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1. Introduction

A semi-symmetric connection is a linear connection on a Riemannian manifold (M, g) whose torsion
tensor T is of the form

T (ζ1, ζ2) = φ(ζ2)ζ1 − φ(ζ1)ζ2,

where φ is a 1-form defined by φ(ζ1) = g(ζ1,U) and U is a vector field on M [11].
If ∇ is the Levi-Civita connection of a Riemannian manifold (M, g), then the semi-symmetric metric

connection ∇̃ is defined by
∇̃ζ1ζ2 = ∇ζ1ζ2 + φ(ζ2)ζ1 − g(ζ1, ζ2)U, (1.1)

where ζ1, ζ2,U are vector fields on M [20]. Let R̃ and R denote Riemannian curvature tensor fields
of ∇̃ and ∇, respectively. Then from (1.1), it is easy to see that

R̃(ζ1, ζ2)ζ3 = R(ζ1, ζ2)ζ3 − α(ζ2, ζ3)ζ1 + α(ζ1, ζ3)ζ2 (1.2)
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−g(ζ2, ζ3)Bζ1 + g(ζ1, ζ3)Bζ2,

where
α(ζ1, ζ2) = g(Bζ1, ζ2) = (∇ζ1φ)ζ2 − φ(ζ1)φ(ζ2) +

1
2

g(ζ1, ζ2). (1.3)

Denote by R̃ic and Ric the Ricci tensor fields of the connections ∇̃ and ∇, respectively. Then
from (1.2), it is easy to see that

R̃ic = Ric − (n − 2)α − (trα)g, (see [20]). (1.4)

The semi-symmetric non-metric connection
◦

∇̃ is defined by

◦

∇̃ζ1ζ2 = ∇ζ1ζ2 + φ(ζ2)ζ1, (1.5)

where ζ1, ζ2 are vector fields on M and ∇ is the Levi-Civita connection of a Riemannian manifold

(M, g) [1]. Let
◦

R̃ and R denote the Riemannian curvature tensor fields of
◦

∇̃ and ∇, respectively. Then
from (1.5), it is easy to see that

◦

R̃(ζ1, ζ2)ζ3 = R(ζ1, ζ2)ζ3 − σ(ζ2, ζ3)ζ1 + σ(ζ1, ζ3)ζ2, (1.6)

where
σ(ζ1, ζ2) = g(Bζ1, ζ2) = (∇ζ1φ)ζ2 − φ(ζ1)φ(ζ2). (1.7)

Denote by
◦

R̃ic and Ric the Ricci tensor fields of the connections
◦

∇̃ and ∇, respectively. Then from (1.6),
we have

◦

R̃ic = Ric − (n − 1)σ, (see [1]). (1.8)

Let (M, g) be a Riemannian manifold. R. S. Hamilton [12] presented the Ricci flow for the first time
as

∂
∂t g(t) = −2Ric(g(t)).

The Ricci flow is an evolution equation for Riemannian metrics. Ricci solitons correspond to self-
similar solutions of Ricci flow. In the recent years, the geometry of Ricci solitons has been studied by
many geometers. See, for example, [3, 8, 15, 17].

Another generalization of Ricci soliton is η-Ricci-Bourguignon soliton. An η-Ricci-Bourguignon
soliton (see [18]) is defined by

1
2

£λg + Ric = (α∗ + βτ)g + γη ⊗ η, (1.9)

where λ is the potantial vector field, η is a 1-form on M, £λg denotes the Lie derivative of g in the
direction of λ, Ric is the Ricci curvature, τ is scalar curvature and α∗, β, γ are real numbers. η-Ricci-
Bourguignon solitons on submanifolds were studied in [5].

In the present study, we consider some properties of η-Ricci-Bourguignon soliton on Riemannian
manifolds equipped with a semi-symmetric metric connection and semi-symmetric non-metric
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connection when the potential vector field is torse-forming with respect to a semi-symmetric metric
connection and semi-symmetric non-metric connection. As recent studies on torse-forming vector
fields see [4, 14, 15].

The paper is organized as follows: In Section 2, η-Ricci-Bourguignon solitons on Riemannian
manifolds with a semi-symmetric metric connection are studied. In Section 3, η-Ricci-Bourguignon
solitons on Riemannian manifolds endowed with a semi-symmetric non-metric connection is
considered.

2. η-Ricci-Bourguignon solitons on Riemannian manifolds equipped with a semi-symmetric
metric connection

In this section, we consider Ricci solitons on Riemannian manifolds endowed with a semi-
symmetric metric connection.

The Euclidean 3-space, hyperbolic 3-space and Minkowski motion group are included in the
following 3-parameter family of Riemannian homogeneous spaces (R3, g

[
µ1,µ2, µ3

]
) with left invariant

metric
g
[
µ1,µ2, µ3

]
= e−2µ1tdx2 + e−2µ2tdy2 + µ2

3dt2.

Here µ1,µ2 are real constants and µ3 is a positive constant.
The Lie group G(µ1,µ2, µ3) can be realised as a closed subgroup of affine transformation group

GL3R n R
3 of R3.

The Levi-Civita connection ∇ of G(µ1,µ2, µ3) is given by the following formula:

∇E1 E1 =
µ1

µ3
E3, ∇E1 E2 = 0, ∇E1 E3 = −

µ1

µ3
E1,

∇E2 E1 = 0, ∇E2 E2 =
µ2

µ3
E3, ∇E2 E3 = −

µ2

µ3
E2, (2.1)

∇E3 E1 = ∇E3 E2 = ∇E3 E3 = 0.

The Ricci tensor field Ric of G is given by

R11 = −
µ1(µ1 + µ2)

µ2
3

, R22 = −
µ2(µ1 + µ2)

µ2
3

,R33 = −
µ2

1 + µ2
2

µ2
3

and the scalar curvature τ of G is given by

τ = −
2
µ2

3

(
µ2

1 + µ2
2 + µ1µ2

)
. (see [13]).

Using (2.1), the Levi-Civita connection ∇ of G(−1, 1, 1) is given by the following formula:

∇E1 E1 = −E3, ∇E1 E2 = 0, ∇E1 E3 = E1,

∇E2 E1 = 0, ∇E2 E2 = E3, ∇E2 E3 = −E2,

∇E3 E1 = ∇E3 E2 = ∇E3 E3 = 0.

Then we can state the following example:
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Example 1. Assume that λ = 2
√

2E2+4E3 is the potential vector field. If η is the 1-form corresponding
to the vector field P =

√
2E2 + 2E3, then G(−1, 1, 1) is an η-Ricci-Bourguignon soliton with respect to

a semi-symmetric metric connection.

Using the Eq (1.1), we get the Lie derivative as follows

(£λg)(ζ1, ζ2) = g(∇̃ζ1λ, ζ2) + g(ζ1, ∇̃ζ2λ) − 2φ(λ)g(ζ1, ζ2) (2.2)
+g(ζ1, λ)φ(ζ2) + g(ζ2, λ)φ(ζ1).

Therefore, using Eq (2.2), the soliton Eq (1.9) with respect to a semi-symmetric metric connection can
be written as

1
2

(
g(∇̃ζ1λ, ζ2) + g(ζ1, ∇̃ζ2λ)

)
− φ(λ)g(ζ1, ζ2) (2.3)

+
1
2

(g(ζ1, λ)φ(ζ2) + g(ζ2, λ)φ(ζ1)) + Ric(ζ1, ζ2)

= (α∗ + βτ)g(ζ1, ζ2) + γη(ζ1)η(ζ2).

A vector field λ on a Riemannian manifold (M, g) is called torse-forming [19], if

∇ζ1λ = cζ1 +$(ζ1)λ,

where c is a smooth function, $ is a 1-form and ∇ is the Levi-Civita connection of g.
Specifically, if $ = 0, then λ is called a concircular vector field [10] and if c = 0, then λ is called a

recurrent vector field [17].
A non-flat Riemannian manifold (M, g) (n ≥ 3) is called a hyper-generalized quasi-Einstein

manifold [16], if its Ricci tensor field is not likewise zero and provides

Ric = b1g + b2ω1 ⊗ ω1 + b3 (ω1 ⊗ ω2 + ω2 ⊗ ω1) + b4 (ω1 ⊗ ω3 + ω3 ⊗ ω1) ,

where b1, b2, b3 and b4 are functions and ω1, ω2 and ω3 are non-zero 1-forms. If b4 = 0, then M is
called a generalized quasi-Einstein manifold in the sense of Chaki [7]. If b3 = b4 = 0, then M is called
a quasi-Einstein manifold [6]. Suppose that b2 = b3 = b4 = 0, then (M, g) is an Einstein manifold [2].
The functions b1, b2, b3 and b4 are called associated functions.

A non-flat Riemannian manifold (M, g) (n ≥ 3) is called a generalized quasi-Einstein manifold in
the sense of De and Ghosh [9], if its Ricci tensor field is not identically zero and satisfies

Ric = b1g + b2ω1 ⊗ ω1 + b3ω2 ⊗ ω2,

where b1, b2 and b3 are functions. The functions b1, b2 and b3 are called associated functions.
Now let (M, g) be a Riemannian manifold equipped with a semi-symmetric metric connection

and λ a torse-forming potential vector field with respect to a semi-symmetric metric connection on
M. Then ∇̃ζ1λ = cζ1 +$(ζ1)λ. So by (2.3), we can write

Ric(ζ1, ζ2) = (α∗ + βτ − c + φ(λ)) g(ζ1, ζ2)

−
1
2
{g(ζ2, λ)$(ζ1) + g(ζ1, λ)$(ζ2)}

−
1
2
{g(ζ1, λ)φ(ζ2) + g(ζ2, λ)φ(ζ1)} + γη(ζ1)η(ζ2).

Thus, the following theorem can be stated:
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Theorem 1. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric metric connection
and λ a torse-forming potential vector field with respect to a semi-symmetric metric connection on M.
Then (M, g) is an η-Ricci-Bourguignon soliton if and only if

Ric(ζ1, ζ2) = (α∗ + βτ − c + φ(λ)) g(ζ1, ζ2) (2.4)

−
1
2
{g(ζ2, λ)$(ζ1) + g(ζ1, λ)$(ζ2)}

−
1
2
{g(ζ1, λ)φ(ζ2) + g(ζ2, λ)φ(ζ1)} + γη(ζ1)η(ζ2).

If λ is a concircular potential vector field with respect to a semi-symmetric metric connection, then
the following corollaries can be stated:

Corollary 1. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric metric connection
and λ a concircular potential vector field with respect to a semi-symmetric metric connection on M.
If (M, g) is an η-Ricci-Bourguignon soliton and φ is the g dual of λ, then M is a generalized quasi
Einstein manifold in the sense of De and Ghosh with associated functions

(
α∗ + βτ − c + ‖λ‖2

)
,−1

and γ.

Corollary 2. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric metric connection
and λ a concircular potential vector field with respect to a semi-symmetric metric connection on M.
If (M, g) is an η-Ricci-Bourguignon soliton and η is the g dual of λ, then M is a generalized quasi
Einstein manifold in the sense of Chaki with associated functions (α∗ + βτ − c + φ(λ)) , γ and −1

2 .

Now assume that λ is a torse-forming potential vector field and the 1-form η is the g-dual of λ. Then
from (2.4), we have

Ric(ζ1, ζ2) = (α∗ + βτ − c + φ(λ)) g(ζ1, ζ2)

−
1
2
{η(ζ1)$(ζ2) + η(ζ2)$(ζ1)}

−
1
2
{η(ζ1)φ(ζ2) + η(ζ2)φ(ζ1)} + γη(ζ1)η(ζ2).

Then we obtain:

Theorem 2. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric metric connection
and λ a torse-forming potential vector field with respect to a semi-symmetric metric connection on M.
Suppose that the 1-form η is the g dual of λ. Then (M, g) is an η-Ricci-Bourguignon soliton if and only if
M is a hyper-generalized quasi-Einstein manifold with associated functions (α∗ + βτ − c + φ(λ)) , γ,−1

2
and −1

2 .

Using (1.4), the Eq (2.4) can be written as

R̃ic(ζ1, ζ2) = (α∗ + βτ − c + φ(λ) − trα) g(ζ1, ζ2)

−
1
2
{g(ζ1, λ)$(ζ2) + g(ζ2, λ)$(ζ1)} −

1
2
{g(ζ1, λ)φ(ζ2) + g(ζ2, λ)φ(ζ1)}

+ γη(ζ1)η(ζ2) − (n − 2)α(ζ1, ζ2). (2.5)

Thus, the following corollary can be expressed:
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Corollary 3. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric metric connection
and λ a torse-forming potential vector field with respect to a semi-symmetric metric connection on M.
Then (M, g) is an η-Ricci-Bourguignon soliton if and only if the Ricci tensor field of a semi-symmetric
metric connection is of the form (2.5).

Now assume that U is a parallel unit vector field with respect to the Levi-Civita connection,
i.e., ∇U = 0 and ‖U‖ = 1. Then

(∇ζ1φ)ζ2 = ∇ζ1φ(ζ2) − φ(∇ζ1ζ2) = 0.

So from (1.3), α(ζ1, ζ2) = −φ(ζ1)φ(ζ2) + 1
2g(ζ1, ζ2) and trα = n

2 − 1. Thus by (2.5), we have

R̃ic(ζ1, ζ2) = (α∗ + βτ − c + φ(λ) − n + 2)g(ζ1, ζ2)

−
1
2
{g(ζ1, λ)$(ζ2) + g(ζ2, λ)$(ζ1)} −

1
2
{g(ζ1, λ)φ(ζ2) + g(ζ2, λ)φ(ζ1)}

+γη(ζ1)η(ζ2) + (n − 2) φ(ζ1)φ(ζ2).

If λ is a concircular potential vector field and φ is the g dual of λ, then

R̃ic(ζ1, ζ2) = (α∗ + βτ − c + ‖λ‖2 − n + 2)g(ζ1, ζ2)

+γη(ζ1)η(ζ2) + (n − 3) φ(ζ1)φ(ζ2).

Hence we have:

Theorem 3. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric metric connection,
U a parallel unit vector field with respect to the Levi-Civita connection ∇ and λ a concircular potential
vector field with respect to a semi-symmetric metric connection on M. Suppose that the 1-form φ is
the g-dual of λ. Then (M, g) is an η-Ricci-Bourguignon soliton if and only if M is a generalized quasi-
Einstein manifold in the sense of De and Ghosh with respect to a semi-symmetric metric connection
with associated functions

(
α∗ + βτ − c + ‖λ‖2 − n + 2

)
, γ, (n − 3) .

3. η-Ricci-Bourguignon on Riemannian manifolds equipped with a semi-symmetric non-metric
connection

In this section, we consider Ricci solitons on Riemannian manifolds endowed with a semi-
symmetric non-metric connection.

Using (2.1), the Levi-Civita connection ∇ of G(−1,−1, 1) is given by the following formula:

∇E1 E1 = −E3, ∇E1 E2 = 0, ∇E1 E3 = E1,

∇E2 E1 = 0, ∇E2 E2 = −E3, ∇E2 E3 = E2,

∇E3 E1 = ∇E3 E2 = ∇E3 E3 = 0.

Then we can state the following example:

AIMS Mathematics Volume 8, Issue 5, 11943–11952.



11949

Example 2. Assume that λ = 2E1−3E2+E3 is the potential vector field. If η is the 1-form corresponding
to the vector field P = 2E3, then G(−1,−1, 1) is an η-Ricci-Bourguignon soliton with respect to a semi-
symmetric non-metric connection.

Using the Eq (1.5), we get the Lie derivative as follows

(£λg)(ζ1, ζ2) = g(
◦

∇̃ζ1λ, ζ2) + g(ζ1,
◦

∇̃ζ2λ) − 2φ(λ)g(ζ1, ζ2). (3.1)

Therefore, using Eq (3.1), the soliton Eq (1.9) with respect to a semi-symmetric non-metric connection
can be written as

1
2

(
g(
◦

∇̃ζ1λ, ζ2) + g(ζ1,
◦

∇̃ζ2λ)
)

(3.2)

+Ric(ζ1, ζ2) = (α∗ + βτ + φ(λ))g(ζ1, ζ2) + γη(ζ1)η(ζ2).

Let us suppose that U is a parallel unit vector field with respect to the Levi-Civita connection ∇.
Using (1.5), we get

◦

∇̃ζ1U = ζ1.

Thus we have:

Proposition 1. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric non-metric
connection. If U is a parallel unit vector field with respect to the Levi-Civita connection ∇, then U
is a torse-forming potential vector field with respect to a semi-symmetric non-metric connection of the

form
◦

∇̃ζ1U = ζ1.

Now let (M, g) be a Riemannian manifold endowed with a semi-symmetric non-metric connection
and λ a torse-forming potential vector field with respect to a semi-symmetric non-metric connection

on M. Then
◦

∇̃ζ1λ = cζ1 +$(ζ1)λ. So by (3.2), we can write

Ric(ζ1, ζ2) = (α∗ + βτ − c + φ(λ)) g(ζ1, ζ2) (3.3)

−
1
2
{g(ζ2, λ)$(ζ1) + g(ζ1, λ)$(ζ2)} + γη(ζ1)η(ζ2).

Thus, the following theorem can be expressed:

Theorem 4. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric non-metric
connection and λ a torse-forming potential vector field with respect a semi-symmetric non-metric
connection on M. Then (M, g) is an η-Ricci-Bourguignon soliton if and only if the Ricci tensor field of
the Levi-Civita connection is of the form (3.3).

If λ is a concircular potential vector field with respect a semi-symmetric non-metric connection,
then the following corollary can be stated:

Corollary 4. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric non-metric
connection and λ a concircular potential vector field with respect to a semi-symmetric non-metric
connection on M. If (M, g) is an η-Ricci-Bourguignon soliton, then M is a generalized quasi-Einstein
manifold in the sense of De and Ghosh with associated functions (α∗ + βτ − c + φ(λ)) and γ.
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Now let (M, g) be a Riemannian manifold endowed with a semi-symmetric non-metric connection
and λ a torse-forming potential vector field with respect to a semi-symmetric non-metric connection
on M. Then (M, g) is an η-Ricci-Bourguignon soliton and η is the g dual of λ if and only if

Ric(ζ1, ζ2) = (α∗ + βτ − c + φ(λ)) g(ζ1, ζ2) (3.4)

−
1
2
{η(ζ2)$(ζ1) + η(ζ1)$(ζ2)} + γη(ζ1)η(ζ2).

Thus, the following theorem can be stated:

Theorem 5. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric non-metric
connection and λ a torse-forming potential vector field with respect to a semi-symmetric non-metric
connection on M. Suppose that the 1-form η is the g dual of λ. Then (M, g) is an η-Ricci-Bourguignon
soliton if and only if M is a hyper-generalized quasi-Einstein manifold with associated functions
(α∗ + βτ − c + φ(λ)) , γ,−1

2 and 0.

Using (1.8), the Eq (3.3) can be written as

◦

R̃ic(ζ1, ζ2) = (α∗ + βτ − c + φ(λ)) g(ζ1, ζ2)

−
1
2
{g(ζ1, λ)$(ζ2) + g(ζ2, λ)$(ζ1)} + γη(ζ1)η(ζ2) − (n − 1)σ(ζ1, ζ2). (3.5)

Now assume that U is a parallel unit vector field with respect to the Levi-Civita connection,
i.e., ∇U = 0 and ‖U‖ = 1. Then

(∇ζ1φ)ζ2 = ∇ζ1φ(ζ2) − φ(∇ζ1ζ2) = 0.

So from (1.7), σ(ζ1, ζ2) = −φ(ζ1)φ(ζ2). Thus by (3.5), we have

◦

R̃ic(ζ1, ζ2) = (α∗ + βτ − c + φ(λ))g(ζ1, ζ2)

−
1
2
{g(ζ1, λ)$(ζ2) + g(ζ2, λ)$(ζ1)} + γη(ζ1)η(ζ2) + (n − 1) φ(ζ1)φ(ζ2).

If λ is a concircular potential vector field , then

◦

R̃ic(ζ1, ζ2) = (α∗ + βτ − c + φ(λ))g(ζ1, ζ2)

+γη(ζ1)η(ζ2) + (n − 1) φ(ζ1)φ(ζ2).

Hence we get:

Theorem 6. Let (M, g) be a Riemannian manifold endowed with a semi-symmetric non-metric
connection, U a parallel unit vector field with respect to the Levi-Civita connection ∇ and λ a
concircular potential vector field with respect a semi-symmetric non-metric connection on M. Then
(M, g) is an η-Ricci-Bourguignon soliton if and only if M is a generalized quasi-Einstein manifold in
the sense of De and Ghosh with respect to a semi-symmetric non-metric connection with associated
functions (α∗ + βτ − c + φ(λ)) , γ and (n − 1) .
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