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Abstract: The detection of change points in chaotic and non-stationary time series presents a critical 

challenge for numerous practical applications, particularly in fields such as finance, climatology, and 

engineering. Traditional statistical methods, grounded in stationary models, are often ill-suited to 

capture the dynamics of processes governed by stochastic chaos. This paper explores modern 

approaches to change point detection, focusing on multivariate regression analysis and machine 

learning techniques. We demonstrate the limitations of conventional models and propose hybrid 

methods that leverage long-term correlations and metric-based learning to improve detection accuracy. 

Our study presents comparative analyses of existing early detection techniques and introduces 

advanced algorithms tailored to non-stationary environments, including online and offline 

segmentation strategies. By applying these methods to financial market data, particularly in monitoring 

currency pairs like EUR/USD, we illustrate how dynamic filtering and multiregression analysis can 

significantly enhance the identification of change points. The results underscore the importance of 

adapting detection models to the specific characteristics of chaotic data, offering practical solutions 

for improving decision-making in complex systems. Key findings reveal that while no universal 

solution exists for detecting change points in chaotic time series, integrating machine learning and 

multivariate approaches allows for more robust and adaptive forecasting models. The work highlights 

the potential for future advancements in neural network applications and multi-expert decision systems, 

further enhancing predictive accuracy in volatile environments. 

Keywords: change point detection; non-stationary processes; financial time series forecasting; 

proactive change point detection; chaotic time series analysis; online change point detection 
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1. Introduction 

The challenge of detecting changes in time series properties, often referred to as the problem of 

"change point detection", has not only remained relevant over the past few decades but has also 

intensified as it extends into new, strategically significant fields such as climatology, seismology, 

sociology, psychology, economics, and commerce. It is also critical in disaster prediction, medical and 

technical diagnostics, monitoring of maneuvering objects, and a wide range of issues related to 

artificial intelligence and cognitive science, as well as image and speech signal processing, among 

others. 

A change point refers to a sudden shift in one or more variables within time series data. In one-

dimensional cases, this involves a single variable; in multidimensional cases, several variables may be 

affected. These abrupt changes signify transitions between states and are distinct from gradual trends, 

as they occur instantaneously. The process of identifying these sudden shifts is formally known as 

change point detection [1]. 

The growing importance and diversity of this problem stem not only from its applications but also 

from evolving perspectives on the reality surrounding us and the emergence of new technologies for 

its mathematical description. A particularly crucial area of knowledge has emerged, requiring the 

formalized description of unstable environments and the processes occurring within them. These 

inherently nonlinear challenges are characterized by the lack of dynamic stability in observable 

processes, where even the smallest perturbations can lead to unpredictable outcomes. The mathematical 

framework for describing such processes is provided by the theory of dynamic chaos [2–4]. However, 

the presence of random components in the monitoring data of the observed object further complicates 

the mathematical modeling, placing it within the realm of stochastic chaos. 

Under these conditions, the traditional problem of change point detection encounters several new 

and previously unaddressed challenges: 

(1) In problems governed by chaotic processes, the condition of repeatability is not met. From a 

forecasting perspective, this means that two time intervals with similar dynamic structures (according 

to the chosen proximity metric) may lead to entirely different outcomes. In other words, traditional 

learning systems based on metric similarity algorithms may prove to be ineffective. Moreover, the lack 

of repeatability undermines the foundation of the entire probabilistic-statistical paradigm. This implies 

that conventional statistical data analysis algorithms may result in ineffective and unreliable 

assessments and decisions. 

(2) Changes in the properties of observation series, which describe the dynamics of a controlled 

object's state, are traditionally attributed to external factors from the surrounding environment. 

However, in chaotic systems, spontaneous emergence of multiple local trends of indeterminate 

duration is possible. This creates a need for fundamentally new approaches to detecting change points, 

based on analyzing signal deformations within the fine structures of observable processes. 

The complexity of applying statistical data analysis algorithms does not imply their complete 

unsuitability for forecasting change points in chaotic data. However, to use them effectively, it is 

essential to define their applicability boundaries, assess the expected degree of reduced efficiency, and 

explore the possibility of regularization or ordering transformations of the original data set. For 
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instance, previous studies [5] have explored the use of correlation relationships in multivariate 

observation series of chaotic processes as a regularizing factor. 

2. Materials and methods 

2.1. Classical formulation of the change point detection problems 

Let's begin by considering the traditional formulation of the change point detection problem. We 

are given a discrete time series of observations yk, where k=1, …, n, obtained through the monitoring 

of a deterministic but unknown process x(t), with t∈[0, T]. The index k represents the discrete time 

steps at which the process is observed, corresponding to the moments t=k(T/n). The smoothed values 

of these observations constitute the systematic component of the time series. 

The classical approach to change point detection is based on a model where the observations yk, 

k=1, …, n, represent a random process with an unknown deterministic trend. The stochastic component 

of the time series νk, k=1,…,n, is typically described, in the simplest case, by a Gaussian stationary 

time series model. To further simplify the mathematics, a model of independent and identically 

distributed (i.i.d.) Gaussian noise is often used. 

One of the most well-known formal representations of this process is the additive Wold 

decomposition [6]: 

yk=xk+νk, k=1,…n,          (1) 

where the noise component νk, k=1,…n is a stationary random process, often modeled as a moving 

average process 

𝜈𝑘 = ∑ 𝑎𝑗
∞
𝑗=0 𝜀𝑘−𝑗 , 𝑘 = 1,… , 𝑛.        (2) 

Here, εk, k=1,…,n, represents white noise. It is evident that the process described by Eq (1) cannot 

be considered stationary, as it includes a time-varying systematic component xk, k=1,…,n. However, 

when it is possible to identify and reconstruct the underlying deterministic process, the remaining noise 

component νk=yk–xk, k=1,…,n, can, under the initial assumption, be described as a parameterized 

stationary process with a constant probability density function f(νk,θ), k=1,…,n. Further 

simplification of the data model involves the assumption that the distribution function of the noise 

component is normal. Although many studies on robust statistical data analysis technologies critically 

evaluate this assumption, it holds under the conditions of the central limit theorems of probability 

theory, where the empirical distribution converges approximately to the Gaussian model. In this 

scenario, the parameter vector of the distribution function consists of two parameters: the location 

parameter θL and the scale parameter θS. Thus, through successive simplifications of the initial data 

model, the change point detection problem is reduced to analyzing the parameters of a weakly 

stationary time series, specifically investigating the constancy of the location and scale parameters. 

By employing this simplified data model, where the observations are treated as a sequence of 

random observations with stationary measurement noise, the change point detection problem is 

formalized within the probabilistic-statistical paradigm. 

Let 𝑓(𝑦𝑘,  𝜃)∀𝑘 = 1, . . . , 𝑛 represent the probability density function of the observations with a 

vector of parameters 𝜃. At each observation step, an empirical estimate of the posterior distribution 

𝑓̑(𝑦𝑘 ,  𝜃)∀𝑘 = 1, . . . , 𝑛 and a corresponding discrepancy metric 𝜇̑𝑘 = 𝜇 (𝑓̑(𝑦𝑘,  𝜃),  𝑓(𝑦𝑘,  𝜃)) ∀𝑘 =



35241 

AIMS Mathematics  Volume 9, Issue 12, 35238–35263. 

1, . . . , 𝑛 are computed. If the value of this metric exceeds a threshold 𝜇∗(𝛾), corresponding to the 

chosen confidence level 𝛾 for decision-making, i.e., if 𝑘: |𝜇𝑘| > 𝜇∗(𝛾), a decision is made to detect 

the change point at the k-th time point. 

In terms of hypothesis testing theory, this involves testing the hypothesis  𝐻0: 𝛿𝜇𝑘 = |𝜇𝑘 −

𝜇∗(𝛾)| ≠ 0  against the alternative 𝐻1: |𝜇𝑘 − 𝜇∗(𝛾)| = 0 . The standard approach, based on the 

assumption of Gaussian statistics 𝛿𝜇𝑘, proposes using the Student's t-statistic 𝑡 = 𝛿𝜇𝑘/𝑠(𝜇̑𝑘) with 

k-1 degrees of freedom, where 𝑠(𝜇̑𝑘) is the standard deviation of the discrepancy metric 𝜇̑𝑘. If the 

current value of the t-statistic exceeds the critical value t*, determined from the Student's t-distribution 

table for the chosen confidence level 𝛾, a decision is made to detect the change point. 

When the problem is addressed under conditions of weak stationarity (or stationarity in a broad 

sense), the procedure is similar, but the metric used is the distance between the parameters (most often 

Gaussian) of the distribution 𝜇̑𝑘 = 𝜇( 𝜃, 𝜃̑𝑘))∀𝑘 = 1, . . . , 𝑛, is the parameter estimate at the current 

time k. 

2.2. Classification of the change point detection methods 

There are currently numerous technologies for detecting change points, each allowing for various 

faceted and hierarchical classifications based on different classification criteria. In this work, we will 

adhere to the classification presented in Figure 1. This faceted classification employs three primary 

criteria: the nature of data processing (joint or sequential processing), the type of learning involved, 

and the dimensionality of the problem being addressed. In this paper, we will focus primarily on 

proactive (i.e., predictive) online technologies for both univariate and multivariate data. 

 

Figure 1. Classification of change point detection technologies. 

The topic of change point detection algorithms has been extensively explored in the literature [7], 

with dedicated reviews focusing on offline algorithms [1] and sequential (online) algorithms [8], as 

well as unsupervised [9] and supervised approaches [10]. However, this article gives limited attention 

to these studies, as the decomposition methods they describe are not suited to handling chaotic 

processes and are ineffective in the specific cases discussed below. 

2.3. Visualizing change points detection in a sample Gaussian stochastic process 

Let us begin by examining a simple, idealized case of change points detection in a Gaussian 

stationary process with parameters 𝑁(𝜃𝐿 ,  𝜃𝑆) = 𝑁(0,  1). Here, the first parameter represents the 
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expected value (mean) of the stationary series  𝜃𝐿 = 𝐸(𝑣) = 0, and the second parameter denotes the 

variance  𝜃𝑆 = 𝜎2(𝑣) = 0. Figure 2 illustrates instances of abrupt changes in both the location and 

scale parameters over a 24-hour observation period, where measurements are taken at one-minute 

intervals, resulting in 1440 data points. 

These abrupt changes occur in three distinct intervals: 

• Between time points [150, 400], where the location parameter increases by 2 units. 

• Between time points [600, 850], where the scale parameter (standard deviation) doubles. 

• Between time points [1050, 1300], where the location parameter decreases by 2 units. 

 

Figure 2. Gaussian random process with three intervals of abrupt change points. 

Even in this highly simplified scenario, detecting change points proves to be a challenging task; 

visually identifying the exact moments when these parameter changes occur is not straightforward. 

Moreover, the model used here is of a stationary process, which is rarely encountered in real-world 

applications. 

In practice, observed processes typically include a systematic component. To illustrate this 

complexity, we consider a second example involving non-stationary time series with clearly defined 

systematic components. Figures 3 and 4 display time series with the same change points as in the 

previous example, but with additional systematic components: a linear trend 𝑥𝑘 = −6 + 0.01𝑘, 𝑘 =

1, . . . ,1440 in Figure 3, and a sinusoidal pattern 𝑥𝑘 = 3𝑠𝑖𝑛( 0.006𝑘), 𝑘 = 1, . . . ,1440 in Figure 4. 

It becomes evident that in these examples, it is even more difficult to discern significant abrupt 

change points, despite the use of a deliberately simplified model involving stationary Gaussian noise. 

This model, while widely applied in numerous studies to this day, is seldom validated by the analysis 

of the statistical properties of real-world observations. 
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Figure 3. Examples of change points in a process with a linear trend. 

 

Figure 4. Examples of change points in a process with a sinusoidal trend. 

 



35244 

AIMS Mathematics  Volume 9, Issue 12, 35238–35263. 

2.4. Non-stationary and chaotic data 

The examples discussed earlier pertained to a traditional and typically idealized framework for 

detecting change points. However, what occurs in real-world scenarios? To explore this, let's examine 

data obtained from monitoring the EUR/USD currency pair over a 100-day period (see Figure 5). 

 

Figure 5. The EUR/USD currency pair price fluctuations over a 100-day period. 

From the graph, it is evident that the time series represents an oscillatory, non-periodic random 

process characterized by numerous local trends and clear signs of large-scale self-similarity. This 

observation suggests that the systematic component of the process 𝑥𝑘 , 𝑘 = 1, . . . , 𝑛  (1) might be 

considered a manifestation of deterministic chaos [11]. 

However, the presence of a random noise component 𝑣𝑘, 𝑘 = 1, . . . , 𝑛  introduces further 

complexity, resulting in a process described by the concept of stochastic chaos [12–14]. Despite 

ongoing research, a rigorous mathematical description of stochastic chaos remains elusive. 

Consequently, the primary tools for investigating this phenomenon are numerical methods that analyze 

the local trends within the observed time series. 

It should be noted that the structural model of observations (1) can still be applied to describe the 

presented process. However, in this context, its components will have a fundamentally different 

interpretation [15–18]: 

(1) The systematic component 𝑥𝑘 , 𝑘 = 1, . . . , 𝑛 represents an oscillatory, non-periodic process 

with numerous local trends and abrupt changes in the mean value. This component can be described 

as a realization of a deterministic chaotic process; 

(2) The random component 𝑣𝑘, 𝑘 = 1, . . . , 𝑛 is a nonstationary stochastic process characterized 

by heteroskedasticity and a significant number of anomalous observations. As shown in [9], this 

component can be further decomposed into a sum of two stochastic processes: one with unstable but 

significant autocorrelation functions, and a white Gaussian noise. 
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(3) Conventional models, which typically define a change point as a shift in the mean or variance, 

are inadequate for this context. Here, the process shows a continuous change in the mean without 

maintaining a consistent variance. The challenges and intricacies of change point detection under these 

conditions will be addressed in detail in the sections that follow. 

2.5. Structural breaks as indicators of trend reversals 

In revisiting the problem of detecting change points, it is important to clarify what constitutes a 

point of change in the properties of a time series (structural breaks). To illustrate this, we perform a 

posterior segmentation of the time series presented in Figure 6 by identifying segments of monotonic 

linear trends, where the magnitude of the trend's change exceeds a threshold of 𝛥∗𝑦 = 250 to 300 

pips (see Figure 6). 

 

Figure 6. Posterior segmentation of the EUR/USD currency pair price process and change points. 

As demonstrated in the figure, the original time series can be divided into 13 segments, each of 

which is roughly approximated by a linear function with a change magnitude 𝛥∗𝑦 250–300p. In this 

context, the structural break points in the observed process are the values within the time series where 

the sign of the approximating linear trend changes. These points are highlighted with red circles on the 

graph and can be considered as change points. 

(1) Segmentation refers to the process of dividing the observed time series into segments with 

fixed segmentation criteria. In this case, the criterion is the sign of the linear trend of the 

segment. 

(2) The minimum change threshold of a monotonic trend is crucial when constructing the 

segmentation. Altering this threshold will change the entire segmentation structure. 

(3) A pip is a standardized unit representing the normalized value of the price change of a 

financial instrument. 

It is important to note the conditional nature of the segmentation presented in Figure 6. Modifying 
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the minimum change threshold will inevitably lead to a completely different segmentation of the 

process and, consequently, a different set of structural break points. Changing the segmentation 

technique, such as using cubic splines, will also significantly affect the identified break points and so 

on. 

It should be noted that the time series examples presented here represent boundary cases in terms 

of the difficulty of detecting structural breaks. Examples 1 and 2, which involve stationary noise, are 

the simplest for detecting structural breaks and have many well-developed and practically proven 

solutions [19–21]. Example 3, which involves chaotic data, is extremely complex and still lacks 

effective solutions. Most applied problems fall into an intermediate range of complexity and are 

addressed with varying levels of effectiveness, primarily using numerical data analysis methods. 

2.6. Change point detection in non-stationary time series 

The formulation of the change point detection problem described earlier is typically found in 

academic literature, where the standard example involves observing locally stationary processes. These 

processes maintain their statistical properties within certain time intervals, which are interrupted by 

abrupt changes in state or scale parameters. However, in practical scenarios, the observed process 

rarely maintains its parameters even locally; they are constantly shifting, with the differences lying 

primarily in the structure of these changes. This necessitates a revision of the concept of a change point 

and the corresponding formalization. 

Firstly, it is important to recognize that the concept of strict stationarity is not suitable for tasks 

involving continuously changing statistical characteristics. Estimating the probability density, 

including kernel density estimates, requires a large volume of observations under identical 

conditions—something that is unachievable in the presence of strong non-stationarity in the data. A 

more constructive approach to detecting change points involves estimating numerical parameters of 

the distribution or the observed process itself, such as trend parameters. 

This leads to the need for a formalized approach to change point detection that takes into account: 

• The characteristics of the observed process; 

• The way real-world observations reflect the chosen mathematical model of the data; 

• The structure and specificity of the applied problem for which the change point detection is 

being carried out. 

It is clear that considering these requirements and constraints narrows the generality of the 

problem formulation. However, it also makes the problem more concrete and relevant for practical 

applications. 

An important consideration involves optional settings that significantly influence the 

effectiveness of the solution. Examples of such parameters for change point detection in non-stationary 

time series include: 

The size of the moving observation window L, within which statistical estimates of the criteria 

parameters are formed: 

𝑌𝑘−𝐿,𝑘 = [𝑦𝑘−𝐿 ,  𝑦𝑘−𝐿 ,  . . . , 𝑦𝑘], 𝑘 = 𝐿 + 1, . . . ,  𝑛,     (3) 

• The magnitude of reverse fluctuations 𝛥∗𝑦  in the dynamics of the observed series, which 

should be considered false alarms, as determined by the specific content of the problem being 

solved; 
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• The required confidence level in the decisions made regarding the presence of a change point; 

• The impact of decision-making errors on the terminal performance indicators of the task for 

which change point detection is being carried out, and so on. 

• Selecting the threshold is a pivotal step in these algorithms, as the optimal value is highly task- 

and data-specific. In this study, we adopt an empirical approach to determine the threshold, 

relying on an analysis of the quality of change point detection across various scenarios. 

The intermediate conclusion is that for non-stationary processes, the general formulation of the 

problem is poorly formalized in terms of constructing an algorithm for change point detection. It 

requires significant refinements related to: 

• The dynamic and statistical structure of the original data; 

• The selection and, if necessary, periodic adjustment of the observation model parameters and 

data processing algorithm; 

• The objective function and constraints of the higher-level system for which the change point 

detection task is being addressed; 

• The characteristics of the environment in which the observed process is embedded and the 

nature of their interactions, and so forth. 

As an example of such a specification, consider the problem of posterior segmentation of time 

series data related to observing currency exchange rates on the Forex market. 

3. Experiments and results 

3.1. Change point detection in the task of offline segmentation of financial asset price series 

Identifying trend reversal points on price charts is a critical task in financial asset management. 

These points indicate shifts in the direction of price movement, enabling investors to: 

• Buy an asset as it begins to rise or sell when it starts to decline. 

• Prevent losses by exiting a position before the trend reverses. 

• Enter positions early during a growth phase and exit when the trend is fully established. 

Various technical indicators and analytical methods can be employed to identify trend reversal 

points, facilitating more informed investment decisions. As noted earlier, a trend change point in this 

context refers to a change point in chaotic processes. 

To illustrate the challenge of detecting change points in chaotic processes, let’s consider the task 

of automatic posterior segmentation of observation series generated by a financial instrument 

monitoring system in the Forex market. 

The problem is approached using one-dimensional offline change point detection (CPD) with 

supervised learning to create a data set for training machine learning models such as neural networks 

or statistical trading algorithms. The corresponding graph of the non-stationary process, obtained 

through minute-by-minute tracking of EUR/USD exchange rates over a 15-day observation period, is 

shown in Figure 7. 
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Figure 7. Trend segmentation of a non-stationary process over a 15-day observation period. 

In the same figure, an offline segmentation of the entire observation period is performed. The 

segmentation divides the interval into segments where the hypothesis of a constant sign in the linear 

trend can be conditionally accepted. Thus, the goal of the segmentation is to identify the time intervals 

𝛥𝑇𝑗 = [𝑡𝑗 , 𝑡𝑗+1), 𝑗 = 1, . . . ,  𝑚 − 1, that satisfy the condition 𝑠𝑖𝑔𝑛(𝑡𝑟(𝑌𝑗)) = 𝑐𝑜𝑛𝑠𝑡, where 𝑡𝑟(𝑌𝑗) 

represents the value of the linear trend over the segmentation interval 𝛥𝑇𝑗 , 𝑗 = 1, . . . ,  𝑚 − 1 , 

estimated as the coefficient of the linear approximation of the observation series in the sliding window 

of the sequential data scan Eq (2). 

The parameters of the CPD in this case are: 

• The critical threshold 𝛥∗𝑦, identified a priori as false alarms. 

• The size of the sliding observation window L, used to estimate the linear trend coefficient 

𝑎̑1(𝑘) = 𝑡𝑟(𝑌𝑘−𝐿,𝑘),  𝑘 = 𝐿 + 1, . . . ,  𝑛 calculated using the least squares method (LSM) [22, 

23]. 

In offline CPD mode, the process is straightforward: at each step of sequential scanning 𝑎̑1(𝑘) =

𝑡𝑟(𝑌𝑘−𝐿,𝑘)),  𝑘 = 𝐿 + 1, . . . ,  𝑛  and its sign 𝑠𝑖𝑔𝑛(𝑎̑1(𝑘)),   𝑘 = 𝐿 + 1, . . . ,  𝑛  are evaluated. A 

change in the trend sign at the k-th step marks this point as a potential change point. The final 

confirmation of the change point at the k-th observation step occurs when the condition |𝑦𝑘 −
𝑦𝑘+𝑑𝑒𝑙𝑎𝑦| > 𝛥∗𝑦 is met, meaning the size of the backward shift exceeds the critical value, which is 

estimated to minimize the probability of a false alarm 𝛽. 

Unlike the graph shown in Figure 6, the presented task considers three possible segment 

classifications: increasing, decreasing, and sideways (or "flat"), where the trend magnitude is 

insignificant. 

The solution to this problem was relatively straightforward due to the ability to process data 

offline. However, in the case of real-time online change point detection, the task becomes significantly 

more complex and faces several fundamental challenges. One of these challenges, related to 

identifying the systematic component of the observation series, will be addressed in the next section. 
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A similar approach to analyzing financial time series is discussed in [24], where alternative methods 

are employed to identify trend change points. In this paper, however, we take a different direction. 

3.2. The problem of sequentially isolating the systematic component 

The challenge of developing and optimizing change point detection (CPD) is fundamentally tied 

to selecting a mathematical model that provides a formalized description of the observed series. It's 

important to acknowledge that choosing a model and its structure is inherently subjective. Generally, 

a single process can be described using multiple mathematical models, each with its own advantages 

and disadvantages. Interestingly, the degree to which a model aligns with the data is not the sole 

criterion for assessing the quality of the model. For example, increasing the degree of a polynomial 

typically enhances the model's fit to the observed time series but simultaneously raises the likelihood 

of falsely detecting a change point. 

In this study, we use Wold decomposition (1) as the baseline model, with a substantially different 

description of its components compared to the original formulation. The altered descriptors of both the 

systematic and stochastic components introduce a highly complex problem of isolating the systematic 

component from the observation series, a critical step in solving the change point detection problem. 

Specifically, the presence of "long memory" in colored noise νk, k=1, …, n and the non-periodic 

oscillatory structure of the systematic component xk, k=1, …, n make it impossible to separate these 

components using traditional filtering algorithms, which are typically designed to reduce pure random 

white noise. 

To illustrate the decomposition problem of model (1), we can examine a two-day observation of 

EUR/USD exchange rates (see Figure 8). In the simplest case, an exponential filter [25] is used to 

isolate the systematic component xk, k=1, …, n, described by the formula: 

,   (4) 

with two transmission coefficient variants: α1 =0.1 and α2 =0.005. 

 

Figure 8. Example of sequential smoothing of a time series with transmission coefficients 

α1 =0.1 and α2 =0.005. 

1 1 1( ) (1 ) ( ), 1,...,k k k k kx y t x x y x k n  − − −= + − = + − =
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The graphs in Figure 8 show that with mild smoothing using α1=0.1 the systematic component 

contains many insignificant inflections, leading to an increase in Type II statistical errors. These "false 

alarms" suggest a change in trend direction (i.e., a change point) when none actually occurs. 

On the other hand, when a more heavily smoothed curve is used (with α2=0.005), the inflections 

in the graph correspond to significant trend changes. However, the delay introduced by the shift in the 

estimated values of the financial instrument leads to lagging decisions, ultimately resulting in poor 

management outcomes. 

The stochastic component of the observation series (see Figure 9) in the context of chaotic 

dynamics is generally non-stationary. This is evident from the heteroscedasticity and the large number 

of outlier observations. A hypothesis test on the stationarity and independence of the noise component 

in the observation series, based on currency instrument price data, is provided in [12]. 

 

Figure 9. Noise component of the time series generated during sequential filtering with 

transmission coefficient α1=0.1. 

To address these contradictions, more advanced dynamic filters are required. One such method is 

bidirectional exponential filtering [25]: 

𝑧̑𝑘−𝑖 = 𝑧̑𝑘−𝑖+1 + 𝛼𝑏(𝑦𝑘−𝑖 − 𝑧̑𝑘−𝑖+1), 𝑖 = 1, . . . , 𝐿,     (5) 

𝑥̑𝑖 = 𝑥̑𝑖−1 + 𝛼𝑓(𝑧̑𝑖 − 𝑥̑𝑖−1), 𝑖 = 𝑘 − 𝐿, . . . , 𝑘,      (6) 

where 𝛼𝑏, 𝛼𝑓 are the backward and forward smoothing coefficients, respectively, and 𝑧̑𝑘 = 𝑦𝑘. This 

approach significantly reduces the lag in forming sequential estimates and improves forecasting 

accuracy by 10%–15%. 

As an illustration, consider an artificial composite data model: 

𝑦𝑘 = 𝐴𝑠𝑖𝑛( 2𝜋𝑘) + 𝐼([𝑘1,  𝑘2]) + 𝑎1𝑦𝑘−1 + 𝛾𝑣𝑘, 𝑘 = 1, . . . , 𝑛.    (7) 

The systematic component of this model includes a sinusoidal term, a step function, and a linear 
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trend. A realization of this model with parameters 𝐴 = 0.75, 𝑘1 = 40, 𝑎𝑛𝑑 𝑘2 = 70  is shown in 

Figure 10. The same figure also presents the results of bidirectional exponential filtering using a sliding 

smoothing window of 60 data points, with filter transmission coefficients, αb=0.5 and αf=0.1. 

 

Figure 10. Example of bidirectional exponential filtering on a composite data model. 

For change point detection, which we continue to define as a change in trend direction, we use an 

algorithm that detects inflection points based on five consecutive points of the smoothed curve, 

following the rules: 

𝑥𝑘 > 𝑥𝑘−1 & 𝑥𝑘−1 > 𝑥(𝑘−2) &𝑥𝑘−2 < 𝑥𝑘−3 < 𝑥𝑘−4,      (8) 

or 

𝑥𝑘 < 𝑥𝑘−1 &𝑥𝑘−1 < 𝑥𝑘−2 &𝑥𝑘−2 > 𝑥𝑘−3 > 𝑥𝑘−4.       (9) 

As shown in Figure 10, this approach achieves near-perfect detection of change points, making it 

highly useful for asset management strategies based on identifying inflection points in the systematic 

component of the observation series. 

3.3. Asset management based on online detection of system component changes in observation series 

Unfortunately, even the best results obtained from local models do not guarantee effective asset 

management when applied to real data. We will illustrate this with an asset management example using 

observation series derived from the EUR/USD currency pair on the Forex market over 1,440 one-

minute intervals (one day). 

Figure 11 shows the result of bidirectional exponential filtering for this data using a smoothing 

window of 60 points, with filter transmission coefficients αb=0.5 and αf=0.1. In this graph, the detected 

changes are represented by local extrema, identified using rules (6-7), and marked with blue (local 

minima) and red (local maxima) points. Despite the quality of the bidirectional filtering, clusters of 

unsystematic local changes are detected, leading to Type II errors ("false alarms") that result in 
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cumulative losses. These clusters are highlighted with gray ellipses. 

 

Figure 11. Example of a game strategy based on the analysis of inflection points in the 

system component, using bidirectional exponential filtering on the EUR/USD price data. 

This negative outcome is primarily due to the fundamental difference between dynamic chaos 

and stochastic processes. The presence of a purely random component 𝑣𝑘, 𝑘 = 1, . . . , 𝑛 in the data 

model (1) ensures the inevitability of false alarms, even after multiple rounds of smoothing. 

Other negative results stem from the systematic delay in detecting changes by two time steps. 

In the context of inertia-free chaotic processes, characteristic of asset price dynamics in capital 

markets [26,27], a two-step delay in decision-making (with a one-minute time discretization) is 

unacceptable. 

It may be possible to use alternative decision-making rules instead of (6-7). For example, change 

points could be identified at the moments when the first finite differences δxk=xk-xk-1 of the process 

𝑥𝑘 , 𝑘 = 1, . . . , 𝑛  change sign. However, even in this case, change point detection is inevitably 

accompanied by a time delay. 

It is worth noting that for chaotic data, the discussed asset management strategy, based on 

detecting changes in the systematic component of the observation series, likely cannot provide 

consistent gains. However, its application in combination with other decision-making technologies, 

such as multi-expert data analysis methodologies [28], may significantly improve the effectiveness of 

speculative trading operations. 

3.4. Change detection in nonstationary processes using multivariate regression analysis algorithms 

Let's explore the problem of detecting changes in multivariate nonstationary processes, using the 

example of online analysis of financial instrument quotes in the Forex market [29–31]. As a 

regularizing factor that permits weak ordering of the dynamic structure of market chaos, we assume 

the presence of long-term correlations between the quoted prices. 

To visually confirm the presence of correlation, Figure 12 presents the EUR/USD exchange rate 

(blue line) alongside the quotes of six other currency pairs (AUD/USD, NZD/USD, EUR/JPY, 

NZD/JPY, AUD/JPY, GBP/USD) that are most correlated with EUR/USD over a 300-day observation 
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period. The statistical similarity of these graphs indicates the presence of correlations between the 

processes. This issue has been discussed in detail in [5], as well as in papers on the co-integration of 

econometric data [32,33]. 

 

Figure 12. Price movements of the EUR/USD currency pair and six other highly correlated 

currency instruments. 

The presence of such correlations allows the use of multivariate regression analysis (MR) for 

early detection of change points. The idea behind MR estimation is to assess the value of a financial 

instrument based on monitoring data from assets correlated with the target instrument. A significant 

discrepancy between this estimate and the current price of the target financial instrument signals a 

change, which is interpreted as either an overvaluation or undervaluation. In such cases, one can expect 

that market mechanisms will soon compensate for this price change, enabling a predictive decision 

regarding the trajectory of the target financial instrument's price. 

The effectiveness of the MR model relies on the following key assumptions: 

• The target instrument is assumed to have a linear relationship with the regressors. 

• The relationships between the target instrument and its regressors are assumed to remain 

stable over time. 

• The noise component is assumed to lack autocorrelation, as the time series is analyzed 

post-smoothing. 

These assumptions underpin the reliability and accuracy of the MR model for detecting and 

interpreting change points in financial time series. 

To formalize the MR approach, let us consider a vector form of model (1) for jointly describing 

the quotes of the target instrument and those of correlated market assets, which act as regressors in the 

statistical analysis of the current situation: 

YRk=XRk+VRk,          (10) 

where YRk=(yR1, yR2, …, yRm)k is the vector of observations, XRk=(xR1, xR2, …, xRm)k, is the 

systematic component vector, and VRk=(νR1, νR2, …, νRm)k, k=1, …, n is the noise component 

vector. 
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The relationship between the regressors and the target instrument can be expressed using a 

traditional linear MR model: 

xk=ŷk=CkYRk+νk, k=1, …, n.       (11) 

The actual computational scheme for MR estimation of the parameters of a nonstationary process 

imposes limitations on the training data volume, constrained by a sliding observation window L 

adjacent to the current time k. Using data from this sliding observation window: 

Y(k-L+1):(k-1)=[YR,(k-L+1):(k-1), y(k-L+1):(k-1)],k=L, …, n,     (12) 

where Y(k-L+1):(k-1)=(Yk-L+1,…, Yk-1), y(k-L+1):(k-1)=(yk-L+1,…, yk-1). 

We estimate the transmission coefficient in the model (11) using the ordinary least squares (OLS) 

method: 

Ĉk=y(k-L+1):(k-1)(YT
(k-L+1):(k-1) YR,(k-L+1):(k-1))-1, k=L, …, n-1.   (13) 

The final OLS estimate of the target instrument's value is: 

x̂k=ĈkYRk, k=L, …, n.         (14) 

This expression provides a sequential MR estimate of the current value of the target instrument 

based on the observed parameters of the correlated market segment. Using the discrepancy between 

the market estimate and the current price, we can construct a change point detection algorithm and a 

corresponding management strategy, as studied in [31]. 

For this purpose, we calculate the difference: 

dk=ŷk-yk, k=1, …, n,         (15) 

which reflects the degree of discrepancy (change) between the current price of the target instrument 

and the market's perception of its real value. When the difference (15) exceeds a critical threshold: 

|dk|>d*, k=1, …, n,         (16) 

a change is detected. This discrepancy signals the presence of a change point as described above. 

Selecting an appropriate threshold is a critical step in change point detection algorithms, as the 

optimal threshold value is highly dependent on the specific task and dataset. In this study, we adopt an 

empirical approach to threshold selection, grounded in an analysis of the effectiveness of change point 

detection across a range of scenarios. 

3.5. Example of solving a proactive management task based on a multivariate regression algorithm for 

detecting change points in nonstationary processes 

As a practical demonstration of early change point detection and the corresponding trading 

strategy based on multivariate regression (MR) valuation of financial instruments, Figure 13 shows a 

centered graph of the USD/CHF currency pair dynamics (bottom) and its smoothed graph (top) over a 

3-day observation period. 

The trading strategy, grounded in adaptive MR valuation, operates as follows: when the absolute 

difference |dk| between the estimated and current value of the financial instrument exceeds a threshold 

d*, a recommendation is made to open a position, depending on the current trend. 
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In Figure 13, the star on the lower graph marks the instrument's value at the moment when an 

upward position recommendation is issued. The diamond corresponds to the price at the moment of 

closing the position, recommended when the graph of |dk| crosses the threshold d* again. Following 

these recommendations yields a profit of approximately 50 pips. 

The simplest structural adaptation of this strategy involves selecting the set of regressors with the 

highest correlation within the sliding observation window (3). Parametric adaptation includes 

determining the size of the sliding window L, the smoothing factor α of the exponential filter (4), the 

threshold value d*, and other parameters. Optimization is conducted via exhaustive search with a 

chosen step size or more computationally efficient methods, such as evolutionary optimization 

techniques, which have shown high effectiveness [34,35]. 

Several factors can lead to errors when using MR algorithms to detect change points: 

(1) The deviation of the working instrument’s price is assessed only within a limited market 

segment and indicates merely the possibility of a relative price movement in a direction that 

compensates for the detected mismatch. However, if a strong systemic trend is present across 

the market, this compensatory price movement might be suppressed by the broader trend. 

(2) Pairwise correlation estimates are stable only over long observation intervals. When using 

estimates from relatively short sliding windows, correlations can become highly variable, 

significantly reducing the quality of MR-based instrument valuation. 

(3) Given the high noise νk, k=1,…n level  in the model (1), it is advisable to use xk, k=1,…n 

smoothed price values rather than the raw quotes when forming the difference signal (15): 

dk=ŷk-xk, k=1,…, n,        (17) 

In the simplest case, the system component xk, k=1,…n is extracted from the mixture (1) using 

an exponential filter, as defined by Eq (4), with a smoothing factor α=0.005–0.03. 

However, this approach introduces a time lag between the smoothed process and the original time 

series. In highly volatile environments, this lag can result in significant losses in management 

effectiveness, as discussed in Section 3.1. 

 

 

Figure 13. Example of a simple control strategy based on the use of MR technology for 

early change point detection. 
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3.6. Detection of change points in nonstationary processes using metric machine learning algorithms 

The use of situational analogs or patterns is common in both machine learning tasks [36–43] and 

manual management techniques for nonstationary processes [44–46]. Many traders, for instance, 

attempt to identify geometric patterns on price charts that precede typical price movements. Well-

known patterns include "wedge", "pennant", "flag", and "head-and-shoulders". However, traders often 

underestimate the unpredictability of chaos, where statistical experience has limited value. The same 

geometric pattern may be followed by either a price rise or fall with equal probability. By "aftereffect", 

we refer to directional changes occurring immediately after the appearance of a segment resembling a 

selected pattern. 

To increase the reliability of case-based decisions, a large retrospective dataset spanning several 

years is necessary. Using non-parametric similarity measures, the frequency of recurring aftereffects 

can be estimated. Various statistical distance measures are employed to assess similarity: Hotelling’s, 

Kolmogorov-Smirnov, ω2-Mises, Wilks, Kullback-Leibler divergence, Pillai's T2
0 trace, and others. 

Let us formalize the task of detecting change points by applying precedent-based forecasting of 

nonstationary random processes. This approach hinges on identifying precedents that precede 

significant change points in retrospective data. Precedents are defined as segments of historical 

observations that are similar to the current situation. 

The current situation refers to the time series observations immediately preceding the present 

moment (3). The window size L for the current situation is selected a priori, based on the inertia of the 

forecasted process. If there is no prior knowledge of this inertia, L should be treated as a parameter to 

be adjusted during model tuning. 

Next, a sliding observation window of length L is used to scan the retrospective data of length N0, 

stored chronologically. At each step, a similarity measure is calculated between the current situation 

and historical data from the sliding window: 

yi-L,i-1=[yi-L,…,yi-1],k=L+1, …, N0.      (18) 

The situation with the highest similarity, i.e., the one that minimizes the discrepancy between the 

current window and the scanning window (18), forms a precedent: 

yW(i*):ρ[yk-L,k-1, yk-L,k-1(i*)]=min, i=1, …, N0-L.    (19) 

The method relies on the hypothesis that process changes following identical situations are 

relatively similar. In other words, the aftereffect of precedent (19) can serve as a basis for forecasting 

the future evolution of the current situation. 

This approach is intuitively clear and likely mirrors how mental forecasts function. To recognize 

a situation, the brain’s neural network identifies stored precedents and formulates predictive control 

based on the analysis of retrospective aftereffects. 

In the one-dimensional case, the most common similarity metric: 

ρ[yk-L,k-1, yk-L,k-1(i)], i=1, …, N0-L,      (20) 

is the root mean square deviation: 

𝜌𝑘 =
1

𝑛
∑ (𝑦𝑘−𝐿,𝑘−1 − 𝑦𝑖−𝐿,𝑖−1))

2𝐿
𝑗=1 , 𝑖 = 𝐿 + 1,𝑁0.    (21) 

The forecast, in this case, corresponds to the aftereffect behind the precedent window (19), i.e., 
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the value from the database offset from the precedent by the forecast interval  

ỹ(k+τ)=y(i*+L+τ).         (22) 

It is clear that relying on the nearest neighbor based on the chosen similarity metric in the context 

of chaotic system dynamics may yield unstable results. Therefore, in a more general case, the forecast 

is based on the averaged aftereffects of a group of ma analogs (i1,…,ima), with the smallest similarity 

metric values ρ[YW(k), YW(i)], i=1, …, N0-L: 

𝑦̃(𝑘 + 𝜏) =
1

𝑚𝑎
∑ 𝑦(𝑖𝑗

∗ + 𝐿 + 𝜏)𝑚
𝑗=1 .       (23) 

A drawback of this approach is that it treats all analogs equally, regardless of their similarity to 

the current situation YW(k). Thus, it is more appropriate to use a weighted sum of aftereffects, with 

weights proportional to the degree of similarity. For precedent (19), the weight is set to one ω1=1, and 

for other analogs, the weights are determined as follows: ωj=ρ1/ρj, j=2,…,ma. Then the weighted 

forecast value is determined by the following relationship: 

𝑦 (𝑘 + 𝜏) =
1

𝑆(𝑚𝑎)
∑ 𝜔𝑗𝑦(𝑖𝑗

∗ + 𝐿)𝑚
𝑗=1 ,       (24) 

where 𝑆(𝑚𝑎) = ∑ 𝜔𝑗
𝑚𝑎
𝑗=1 . 

From the machine learning perspective, this approach represents a forecasting solution using 

weak metric classifiers [47,48]. The low efficiency of these classifiers is attributed to the nature of 

time series data, which includes chaotic system components and nonstationary random noise. 

3.7. Implementation examples of precedent technology for detecting change points in non-stationary 

processes 

As a simple, illustrative example of implementing precedent technology to detect change points, 

let us consider the task of forecasting the price movements of a currency instrument using a quadratic 

classifier. An example of selecting analogous situations is shown in Figure 14. 

 

Figure 14. Example of the current situation and window-analogs on the overall time chart 

of the smoothed process. 

τ
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The vertical line separates the retrospective data zone, which is used to generate the precedent 

forecast, from the operational zone, where the algorithm is tested. The start and end points of the 

intervals corresponding to the current situation and its analogs are marked with stars and crosses, 

respectively, while the forecast values are indicated by diamonds. 

As seen in the figure, the first analog shows an upward trend, but it has already peaked and is 

showing signs of decline. The second and third analogs exhibit an unstable lateral trend. In this case, 

it is advisable to refrain from making predictive decisions, but if absolutely necessary, one might 

conclude that a lateral trend is emerging. 

The further development of this approach involves exploring the possibility of constructing an 

algorithm for forecasting non-stationary processes for multivariate correlated observation series. In 

this case, the Mahalanobis distance between the current state matrix: 

Yc(k)={yij}, i=k,k-1,…,k-L, j=1,…,m, k=L+1,…,n,    (25) 

and the scanning window matrix: 

Ys(k,l)={yij}, i=l,l-1,...,l-L, j=1,…,m, l=L+1,…,k-L,     (26) 

is given by the following relation: 

𝑑𝑐𝑠
𝑀(𝑘, 𝑙) = (√(𝑌𝑐 − 𝐸𝑐)

𝑇𝑃𝑐𝑠(𝑌𝑐 − 𝐸𝑐))𝑙,𝑠,      (27) 

where Ec=Ȳc(k), Es=Ȳs(k,l) are the mean vectors for matrices (25) and (26), and 

Pcs=Pcs(l,k)=cov(Yc,Ys)l,k is the covariance matrix between the datasets. 

Note that the Mahalanobis distance defined in (27) is closely related to Hotelling's T²-distribution, 

which is widely used in multivariate statistical analysis, such as in multivariate analysis of variance 

(MANOVA) and Fisher's linear discriminant analysis in supervised machine learning. When the 

covariance matrix is the identity matrix, the Mahalanobis measure reduces to the standard Euclidean 

distance. In the case of a diagonal covariance matrix, the Mahalanobis metric transforms into a 

normalized Euclidean distance. The Mahalanobis distance between data points is equivalent to 

applying the maximum likelihood principle in classification. 

In multivariate analysis, any hypothesis may correspond to a large set of possible alternatives, 

which makes it challenging to find criteria with optimal properties. As a result, analogs to Fisher's F-

statistic include various numerical characteristics of matrices U=S1S2
-1 or V=S1(S1+S2)-1, where S1, 

S2 are sample covariance matrices of the examined samples. Let the eigenvalues of matrix U be λ1,…, 

λm, and those of matrix V be μ1,…, μm. Of particular interest for constructing multivariate forecasts 

of correlated data using information metrics are statistics like Hotelling's trace (or Lawley-Hotelling 

trace) 𝑇0
2 = 𝑡𝑟𝑎𝑐𝑒(𝑈) = ∑ 𝜆𝑖

𝑚
𝑖=1  , Pillai's trace 𝑡𝑟𝑎𝑐𝑒(𝑉) = ∑ 𝜇𝑖

𝑚
𝑖=1  , Roy's largest (or smallest) 

characteristic root λmax(U), λmin(U), λmax(V), λmin(V), and Wilks' lambda statistic 𝑊 = det(𝑈) =

∏ 𝜆𝑖 =
det (𝑆1)

det (𝑆2)

𝑚
𝑖=1 . 

The distributions of these statistics for various null hypotheses are extremely complex. In practice, 

their distributions are often approximated using the F-distribution with specially chosen degrees of 

freedom. 

All of these statistics can be interpreted as measures of proximity and used to find analogs for 

current situations in the task of forecasting non-stationary processes. An analysis of the applicability 

of these multivariate statistical metrics for forecasting price series is presented in [39]. 
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4. Discussion and conclusions 

The problem of detecting changes in the properties of time series, also known as the "change 

point" problem, is of great practical importance for numerous applications. However, there is no 

universal solution to this problem, and it depends heavily on both the structure of the initial data and 

the technological constraints imposed by the specific features of the task. 

Much of the existing literature on this problem, whether explicitly or implicitly, relies on the Wold 

decomposition model for data representation. Even studies claiming to analyze non-stationary time 

series continue to appeal to the concept of probability density, the estimation of which is impossible in 

such contexts. Even less convincing are references to abstract theoretical models, such as the 

Kolmogorov-Chapman equation or other a priori solutions that impose rigid constraints and are poorly 

compatible with real-world tasks. 

The challenge of analyzing non-stationary data has become more acute with the realization that 

many observed processes in unstable environments are chaotic in nature. This includes fields such as 

turbulent hydrodynamics, gas dynamics, plasma stabilization, and the pricing of assets in electronic 

capital markets. These processes exhibit structural instability to small perturbations, consistent with 

deterministic chaos models. If, in addition to dynamic instability, the environment also contains 

random fluctuations, the resulting unstable process falls into the category of stochastic chaos, which 

has yet to be adequately mathematically described. 

It should be noted that chaotic processes can also be interpreted as non-stationary random 

processes. However, this approach does not simplify the task of detecting change points in the general 

case. It seems likely that a general solution does not exist due to the high level of uncertainty inherent 

in the problem. 

A natural way to narrow the scope of solvable problems is to classify them, as shown in Figure 1. 

This paper presents examples of posterior solutions to the change point problem, specifically offline 

segmentation tasks, which allow for clear formalization and constructive solutions under various sets 

of a priori constraints. On the other hand, moving to online change point detection in non-stationary 

and chaotic processes presents a number of challenging requirements, such as the ambiguity of 

identifying the systematic component of the observation series used to form timely change point 

decisions, and the trade-off between smoothing quality and bias in sequentially generated estimates. 

The problem of early change point detection is particularly difficult in inertia-free immaterial 

environments, where the dynamics are driven by a large number of uncontrollable latent factors and a 

high level of dynamic instability. 

At the same time, the practical need for efficient solutions to the change point problem in non-

stationary processes calls for constructive computational algorithms. It is proposed that modern 

computing technologies be applied in the context of unstable and non-stationary dynamic observation 

series. Numerical experiments could be used to assess their suitability for solving the change point 

problem, which is critically examined in this work. 

Specifically, approaches based on multivariate regression analysis and machine learning metric 

algorithms are discussed. However, these methods are not universal, and the diverse nature of chaos 

can generate situations where the proposed algorithms are ineffective. 

Further development of change point detection algorithms can be divided into several directions. 

One such direction involves the use of neural network technologies, where hopes for an effective 

solution are tied to training artificial neural networks on large sets of retrospective data. However, 
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building a neural network capable of real-time retraining during the infinite dynamic variations of 

chaos seems unpromising, as networks train slowly even with modern high-performance computers. 

On the other hand, there is an unverified hypothesis that strongly pronounced change points may 

be preceded by systematic deformations in the fine structure of the data. If this hypothesis is correct, a 

neural network might be able to identify such deformations during long-term training and use them as 

signal indicators for predicting change points. 

Another direction for improving change point detection involves the use of multi-expert decision 

systems (MES). The concept of such systems is discussed in [28]. The main challenge in implementing 

MES lies in developing algorithms for jointly processing the conclusions of software experts to 

improve the reliability of terminal decisions. Conflict and compromise game theory techniques [49–

51] may be used in this case. Ensemble methods used in machine learning tasks are of particular 

interest [52–54]. 

Our findings emphasize the critical need to tailor detection models to the unique characteristics 

of chaotic data. By integrating machine learning and multivariate approaches, we can develop 

forecasting models that are both robust and adaptive. 

This work also opens several promising directions for future research: 

• Developing more sophisticated algorithms to isolate the systematic component in non-

stationary time series. 

• Exploring the impact of various model parameters, such as the size of the sliding window and 

the detection threshold, on the accuracy and reliability of change point detection algorithms. 

• Applying the proposed methods to other non-stationary time series, including climate data, 

seismic activity, and medical time series. 

• Designing comprehensive systems that combine change point detection algorithms with other 

decision-making tools, such as multi-agent systems or machine learning-based frameworks. 

These avenues offer the potential to significantly enhance the effectiveness and applicability of 

change point detection methods in both financial and broader scientific contexts. 
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