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1. Introduction

The present note provides an empirical investigation into whether topological properties associated
with point clouds formed by cryptocurrencies’ prices could contain information on (locally) explosive
dynamics of the processes involved. Those dynamics are associated with financial bubbles. The interest
lies on both the issue of the statistical inference on the existence and timestamping of bubbles, as well
as on the empirical predictability of their formation and/or termination dates. The empirical analysis
here utilizes tools from the econometrics of locally explosive auto-regressive processes as well as from
the Topological Data Analysis-hereafter TDA-toolkits.

Cryptocurrencies are financial applications of the technology of the blockchain. They, among
others, facilitate financial transactions without the presence of financial intermediaries. They may be
regarded as new financial assets distinct from usual currencies or commodities since they form a brand
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new framework of decentralized transaction tools, with total market capitalization of approximately
one trillion US dollars.

The literature on cryptocurrencies is becoming voluminous (see, for example, Fang et al. [20] and
Cai et al. [9] for comprehensive reviews and surveys). The empirical cryptocurrencies’ analysis now
occupies a large strand of the empirical finance literature, given research questions about their potential
diversification benefits, their relations to other asset classes, etc. (see Anyfantaki et al. [1], along
with the references therein). Indicative papers related to issues of price (co-) explosive dynamics and
complexity are Bouri et al. [5], Bonifazi et al. [4], Haykir et al. [25] and Shahzad et al. [37], and where
sentiment analysis concerning tweets were applied, Kukacka and Kristoufek [27]. In a related issue,
indicative papers adhering to the existence of co-jumps in the cryptocurrencies’ returns dynamics are
Bouri et al. [6], Xu et al. [40] and Zhang et al. [41]. Indicative papers that investigate new proof
systems that result to less variability, construct complexity indices associated with price dynamics out
of relevant articles that appear in important databases or investigate periodic anomalies associated with
prices are, respectively, Bazzanella and Gangemi [2], Lucey et al. [28] and Tosunoglu et al. [39].

Bubbles are known to form in the price processes of financial assets due to speculative behavior
(see Diba and Grossman [16]). The determination of whether they have already occurred in some
historical samples could be of interest to theoretical and empirical finance and economics. Early
empirical detection of the formation and, more importantly, of the collapse of a financial bubble could
also be important to theoreticians and/or practitioners since speculative bubbles may be associated to
financial crashes, with sometimes detrimental effects for the functioning of the financial markets and
the real economy.

Bubbles are partially latent. One methodology for their empirical detection and timestamping,
which is also used in this note, is proposed by Phillips, Shi and Yu [33,34], hereafter PSY. The method
is based on the Philips and Magdalinos [32] argument that underlying bubble behavior is signaled via
locally explosive behavior of asset prices. The PSY method relies on right-tailed Dickey-Fuller unit
root tests via a recursive estimation over rolling windows of increasing sizes. It can detect the existence
of more than one bubble within a sample, as opposed to the method of Phillips, Wu and Yu [35].
Also, PSY can consistently timestamp bubbles associated with mildly explosive autoregressive linear
dynamics, i.e., in such probabilistic environments it can estimate consistently the origination and the
termination date. It thus provides an empirical account for the existence, duration and timestamping of
in-sample speculative bubbles. One question regarding PSY is whether it is robust to local explosivity
that deviates from linear dynamics.

TDA constitutes a recent and fast growing branch of computational and applied mathematics relying
on the field of algebraic topology (see, for example, Hatcher [24] and Munkres [29]). Its applications
spread out to several fields with highly significant contributions, such as the case of detecting a new
subgroup of breast cancers (see Nicolau, Levine and Carlsson [30]) or the study concerning the spread
of coronavirus (see Chen and Volie [13]). It extracts robust topological information from complex and
high dimensional datasets with noisy elements with computational convenience. It can also provide
useful tools for data analysis as it employs topological and geometric techniques see Edelsbrunner,
Letscher and Zomorodian [18] in order to observe how data can be analyzed in specific spaces, how
their analysis can be quantified and how statistics and other computational methods can be used for
investigating a plethora of questions and topics in different fields and subfields, extracting useful and
robust conclusions. For financial time series analysis see, for example, Gidea [22] and Gidea and
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Katz [23].
The results of Gidea and Katz [23] essentially motivate the present empirical exercise. They

find that topological information associated with persistent homology can provide an empirical early
warning for financial crashes. The research question here is whether there is empirical evidence
on whether TDA could either provide tools that could help in the detection and timestamping of
speculative bubbles and/or provide some early indicators for their initiation and/or burst. Given the
non-parametric and topological nature of the analysis, such tools could remain robust to deviations
from linear locally explosive processes, while simultaneously detecting explosive patterns in the price
dynamics emerging from the dynamic behavior of high conditional moments. As manifested by
the aforementioned strand of literature that investigates issues of co-explosivity for cryptocurrencies,
the empirically documented locally explosive dynamics of those imply that the TDA tools could be
particularly suitable for their analysis. The fact that those tools can simultaneously incorporate joint
information from several cryptocurrencies, as well as from explanatory variables like the complexity
price indices of Lucey et al. [28] or the analogous indices in Rudkin et al. [36] (who also uses variables
associated with other financial markets and commodity returns), could imply efficiency gains compared
to one-dimensional timestamping technologies like the PSY. Thus, given that TDA applications are not
employed in the aforementioned literature, they could constitute complementary methodologies for
addressing research questions about cryptocurrencies’ dynamics like the above. Specifically, in the
present note tools related to persistent homology are employed in order to investigate whether there is
empirical topological information that signals the formation or the beginning or collapse of financial
bubbles already empirically timestamped via the aforementioned PSY.

The PSY method and the TDA are employed on a dataset consisting of the time series of daily
closing prices for the four largest cryptocurrencies by market capitalization, i.e. the Bitcoin, Ethereum,
Ripple and Litecoin. Those empiricals show asymmetric risk profiles since their returns exhibit high
volatility along with significant (and often negative) empirical skewness and kurtosis (see Table 1 of
summary statistics). Their dynamic behavior is consistent with the existence of bubbles and mild
explosivity (see again Anyfantaki et al. [1]), making them an ideal dynamic empirical environment for
the current research question.

TDA tools have been already applied to cryptocurrencies; as mentioned above, Rudkin et al. [36]
employed persistence norms to embed volatility dynamics and connectedness between coins and
complemented the topological analysis with explanatory variables from complexity indices and
other financial returns. They also demonstrated an empirical ability of forewarning crashes. Our
methodology differs in that we employ a partial modification of the aforementioned tools in order to
obtain evidence on the possibility of explosive dynamics.

The results do not seem to indicate that TDA could provide early warnings of crashes, as in Gidea
and Katz [23] or Rudkin et al. [36]. They, however, provide some empirical evidence that TDA could
be useful in detecting and timestamping financial bubbles. Given the nonlinear dynamic behavior
posited for cryptocurrencies by papers like Kukacka and Kristoufek [27], if robust, such an empirical
conclusion opens some interesting paths of further research.

The remaining note is organized as follow: In the following section the PSY and TDA
methodologies used are presented. In section three the data set is described and the empirical analysis
provided, while the final section concludes.
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2. Methodology

The present methodology consists of three steps. Initially, the PSY algorithm is applied
on the dataset consisting of time series of daily logarithmic prices of the aforementioned four
cryptocurrencies. This intends to detect and timestamp in-sample mildly explosive behavior (see
Phillips and Magdalinos [32]). Any such period of explosive dynamics is interpreted as a speculative
bubble. As mentioned before, the algorithm provides consistent estimates regarding the existence and
the location of multiple bubbles (see Phillips, Shi and Yu [34]). As such, it is considered a benchmark
technology for the detection of strong empirical evidence of linear locally explosive dynamics for the
cryptocurrencies’ prices (see Enoksen et al. [19]). It is then used here in order to provide reliable
estimates of the cryptocurrencies’ bubble periods.

The PSY methodology relies on the augmented Dickey-Fuller (ADF) test, which tests whether
the prices follow a random walk against the alternative of mild explocivity (see Phillips and
Magdalinos [32]). Specifically in our context, for the sample size T ∈ N? of the observed time series,
{0, . . . ,T } is partitioned in K mild-explosivity periods Bk, k = 1, . . . ,K and the remaining stationary
periods ∩K

k=1Bc
k. Furthermore, the logarithmic price process of the jth asset, j = 1, . . . , 4, is assumed to

be initiated by the random variable X j,0 = Op(1), and then to satisfy the auto-regressive recursion:

X j,t =

1 +

K∑
k=1

C j,k

M (T, j, k)
I
{
t ∈ B j,k

} X j,t−1 + ε j,t, t > 0.

Here, the noise sequence
(
ε j,t

)
t∈N

is assumed to be a stationary and strong mixing process with a mixing
coefficient sequence that converges to zero at an appropriate analysis rate. This is general enough to
allow for a large variety of linear and/or conditionally heteroskedastic noise processes typically used
for the analysis of stationary parts of logarithmic returns in empirical finance (see, for example, Drost
and Nijman [17]). Therefore, the PSY methods allows noise, stationary, ergodic and geometrically
mixing Autoregressive Moving Average (ARMA) and/or multivariate Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) and stochastic volatility types of temporal dynamics with
parameter restrictions that are empirically relevant, as well as with innovation’s marginal distributions
that have sufficiently smooth densities (see, for example, Boussama et al. [7] for a case of a multivariate
GARCH-type model).

Moreover, C j,k is a positive explosivity coefficient at the kth explosive period B j,k. M (T, j, k) is
strictly positive and diverges to infinity as T → ∞, representing the rate at which the kth explosive
behavior vanishes as a function of T -e.g. M (T, j, k) =

c j,k

T ηk , c j,k > 0, ηk ∈ (0, 1). The structure of the
auto-regressive parameter is compatible with the existence of K sub-periods of non-stationary bubbles
in parts of the asset process. K is not assumed predetermined, and a fortiori can be the case that K → ∞
as T → ∞; hence, the analysis allows for the number of bubbles not to be asymptotically stabilized.

The null hypothesis for the jth asset, j = 1, . . . , 4, is that C j,k = 0 for all k and all possible K,
thus it posits that the logarithmic prices globally have unit root dynamics. The alternative hypothesis
posits the existence of at least one sub-period with mild explosivity. The PSY test relies on a recursive
estimation of right tailed Dickey-Fuller tests over rolling windows of increasing sizes, where r0 is the
smallest sample window width fraction (specified by the user to initialize computation) and one is the
largest window fraction, i.e., the total sample size.
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Given a time series sample realization, say (Xt, j)t=1,...,T , of the price process, the Generalized
Supremum ADF test statistic (GADF) of the PSY method is defined as the supremum of the ADF
statistic sequence over all feasible values of r1 and r2. Hereafter, dependence on j is supressed for
brevity:

GADF (r0) := sup
r2∈[r0 ,1]

r1∈[0,r2−r0]

ADFr1,r2 ,

where the starting points r1 are allowed to vary within the range [0, r2 − r0] and where r2 is the
respective endpoint of the estimation window. If the null hypothesis is rejected, the bubble-test
procedure can also be used under general regularity conditions as a date-stamping strategy for
the estimation of the origination and termination of bubbles. Specifically, the strategy performs a
supremum ADF test on a backward expanding sample sequence where the endpoint of each sample
is r2 and the start point varies within the range [0, r2 − r0]. The corresponding ADF statistic sequence
is

{
ADFr2

r1

}
r1∈[0,r2−r0]

and the Backward ADF statistic BSADFr2 (r0) is the supremum value of the ADF
statistic sequence over this interval.

The initiation of the bubble is estimated at

rinit := inf
r2∈[r0,1]

{
r2 : BSADFr2 (r0) > cvr2 (αT )

}
and the burst is estimated at

rburst := inf
r2∈[rinit,1]

{
r2 : BSADFr2 (r0) < cvr2 (αT )

}
,

where cvr2 (αT ) is the 100 (1 − αT ) critical value of the PSY statistic based on bTr2e observations. To
eliminate Type I error, there is a need for αT → 0 as T → ∞.

In the second step of the methodology, TDA tools are applied on the aforementioned time series
in order to obtain some empirical indication on the existence of topological information that could be
either used as an early warning for the formation or the burst of a bubble or for the construction of
alternative methods of timestamping. The tools used are related to the concept of persistent homology
and they are implemented on the logarithmic returns of the cryptocurrencies under consideration.
We work either with pairs or with the ensemble of cryptocurrencies, thus constructing via the
relevant time series, point clouds inside R2 or R4, respectively (see Carlsson [10, 11]). Specifically,
selecting a sliding window w � T , where as mentioned above T is the size of the sample, we
construct T − w + 1 point clouds, each of which has the form of the w × 2 and w × 4 matrix
Yt :=

(
ln Xt, j − ln Xi−1, j, ln Xi+1, j − ln Xt, j, . . . , ln Xw+i−1, j − ln Xw+i−2, j

)
t, j
, t = 1, · · · ,T − w + 1, j =

1, . . . ,m, m = 2, 4, where Xt, j as before is the observed price at the time instance i in the sample of the
jth cryptocurrency included in the analysis.

Then, for arbitrary ε > 0, each point cloud is transformed into an abstract simplicial complex.
Specifically, the Vietoris-Rips complex, hereafter VRC- R (Yt, ε), of the point cloud is considered (see,
for example, Ch. 2 of Ghrist [21]). There, a k-simplex is actually the set of k + 1 points in the cloud,
if any, defined by the property that the Euclidean distance between each pair of points in the simplex
is less than or equal to ε. Allowing the radius ε to vary, for each t = 1, · · · ,T − w + 1, a filtration of
VRCs (R (Yt, ε))ε>0 is obtained, since 0 < ε1 < ε2 implies that R (Yt, ε1) ⊆ R (Yt, ε2).

For each VRC, its k-dimensional simplicial homology group Hk (R (Yt, ε)) is considered (see, Ch. 4
of Ghrist [21]). There, H0 (R (Yt, ε)) is the group generated by independent elements that correspond
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to connected components, H1 (R (Yt, ε)) is generated by independent elements that correspond to
loops, H2(R(Yt, ε)) is the group generated by elements that correspond to voids and, generally,
Hk(R(Yt, ε)) is the group generated by independent elements that correspond to k-dimensional holes.
The simplicial homology (with integer coefficients) of R (Yt, ε) is then the sequence of homology
groups(Hk(R(Yt, ε)))k∈N. The filtration property of the VRCs directly implies an analogous property
for each level of homology; 0 < ε1 < ε2 implies that Hk(R(Yt, ε1)) ⊆ Hk(R(Yt, ε2)). This means
that for any k, there exists canonical inclusion homomorhisms Hk(R(Yt, ε1)) ↪→ Hk(R(Yt, ε2)), which,
along with obvious arguments of total boundedness for the point clouds at hand, implies that for
any ε > 0, and any homology class c ∈ Hk(R(Yt, ε)), there exists 0 < ε1 ≤ ε < ε2 such that
∀0 < δ < ε1, c < Hk(R(Yt, ε1 − δ)), c ↪→ cε? , 0, ∀ε1 ≤ ε? < ε2 and c ↪→ 0, ∀ε? ≥ ε2. In
simple terms, c is born at the time ε1 and dies at the time ε2. Hereafter, bc := ε1 and dc := ε2 denote
the birth and the death of the topological features represented by the particular homology class and the
interval [bc, dc] denotes the lifespan that it persists. The accounting of the lifespan of the underlying
homology classes is then termed persistent homology; this constitutes an algebraic method that stores
information about the lifespans of the topological features that reside in the VRCs. If a topological
feature ‘lives’ for a large time period, then it is considered as a significant feature. On the other hand,
if its ‘life’ is small, then it is considered a noisy one. In the present note analysis, it is restricted to
H1(R(Yt, ε)) for each VRC and ε as in Gidea and Katz [23]. Those are expected to convey information
on temporally persistent large gaps between pairs of logarithmic returns.

A way to represent the persistence information of the generators of the order one homology group
is via persistence diagrams of order one (see, for example, Carlsson et al. [12]). Those are two-
dimensional. Their horizontal axis shows birth values while their vertical one shows the death values.
The diagrams contain the birth and death values of each homology class at the group, along with
information about its multiplicity. They also contain the diagonal of R2, the points of which are
interpreted as trivial homology generators with zero life span and infinite multiplicity. Analysis of
the persistence diagrams can be facilitated by endowing the set of all possible suchlike diagrams with
the Wasserstein metric of degree p > 1 (see Gidea and Katz [23] and the references therein); this
has the advantage of pertubation robustness, yet it does not enjoy useful analytical properties like
completeness that could facilitate statistical analysis. A way to overcome this is by embedding the
aforementioned space, to some complete function space (see Bubenik [8]). As in the present work,
the TDA methodology of Gidea and Katz [23] is followed and we work with such an embedding
producing the notion of persistence landscapes of order one: If P is a persistence diagram (of order
one) and (b, d) ∈ P off the diagonal, define the piecewise linear function:

f (x) :=


x − b , x ∈ [b, (b + d)/2]
d − x , x ∈ [(b + d)/2, d]
0 , x < [b, d].

Then the first persistence landscape function is obtained as a pointwise maximum w.r.t. the off-diagonal
elements of the persistence diagram:

λ1(x) := max
{
f (x)|(b, d) ∈ P, (b, d) non diagonal

}
.

Whenever the maximum does not exist as a real number, λ1(x) is set equal to zero. This is not, however,
relevant to our analysis, which concerns by construction finite point clouds.
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Figures 1 and 2 present a simple example of the methodology up to now; two point clouds with eight
(left) and 10 (right) points are constructed from different pairs of cryptocurrencies. They correspond
to Bitcoin, Ethereum observations (left) from 28 February 2016 up to 5 March 2016, and Ripple,
Litecoin observations (right) 20 up to 29 November 2015. On the bottom panels of Figure 1, the
resulting Vietoris-Rips simplicial complexes are constructed for a sufficiently large radius. Figure 2
presents the respective persistence diagrams and their corresponding persistence landscapes for the
aforementioned complexes. The large radius chosen for the example produces trivial topological
features for the associated simplices, which are interpreted as noisy features.
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Figure 1. Two point clouds with eight (left) and ten (right) points are constructed from
different pairs of cryptocurrencies. They correspond to Bitcoin, Ethereum observations (left)
from 28 February 2016 up to 5 March 2016, and Ripple, Litecoin observations (right) 20 up to
29 November 2015. On the bottom panels, the resulting Vietoris-Rips simplicial complexes
are constructed for a sufficiently large radius.
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Figure 2. The respective persistence diagrams and their corresponding persistence
landscapes are constructed for the complexes of the previous figure. The large radius chosen
for the example produces trivial topological features for the associated simplices, which are
interpreted as noisy features of the series.

Each persistent diagram of order one is represented via a bounded Lebesgue integrable real valued
function. It lives on a function set that is completely metrized when endowed with the standard
Lp-norm, p ≥ 1, w.r.t. the Lebesgue measure, i.e., ‖λ1‖

p
p :=

∫
R
|λ1(x)|pdx. Thus, the topological

information present in the persistent homology (of order one) of each point cloud in the analysis, is
represented by a real number: The Lp norm of the associated persistent landscape of order one. When
the above is performed at each point cloud defined in the rolling window, a time series of such norms
is obtained (‖λ1‖p)t=1,··· ,n−w+1.

The analysis is then focused on properties of this series. Gidea and Katz [23] provide empirical
evidence that the growth and the moving window variability of the Lp norms of particular financial
time series seem to provide some early information of financial crashes. The present paper takes a
somewhat different route. As in the previous work, the analysis is restricted to p = 1, 2. Instead of
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constructing explicit moving average variability filters for the times series of the associated norms, a
volatility filter is provided via the maximization of the Gaussian (Quasi-) likelihood function of the
Exponential Generalized Autoregressive Conditional Heteroskedasticity of order one (EGARCH(1,1))
model (see, for example, Straumann [38]). Specifically, the demeaned norms time series (kt)t=1,··· ,T−w+1

is assumed to be approximated by a conditionally heteroskedastic process of the form: kt = zt
√

ht, ht :=
exp(ω + αzi−1 + γ|zi−1| + β ln(hi−1)), where zt represents a martingale difference process, and ht is a
conditional volatility process obtained as a solution of the stochastic recurrence equation above. Hence,
(k) is approximated by a martingale transform process, whereas both elements of the transform, along
with the (pseudo-) true values of the associated parameter θ := (ω, α, γ, β), are to be optimally chosen.
The particular conditionally heteroskedastic model is selected due to its versatility in embodying
several stylized facts of conditional second moments of financial time series (see Straumann [38]).
The methodology, however, allows for the consideration of other suchlike models.

Given the sample (kt)t=1,··· ,T−w+1, and an initial condition ĥ1 for the latent volatility process, the
Gaussian Log-likelihood function `(ω, α, γ, β; ĥ0) :=

∑T−w+1
t=1 ln(ĥt(θ)) +

k2
t

ĥt(θ)
, ln(ĥt(θ)) = ω + α kt−1√

ĥt(θ)
+

γ |kt−1 |√
ĥt(θ)

+ ln(ĥt−1(θ)), i > 1 is then maximized w.r.t. θ to obtain the Gaussian Quasi Maximum

Likelihood Estimator (QMLE) θ̂ for the parameter, upon which the initial condition of the volatility
filter (ĥt(θ̂))t=1,T−w+1 is then constructed. Blasques et al. [3] provided sufficient conditions that ensure
the strong approximation of the volatility filter by a process that conveys probabilistic properties of
the associated time series as T → ∞, even if the EGARCH model is misspecified, as expected.
The resulting filter is the best maximum entropy approximation of the conditional second moment
of the demeaned norms’ time series; its marginal ergodic distribution minimizes the corresponding
expected Kullback-Liebler divergence (see Cover and Thomas [15]) with the analogous distribution of
the conditional second moment of k0.

Finally, in the spirit of Gidea and Katz [23], the time-path of the filter is contrasted to the
aforementioned reliable PSY timestamping of the bubbles. The purpose is to descriptively discern
the relevance of the empirically extracted topological information with the bubbles’ formations and
bursts, indicated by the PSY method.

3. Empirical analysis

3.1. Data

The financial time series used in the analysis consists of the four cryptocurrencies’ daily closing
prices (in US dollars) that span the period between August 07, 2015 and August 31, 2021. The choice
of the cryptocurrencies included on the analysis is based on their market cap and the data availability
to the authors. The choice of the period of the analysis is also based on data availability in conjunction
with the empirical observation that several episodes of price booms and bursts are recorded during
this period for every cryptocurrency involved. The data was obtained from the Bitfinex exchange
market through the CoinMarketCap. In total, the dataset involves 2.217 daily observations on each
cryptocurrency involved. TDA is performed on the relevant daily logarithmic returns; this sample
contains 2.216 observations for each cryptocurrency. Table 1 exhibits summary statistics for the latter.
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Table 1. Summary statistics of the logarithmic returns of each cryptocurrency.

Mean S.D. Skewness Kurtosis
Bitcoin 0 0.04 -0.81 11.77

Ethereum 0 0.07 -3.23 67.17
Ripple 0 0.07 2.08 33.87

Litecoin 0 0.06 0.35 11.93

As mentioned in the introduction, those empirical moments suggest a risk profile that is
characterized by high volatility (compared to the mean) and even higher levels of (absolute) skewness
and kurtosis. It is noted though that the possibility of local non-stationarity for the returns could
imply that those empirical moments may not be close to the analogous population moments (even if
asymptotically stationary versions of the later are well defined).

3.2. Numerical analysis

The numerical aspects of the PSY and the TDA analyses are mostly performed inside the
programming environment of R. Specifically, the package psymonitor is used for the PSY method and
the package TDA is used for the extraction of persistence homology and landscapes. The optimization
of the Gaussian log-likelihood function and the subsequent derivation of the filter was performed in
Matlab, via the optimization routine fmincon.

3.3. Results

The PSY algorithm is applied to the daily logarithmic closing prices of each cryptocurrency. The
minimum window size equals 106 implied by the algorithm’s formula T · (0.01 + 1.8/

√
T), where T is the

length of logarithmic prices, i.e., 2.217. For each cryptocurrency, the sequence of BSADF test statistics
is a vector of dimension 2.112. Its elements are compared to the analogous critical values obtained via
bootstrap, and every exceedance is counted as a bubble date. Table 2 presents the bootstrap critical
values for each cryptocurrency for the 90%, 95% and 99% significance levels.

Table 2. The bootstrap critical values for Bitcoin, Ethereum, Ripple and Litecoin.

Bitcoin Ethereum Ripple Litecoin
90% 0.26 0.28 0.27 0.34
95% 0.58 0.72 0.74 0.60
99% 1.42 1.35 1.36 1.39

The first day the BSADF test statistic lies above the corresponding 95% level critical values is
counted as the origination day of a bubble. Given an origination, the consequent first day at which
the statistic lies below the critical value counts as the termination date for the particular epoch of mild
explosivity. Figure 3 depicts the resulting inference for the in-sample bubbles superimposed to the time
series path of the logarithmic closing prices for the Bitcoin, Ethereum, Ripple and Litecoin.

Figure 3 presents the PSY method timestamping results. All cryptocurrencies seem to have several
instances of explosive behavior for the time period at hand and at least one period of significant duration
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initiated during 2017 in all cases. Given our larger and more recent dataset, the current results refresh
the analogous and similar results of Par. 3.1 of Anyfantaki, Arvanitis and Topaloglou [1].

Figure 3. The timestamping of explosive periods generated by the PSY algorithm for each
one of the cryptocurrencies separately. The green areas represent the periods of bubbles for
Bitcoin (upper left), Ethereum (upper right), Ripple (lower left) and Litecoin (lower right),
superimposed to the time series of the logarithmic closing prices of them.

The TDA methodology is then implemented to the time series of the logarithmic returns of the four
cryptocurrencies each of 2.216 observations. The data is transformed to sequences of point clouds via
a) the choice of the set of cryptocurrencies included in the analysis and b) the choice of the sliding
window. As mentioned in the methodology section, the analysis is either performed on every possible
pair of cryptocurrencies, hence the resulting clouds are subsets of R2, or it is performed in the totality
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of the assets, hence the resulting clouds are subsets of R4. The results of the analysis of the pairs are
presented below in some indicative cases; the remaining cases are similar and available to the interested
reader upon request. For b), two values for w are investigated. The first is relevant to the window used
in the PSY procedure, i.e., w = 105. In this case, 2.112 point clouds are obtained. The second choice
of sliding window covers the duration of the largest bubble period as estimated in-sample by PSY;
w′ = 200, then 2.017 point clouds are obtained. For each choice of the sliding window, the time series
of the Lp-norms and normalized Lp-norms of the persistent landscapes of order one, for p = 1, 2, are
then derived.

Figures 4 and 5 show the paths of the aforementioned norms for each choice of the sliding window.
Superimposed to the PSY estimates of the bubble periods, it is noted that the trajectories for both
the normalized norms for the point clouds are obtained from the totality of the cryptocurrencies. For
both choices of the sliding window (see the fourth panel in Figures 4 and 5) they seem to have a
neighborhood of their maxima at which the paths assume quite large and volatile values, and those
neighborhoods seem to lie in close vicinity to the large duration bubbles filtered by the PSY analysis.
Furthermore, normalization reduces the uniform distance between the p=1 and p=2 cases.

Figures 6–9 depict the analogous analyses for the respective filtered EGARCH volatility paths of
the associated norms. Those are superimposed in each case to the PSY timestamps of the relevant
bubbles.

Figures 6 and 7 show the results of analysis for the first choice of sliding windows w=105, whereas
Figures 8 and 9 show the corresponding results for the second choice w=200. In the left panel of
Figure 6, where the TDA is performed based on the pair Bitcoin-Ethereum, the results seem to suggest
that the norms could be able to pick up at least the large bubble periods (as timestamped by the PSY
method) for Bitcoin and Ethereum. This seems to be the case when all four cryptocurrencies are
included in the TDA analysis in the right panel of Figure 6. The norm volatility filter appears to have
smaller variation, but it seems to depict the main bubble episodes, even though it appears to have
considerable variation in a period not associated by the PSY method with any major bubble episode
for any of the four cryptocurrencies, namely, the mid to late 2016 period. The results in Figure 8 that
correspond to a larger window, seem qualitatively worse, even though the large bubble period in 2017-
18 seems to be partially depicted; the window chosen seems too large in order to pick up fine details
and, therefore, the optimal choice of the window is-as expected-an issue for further investigation. It
seems that an initial choice similar to the minimum windows size in the PSY method is functional.

Analogous remarks hold for Figures 7 and 9. The small window case seems to provide quite
comparable results to the PSY timestamping for both the Ripple and Litecoin cryptocurrencies in both
the right and the left panel analyses of Figure 7. The larger window results of Figure 9 seem inferior
even though the large bubble periods seem partially depicted.
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Figure 4. Time series of Lp-norms (left) and normalized Lp-norms (right), p = 1 (blue), p =

2 (red), for the pair Bitcoin - Ethereum, for w = 105 (up) and for w’ = 200 (down). The larger
window reduces variability in all cases. Significant variability in trajectories of the norms is
in any case observed for both sliding windows approximately between the 500th and 1.000th
observations. Normalization reduces the uniform distance between the p=1 and p=2 cases.
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Figure 5. Time series of Lp-norms (left) and normalized Lp-norms (right), p = 1 (blue),
p = 2 (red), for the ensemble of cryptocurrencies, for w = 105 (up) and for w′ = 200 (down).
Variability is not necessarily reduced for the larger window. Significant variability persists
between the 500th and 1.000th observations for both the sliding windows. Normalization
reduces the uniform distance between the p=1 and p=2 cases.
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Figure 6. Time series of EGARCH(1,1) filtered volatility of the normalized L2-norms for
the pair Bitcoin - Ethereum (left panel) and the ensemble of cryptocurrencies (right panel),
juxtaposed to the PSY timestamping of bubbles for the Bitcoin (upper panel) and Ethereum
(lower panel) (w = 105). The norms seem be able to pick up at least the large bubble periods
(as timestamped by the PSY method) for Bitcoin and Ethereum.
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Figure 7. Time series of EGARCH(1,1) filtered volatility of the normalized L2-norms for
the pair Ripple - Litecoin, for the pair Bitcoin - Ethereum (left panel) and the ensemble of
cryptocurrencies (right panel) juxtaposed to the PSY timestamping of bubbles for the periods
of bubbles of Ripple (upper panel) and Litecoin (lower panel) (w = 105). As in the previous
case, the norms seem be able to pick up at least the large bubble periods (as timestamped by
the PSY method) for Ripple and Litecoin.
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Figure 8. Time series of EGARCH(1,1) filtered volatility of the normalized L2-norms for
the pair Bitcoin - Ethereum (left panel) and the ensemble of cryptocurrencies (right panel),
juxtaposed to the PSY timestamping of bubbles for the Bitcoin (upper panel) and Ethereum
(lower panel) (w′ = 200). The results seem qualitatively worse than the ones of Figure 6,
even though the large bubble period in 2017-18 seems to be partially depicted.
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Figure 9. Time series of EGARCH(1,1) filtered volatility of the normalized L2-norms for
the pair Ripple - Litecoin(left panel) and the ensemble of cryptocurrencies (right panel)
juxtaposed to the PSY timestamping of bubbles for the periods of bubbles of Ripple (upper
panel) and Litecoin (lower panel) (w′ = 200). The results seem qualitatively worse than
the ones of Figure 7, even though the large bubble period in 2017-18 seems to be partially
depicted.

4. Discussion and conclusions

The optimality or the robustness of the aforementioned results can be tested via further choices of
the fudge parameters that appear in the analysis: The sliding windows that specify the sequence of
available point clouds, the sets of assets that are included in the clouds, the orders of the homology
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groups utilized, the choice of norms and of the volatility models. Moreover, further models of
conditional heteroskewness and/or heterokurtosis can be employed in order to assess the behavior of the
aforementioned conditional higher moments of the norms of the persistent landscapes during bubbles.

The results seem somewhat dissimilar to the empirical results regarding early warnings of crashes
of Gidea and Katz [23] or Rudkin et al. [36]. What is interpreted as an early warning there could be
extreme variability of the associated topological information inside a bubble. The intensive activity
of the trajectories of the norms and of their volatilities seem to be related to the PSY timestamps of
bubbles of considerable duration, even though they do not seem to provide some early warning for the
formation and/or the burst of speculative bubbles.

The above raise the following research question: Could, complementarily to methodologies like
PSY, formal inferential procedures based on persistent homology and landscapes be designed for the
detection and timestamping of time series’ locally explosive behavior? This could be important for
at least two reasons: First, the persistent homology approach can by construction accommodate joint
information from multiple time series. As such it could potentially provide a timestamping tool for
(say d-dimensional) vector locally explosive linear dynamics of the form:

Xt =

Id +

K∑
k=1

Ck

M (T, k)
I {t ∈ Bk}

 Xt−1 + εt, t > 0,

where the explosive periods Bk are defined as in the previous section, Ck is a positive d × d explosivity
coefficient matrix at the kth explosive period, M (T, k) > 0 and diverges to infinity as T → ∞ and
(εt)t∈N is an Rd-valued stationary and strong mixing noise process. Such vector dynamics provide
more efficient characterizations of local explocivity, since at each bubble period k the structure of the
explosivity coefficient matrix Ck is general enough to allow for intra-bubble dependence of currently
explosive base assets on the dynamics of other currently and/or previously explosive assets, as well as
on assets that are never explosive. Such structures are not accommodated by the one-dimensional PSY
method. Several studies investigating issues of cryptocurrencies co-explocivity (see for example Bouri
et al. [5]) use the PSY method to timestamp explosive behavior and tools like logistic regression in
order to investigate inter-relatedness between bubbles in different cryptocurrencies. Procedures based
on TDA, if developable, could help such investigations gain more efficiency.

Second, given its non-parametric topological nature, it could be quite robust to deviations from
linear dynamics. For example, it could accommodate periods of explosivity emerging from processes
of the form:

Xt = Xt−1 + zt � Ht, t > 0,

ln Ht =

Id +

K∑
k=1

Ck

M (T, k)
I {t ∈ Bk}

 ln Ht−1 + vt−1, t > 0,

where (zt)t∈N and (vt)t∈N are Rd-valued stationary martingale difference processes and (Ht)t∈N is
a conditional stochastic volatility process. For the (pointwise) logarithm that obeys the mildly
explosive linear dynamics for the empirical application of multivariate BEKK-GARCH-type models
on cryptocurrencies, see Katsiampa et al. [26]. It could potentially timestamp bubble-like dynamic
behavior as the one produced in the catastrophe-augmented diffusion model of Kukacka and
Kristoufek [27]. To the best of our knowledge it is not known whether the PSY method remains
robust to such deviations from linearity.
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Moreover, it could be the case that the time series behavior of the Lp norms above is closely related
to the uncertainty price indices of Lucey et al. [28] constructed from the prices’ related articles that
appear in relevant databases; the probit models results of Chowdhuryand and Damianov [14] reveal
statistically significant relations between the PSY cryptocurrencies bubbles’ timestamping and the
aforementioned index. It could be of further interest to include such indices in the TDA analysis
in order to enhance efficiency. Such time series (and/or indices that could be further constructed from
textual/sentiment analyses on cryptocurrencies) could potentially assume the role of “topologically
explanatory variables” and enhance the analysis by providing further sources of information besides
observed prices and returns.

In any case, the specification of the probabilistic properties of the persistent landscapes that
may carry the topological information of local explosivity could be of central importance to the
aforementioned research question and is thereby left to future research. Such research could also be
benefited from results related to the derivation of the limiting properties of random elements associated
with persistent homology in the spirit of Owada [31], especially in cases where the point clouds
employed are associated with non-stationary time series and heavy tailed marginals. This seems quite
an exciting line of further research.
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