugll and  lle™ uollzz < lluollr2-

By interpolation, yields |le™ uo|l < 5D o | ,~ for all r > 2. Thus, applying [6, Theorem 1.2], we

get (2.12) and (2.13). Finally, (2.14) follows arguing as in [11, (3.19)]. |

Using a contraction argument via Proposition 2.1 and following lines in [3, Theorem 1.2], we obtain
the existence of energy solutions to (IBNLH).

Proposition 2.2. Let N > 3, 0 < o < min{4, %}, max{l1, 2(11\79)} < p < p° and uy € H*. Then, there exist

T :=Tnopul,, > 0, and a unique local solution of (IBNLH), in the space

C(0,T1,H?) () LEW™),
(g,r)eA

We end this sub-section with a useful ordinary differential inequality result [9, Lemma 4.2].

Lemma 2.1. Letting a real decreasing function on [0, 00) such that
(¢')* = A+ Bg™s, (2.15)
for certain A > 0, B > 0. Then, there exists T > 0 such that
lim g(1) = 0; (2.16)
T <% A AB e (1-(1+ (AB-1)2+%g(0))‘i). 2.17)
From now on, we hide the time variable ¢ for simplicity, spreading it out only when necessary.

2.2. Main result

The contribution of this note is the next threshold of global existence and exponential decay versus
finite time blow-up of solutions to (IBNLH).

Theorem 2.1. Let N > 3, 0 < o < min {4, %}, max {1, #} < p < p¢ and uy € H*. Take the maximal
solution of AIBNLH), denoted by u € C([0,T™), H?).

1. Ifug € PS~, then T* < o0 and
!
lim f lu(s)|* ds = oo. (2.18)
=T+ Jo
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2. Ifuy € PS*, then T* = oo and there is a > 0 such that
lu@Il < lluolle™, V> 0. (2.19)

In view of the results stated in the above theorem, some comments are in order.

The existence of the energy solution to (IBNLH) is given by Proposition 2.2.

The global solution with data in PS™ decays exponentially.

Arguing as in [16, Lemma 5.1], it follows that PS* are stable sets under the flow of (IBNLH).
The above result complements [19] in the inhomogeneous regime, namely o # 0.

3. Global/non global existence of energy solutions

In this section, we prove Theorem 2.1. Let us define, for 4 > 0,7 > 0, the real function on
te[0,T),

@(t) = fo (I ds + (T* = Dlluol* + AT + 1)°. (3.1

Taking account of (2.7), we compute the derivatives

@' (t) = lu@®|* = lluoll* + 24(7 + 1); (3.2)
@"(1) = =2K(u(1)) + 24. (3.3)

Thus, by (2.4), (2.6), and (3.3), we obtain for 4 > (1 + p)S (up),
&0 =2~ [ el )+ 24
RN

1
= =2(llullf + (1 + p)(S () - Ellullzz)) +24

= 222 Ml ~ (1 + IS @) + 24
> =2(1 + p)S (up) + 2(1 + p)( fl llu ()| ds + 2) = 2pA
> 0. 0 (3.4)
So, (3.4) implies that
min{p,¢’,¢”} >0, on [0,T"). (3.5)

Let us denote the quantities

a:= f lu(I? ds + At + 1)*; (3.6)
0
b= lgo'(t) _1 f A \u()|* ds + AT + 1); (3.7)
2 2 Jo
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c:= fot 0.u(s)||* ds + A.
Compute for X € R, the polynomial
—2bX +c = fo t IXu(s)|I> ds + A(XT + tX)* — X( fo t Al ds + 2A(t + 1))
+ fot 0:u()I* ds + A

!
> f (X = 18:u(s)II)* ds + AX (T + 1) — 1)
0
> 0.
So, (3.9) implies that
b* —ac <0.
Moreover, taking account of (3.4), we write
12 1 + p "2 2
o’ = ——¢)" 2 a( = 2(1 + p)S (uo) +2(1 + p)c = 2pA) = 2(1 + p)b
= 2(1 + p)ac — b*) = 2a((1 + p)S (uo) + pA).

Take the real function

g =¢ 2,
with a derivative
,_ Pl
= —— <0
8 3 2
Moreover, by (3.11), we have
’7” p - 1 ’7 —H—p Hp
= —T(so ¢ (so) 2)
—_p__l 3+1 (v
=58 ("o 2 (90) )

~(p- 1)gﬁ(<1 + p)ac = b*) = a((1 + p)S (uo) + pA)).

Integrating (3.14) in time after testing with g’, it follows that

(¢ = (g'(0) - (p (g = g ON((1+ p)ac — b2 — a((1 + p)S (o) + pd)
= (O + g7 (0) (” ((1 + pac = b — a((1 + p)S (uo) + pa)
- 1 2 (1+p)
— B (14 pac - b2> —a((1 + p)S o) + p))g FF

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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2(14+p)

.= A+ Bgri. (3.15)

Moreover,

(p_l)2(1 b?) - a((1 + p)S A
o (L p)ac =67 =a((1 + p)S ) + p)

A=(GO)+g7r(0)

> 20(p = DT lugl? + a7)™ 7 - (’; P STl + 20y P+ p)S ) + pd)
= (p = AT lluolP + A7) "7 (227 - m‘“ + P)S (1) + pA)). (3.16)
So, (3.16) implies that
A>0, for A>>1. (3.17)

Thus, applying (2.16), we get T* < co and lim,_,7+ fot lu(s)|[> ds = oo. This proves the finite time
blow-up (2.18). Now, if uy € PS, then,

2 -
2m > |lullf, - T+p fN ol 2ud] "+ dx
R

2
> (1 - m)llulliz. (3.18)

So, (3.18) implies that sup,.(o 7+ ()l < /2252 and u is global. Thus, by the stability of PS*
under the flow of (IBNLH) we get
u(t) ePS*, Vt>0. (3.19)

Let us define for vy > 0 some modified functional and sets as follows:

Ky =yl = [ Il d (3.20)

my 1= inf (S@), Ky =0k (3.21)

PS;={ueH st K,>0 and S()<m,; (3.22)
PS,:={ueH st K <0 and S(u)<m]. (3.23)

The next auxiliary result follows lines in [8, Preliminaries].
Lemma 3.1. The next properties hold.

1. lim, o+ m, =0, lim,_,,m, = —00;

2. v = m, is increasing on [0, 1] and decreasing otherwise, and m, = m;

3. Let u € H? satisfy S(u) < mand y, < 1 < 7y, be roots of my, = S(u), then, K,(u) has a constant
sign in (y1,72).
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Now, by (2.7) via the last point in Lemma 3.1, we write for y € (y;, 1),
LouP = —K(w)
70 ul|- = u

2 - 1
= —[lul, + f |2l 7 dx
RN

= (1 = P)llull, = ully, + fN x|~ ul P dx
R

= —(1 =)l — Ky (u)
<=1 = p)llul?. (3.24)

Finally, (3.24) gives the requested estimate (2.19). This ends the proof of Theorem 2.1.
4. Conclusions

This note gives a threshold of global existence and exponential decay versus finite time blow-up
of energy solutions to the inhomogeneous nonlinear bi-harmonic parabolic problem (IBNLH). The
novelty is to consider the inhomogeneous regime o # 0, which complements the results in [19]. The
method uses the standard stable sets under the flow of (IBNLH), due to Payne-Sattynger [12].
Author contributions

Saleh Almuthaybiri: Formal analysis, funding acquisition; Tarek Saanouni: Project administration,
resources, supervision, validation, review. All authors have read and approved the final version of the
manuscript for publication.
Use of Generative-Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.

Acknowledgments

The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at
Qassim University for financial support (QU-APC-2024).

Conflict of interest

The authors declare no conflict of interest.

References

1. V. A. Galaktionov, Critical global asymptotics in higher-order semilinear parabolic equations, Int.
J. Math. Math. Sci., 60 (2003), 3809-3825. https://doi.org/10.1155/S0161171203210176

AIMS Mathematics Volume 9, Issue 12, 35264-35273.


https://dx.doi.org/https://doi.org/10.1155/S0161171203210176

35272

10.

11.

12.

13.

14.

15.

16.

17.

18.

. V. A. Galaktionov, J. L. Vazquez, The problem of blow-up in nonlinear parabolic equations,

Discrete Cont. Dyn., 8, (2002), 399—433. https://doi.org/10.3934/dcds.2002.8.399

C. M. Guzméan, A. Pastor, On the inhomogeneous bi-harmonic nonlinear schrédinger
equation: Local, global and stability results, Nonlinear Anal. Real, 56 (2020), 103-174.
https://doi.org/10.1016/j.nonrwa.2020.103174

Y. Z. Han, A class of fourth-order parabolic equation with arbitrary initial energy, Nonlinear Anal.
Real, 43 (2018), 451-66. https://doi.org/10.1016/j.nonrwa.2018.03.009

Y. Z. Han, Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity,
J. Dyn. Control Syst., 27 (2021), 261-270. https://doi.org/10.1007/s10883-020-09495-1

M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. Available
from: https://www. jstor.org/stable/25098630.

B. B. King, O. Stein, M. Winkler, A fourth-order parabolic equation modeling epitaxial
thin film growth, J. Math. Anal. Appl., 286 (2003), 459-490. https://doi.org/10.1016/S0022-
247X(03)00474-8

Q. Li, W. Gao, Y. Han, Global existence blow up and extinction for a class of thin-film equation,
Nonlinear Anal. Theor., 147 (2016), 96-109. https://doi.org/10.1016/j.na.2016.08.021

M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear
wave equations, Nonlinear Anal. Theor., 54 (2003), 1397-1415. https://doi.org/10.1016/S0362-
546X(03)00192-5

M. Ortiz, E. A. Repetto, H. Si, A continuum model of kinetic roughening and coarsening in thin
films, J. Mech. Phys. Solids, 47 (1999), 697-730. https://doi.org/10.1016/S0022-5096(98)00102-1

B. Pausader, Global well-posedness for energy critical fourth-order Schrédinger
equations in the radial case, Dynam. Part. Differ Eq., 4 (2007), 197-225.
https://dx.doi.org/10.4310/DPDE.2007.v4.n3.al

L. E. Payne, D. H. Sattinger, Saddle points and instability of non-linear hyperbolic equations, Isr.
J. Math., 22 (1976), 273-303. https://doi.org/10.1007/BF02761595

L. Peletier, W. C. Troy, Higher order models in physics and mechanics, Boston-Berlin: Birkh
Auser, 2001.

G. A. Philippin, Blow-up phenomena for a class of fourth-order parabolic problems, P. Am. Math.
Soc., 143 (2015), 2507-2513. https://doi.org/10.1090/S0002-9939-2015-12446-X

C. Y. Qu, W. S. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value
conditions, J. Math. Anal. Appl., 436 (2016), 796-809. https://doi.org/10.1016/j.jmaa.2015.11.075

T. Saanouni, Global well-posedness of some high-order focusing semilinear evolution
equations with exponential nonlinearity, Adv. Nonlinear Anal., 7 (2018), 67-84.
https://doi.org/10.1515/anona-2015-0108

T. Saanouni, Global well-posedness and finite-time blow-up of some heat-type equations, P.
Edinburgh Math. Soc., 2 (2017), 481-497. https://doi.org/10.1017/S0013091516000213

T. Saanouni, R. Ghanmi, A note on the inhomogeneous fourth-order Schrodinger equation, J.
Pseudo-Differ. Oper., 13 (2022). https://doi.org/10.1007/s11868-022-00489-0

AIMS Mathematics Volume 9, Issue 12, 35264-35273.


https://dx.doi.org/https://doi.org/10.3934/dcds.2002.8.399
https://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2020.103174
https://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2018.03.009
https://dx.doi.org/ https://doi.org/10.1007/s10883-020-09495-1
https://www.jstor.org/stable/25098630.
https://dx.doi.org/https://doi.org/10.1016/S0022-247X(03)00474-8
https://dx.doi.org/https://doi.org/10.1016/S0022-247X(03)00474-8
https://dx.doi.org/https://doi.org/10.1016/j.na.2016.08.021
https://dx.doi.org/https://doi.org/10.1016/S0362-546X(03)00192-5
https://dx.doi.org/https://doi.org/10.1016/S0362-546X(03)00192-5
https://dx.doi.org/https://doi.org/10.1016/S0022-5096(98)00102-1
https://dx.doi.org/https://dx.doi.org/10.4310/DPDE.2007.v4.n3.a1
https://dx.doi.org/https://doi.org/10.1007/BF02761595
https://dx.doi.org/https://doi.org/10.1090/S0002-9939-2015-12446-X
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2015.11.075
https://dx.doi.org/https://doi.org/10.1515/anona-2015-0108
https://dx.doi.org/https://doi.org/10.1017/S0013091516000213
https://dx.doi.org/ https://doi.org/10.1007/s11868-022-00489-0

35273

19.R. Xu, T. Chen, C. Liu, Y. Ding, Global well-posedness and global attractor of fourth
order semilinear parabolic equation, Math. Method. Appl. Sci., 38 (2015), 1515-1529.

https://doi.org/10.1002/mma.3165

20. A. Zangwill, Some causes and a consequence of epitaxial roughening, J. Cryst. Growth, 163
(1996), 8-21. https://doi.org/10.1016/0022-0248(95)01048-3

21. J. Zhou, Blow-up for a thin-film equation with positive initial energy, J. Math. Anal. Appl., 446
(2017), 1133-1138. https://doi.org/10.1016/j.jmaa.2016.09.026

@ AIMS Press

AIMS Mathematics

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Volume 9, Issue 12, 35264-35273.


https://dx.doi.org/https://doi.org/10.1002/mma.3165
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2016.09.026
https://creativecommons.org/licenses/by/4.0

	Introduction
	Background and main result
	Preliminary
	Main result

	Global/non global existence of energy solutions
	Conclusions

