An empirical investigation was held regarding whether topological properties associated with point clouds formed by cryptocurrencies' prices could contain information on (locally) explosive dynamics of the processes involved. Those dynamics are associated with financial bubbles. The Phillips, Shi and Yu [
Citation: Stelios Arvanitis, Michalis Detsis. Mild explocivity, persistent homology and cryptocurrencies' bubbles: An empirical exercise[J]. AIMS Mathematics, 2024, 9(1): 896-917. doi: 10.3934/math.2024045
An empirical investigation was held regarding whether topological properties associated with point clouds formed by cryptocurrencies' prices could contain information on (locally) explosive dynamics of the processes involved. Those dynamics are associated with financial bubbles. The Phillips, Shi and Yu [
[1] | S. Anyfantaki, S. Arvanitis, N. Topaloglou, Diversification benefits in the cryptocurrency market under mild explosivity, Eur. J. Oper. Res., 295 (2021), 378–393. https://doi.org/10.1016/j.ejor.2021.02.058 doi: 10.1016/j.ejor.2021.02.058 |
[2] | D. Bazzanella, A. Gangemi, Bitcoin: A new proof-of-work system with reduced variance, Financ. Innov., 9 (2023), 91. https://doi.org/10.1186/s40854-023-00505-2 doi: 10.1186/s40854-023-00505-2 |
[3] | F. Blasques, P. Gorgi, S. J. Koopman, O. Wintenberger, Feasible invertibility conditions and maximum likelihood estimation for observation-driven models, Electron. J. Statist., 12 (2018), 1019–1052. http://dx.doi.org/10.1214/18-EJS1416 doi: 10.1214/18-EJS1416 |
[4] | G. Bonifazi, E. Corradini, D. Ursino, L. Virgili, A social network analysis based approach to investigate user behavior during a cryptocurrency speculative bubble, J. Inform. Sci., 49 (2023), 1060–1085. |
[5] | E. Bouri, D. Roubaudb, S. J. H. Shahzad, Co-explosivity in the cryptocurrency market, Financ. Res. Lett., 29 (2019), 178–183. https://doi.org/10.1016/j.frl.2018.07.005 doi: 10.1016/j.frl.2018.07.005 |
[6] | E. Bouri, D. Roubaudb, S. J. H. Shahzadb, Do Bitcoin and other large cryptocurrencies jump together? Q. Rev. Econ. Financ., 76 (2020), 396–409. https://doi.org/10.1016/j.qref.2019.09.003 doi: 10.1016/j.qref.2019.09.003 |
[7] | F. Boussama, F. Fuchs, R. Stelzer, Stationarity and geometric ergodicity of BEKK multivariate GARCH models, Stoch. Proc. Appl., 121 (2011), 2331–2360. https://doi.org/10.1016/j.spa.2011.06.001 doi: 10.1016/j.spa.2011.06.001 |
[8] | P. Bubenik, Statistical topological data analysis for persistence landscapes, J. Mach. Learn. Res., 16 (2015), 77–102. |
[9] | C. W. Cai, R. Xue, B. Zhou, Cryptocurrency puzzles: A comprehensive review and re-introduction, J. Account. Lit., 2023. https://doi.org/10.1108/JAL-02-2023-0023 doi: 10.1108/JAL-02-2023-0023 |
[10] | G. Carlsson, Topology and Data, B. Am. Math. Soc., 46 (2009), 255–308. https://doi.org/10.1090/S0273-0979-09-01249-X doi: 10.1090/S0273-0979-09-01249-X |
[11] | G. Carlsson, Topological pattern recognition for point cloud data, Acta Numer., 23 (2014), 289–368. https://doi.org/10.1017/S0962492914000051 doi: 10.1017/S0962492914000051 |
[12] | G. Carlsson, A. Zomorodian, A. Collins, L. Guibas, Persistence barcodes for shapes, Int. Shape Model., 11 (2005), 149–188. https://doi.org/10.1145/1057432.1057449 doi: 10.1145/1057432.1057449 |
[13] | Y. Chen, I. Volic, Topological data analysis model for the spread of the coronavirus, PLoS One, 16 (2021). https://doi.org/10.1371/journal.pone.0255584 doi: 10.1371/journal.pone.0255584 |
[14] | M. S. R. Chowdhury, D. S. Damianov, Uncertainty and bubbles in cryptocurrencies: Evidence from newly developed uncertainty indices, Int. Rev. Financ. Anal., 91 (2024), 1029–1049. https://doi.org/10.1016/j.irfa.2023.102949 doi: 10.1016/j.irfa.2023.102949 |
[15] | T. Cover, J. Thomas, Elements of information theory, 2 Eds., Wiley, 2006. |
[16] | B. T. Diba, H. I. Grossman, The theory of rational bubbles in stock prices, Econ. J., 98 (1988), 746–754. https://doi.org/10.2307/2233912 doi: 10.2307/2233912 |
[17] | F. C. Drost, T. E. Nijman, Temporal aggregation of GARCH processes, Econometric, 61 (1993), 909–927. https://doi.org/10.2307/2951767 doi: 10.2307/2951767 |
[18] | H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom., 28 (2002), 511–533. https://doi.org/10.1007/s00454-002-2885-2 doi: 10.1007/s00454-002-2885-2 |
[19] | F. A. Enoksen, C. J. Landsnes, K. Lucivjanska, P. Molnar, Understanding risk of bubbles in cryptocurrencies, J. Econ. Behav. Organ., 176 (2020), 129–144. https://doi.org/10.1016/j.jebo.2020.05.005 doi: 10.1016/j.jebo.2020.05.005 |
[20] | F. Fang, C. Ventre, M. Basios, L. Kanthan, D. Martinez-Rego, F. Wu, et al., Cryptocurrency trading: A comprehensive survey, Financ. Innov., 8 (2022), 13. https://doi.org/10.1186/s40854-021-00321-6 doi: 10.1186/s40854-021-00321-6 |
[21] | R. W. Ghrist, Elementary applied topology, Seattle: Createspace, 2014. |
[22] | M. Gidea, Topology data analysis of critical transitions in financial networks, International Conference and School on Network Science, Berlin: Springer, 2017, 47–59. https://doi.org/10.48550/arXiv.1701.06081 |
[23] | M. Gidea, Y. Katz, Topological data analysis of financial time series: Landscapes of crashes, Physica A, 491 (2018), 820–834. https://doi.org/10.1016/j.physa.2017.09.028 doi: 10.1016/j.physa.2017.09.028 |
[24] | A. Hatcher, Algebraic topology, Cambridge University Press, 2001. |
[25] | O. Haykir, I. Yagli, Speculative bubbles and herding in cryptocurrencies, Financ. Innov., 8 (2022), 78. https://doi.org/10.1186/s40854-022-00383-0 doi: 10.1186/s40854-022-00383-0 |
[26] | P. Katsiampa, S. Corbet, B. Lucey, Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis, Financ. Res. Lett., 29 (2019), 68–74. https://doi.org/10.1016/j.frl.2019.03.009 doi: 10.1016/j.frl.2019.03.009 |
[27] | J. Kukacka, L. Kristoufek, Fundamental and speculative components of the cryptocurrency pricing dynamics, Financ. Innov., 9 (2023), 61. https://doi.org/10.1186/s40854-023-00465-7 doi: 10.1186/s40854-023-00465-7 |
[28] | B. Lucey, S. Vigne, L. Yarovaya, Y. Wang, The cryptocurrency uncertainty index, Financ. Res. Lett., 45 (2022), 102147. https://doi.org/10.1016/j.frl.2021.102147 doi: 10.1016/j.frl.2021.102147 |
[29] | J. R. Munkres, Elements of algebraic topology, Boca Raton, Florida, USA: CRC Press, 2018. |
[30] | M. Nicolau, A. J. Levine, G. Carlsson, Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, P. Natl. Acad. Sci. USA, 108 (2011), 7265–7270. https://doi.org/10.1073/pnas.1102826108 doi: 10.1073/pnas.1102826108 |
[31] | T. Owada, Limit theorems for Betti numbers of extreme sample clouds with application to persistence barcodes, Ann. Probab., 28 (2018), 2814–2854. https://doi.org/10.1214/17-AAP1375 doi: 10.1214/17-AAP1375 |
[32] | P. Phillips, T. Magdalinos, Limit theory for moderate deviations from a unit root, J. Econometrics, 136 (2007), 115–130. https://doi.org/10.1016/j.jeconom.2005.08.002 doi: 10.1016/j.jeconom.2005.08.002 |
[33] | P. Phillips, S. Shi, J. Yu, Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S & P 500, Int. Econ. Rev., 56 (2015), 1043–1078. https://doi.org/10.1111/iere.12132 doi: 10.1111/iere.12132 |
[34] | P. Phillips, S. Shi, J. Yu, Testing for multiple bubbles: Limit theory of real-time detectors, Int. Econ. Rev., 56 (2015), 1079–1134. https://doi.org/10.1111/iere.12131 doi: 10.1111/iere.12131 |
[35] | P. Phillips, Y. Wu, J. Yu, Explosive behavior in the 1990s Nasdaq: When did exuberance escalate asset values? Int. Econ. Rev., 52 (2011), 201–226. https://doi.org/10.1111/j.1468-2354.2010.00625.x doi: 10.1111/j.1468-2354.2010.00625.x |
[36] | S. Rudkin, W. Rudkin, P. Dlotko, On the topology of cryptocurrency markets, Int. Rev. Financ. Anal., 89 (2023), 102759. https://doi.org/10.1016/j.irfa.2023.102759 doi: 10.1016/j.irfa.2023.102759 |
[37] | S. J. H. Shahzad, M. Anas, E. Bouri, Price explosiveness in cryptocurrencies and Elon Musk's tweets, Financ. Res. Lett., 47 (2022), 102695. https://doi.org/10.1016/j.frl.2022.102695 doi: 10.1016/j.frl.2022.102695 |
[38] | D. Straumann, Lecture notes in statistics: Estimation in conditionally heteroskedastic time series models, Berlin: Springer, 2005. |
[39] | N. Tosunoglu, H. Abaci, G. Ates, N. S. Akkaya, Artificial neural network analysis of the day of the week anomaly in cryptocurrencies, Financ. Innov., 9 (2023), 88. https://doi.org/10.1186/s40854-023-00499-x doi: 10.1186/s40854-023-00499-x |
[40] | F. Xu, E. Bouri, O. Cepni, Blockchain and crypto-exposed US companies and major cryptocurrencies: The role of jumps and co-jumps, Financ. Res. Lett., 50 (2022), 103201. https://doi.org/10.1016/j.frl.2022.103201 doi: 10.1016/j.frl.2022.103201 |
[41] | L. Zhang, E. Bouri, Y. Chen, Co-jump dynamicity in the cryptocurrency market: A network modelling perspective, Financ. Res. Lett., 58 (2023), 104372. https://doi.org/10.1016/j.frl.2023.104372 doi: 10.1016/j.frl.2023.104372 |