Research article

The new Topp-Leone exponentied exponential model for modeling financial data

  • Received: 11 July 2023 Revised: 11 October 2023 Accepted: 30 November 2023 Published: 21 March 2024
  • We proposed in this article a new three-parameter distribution, which is referred as the Topp-Leone exponentiated exponential model is proposed. It is used in modeling claim and risk data applied in actuarial and insurance studies. The probability density function of the suggested distribution can be unimodel and positively skewed. Different distributional and mathematical properties of the TL-EE model were provided. Furthermore, we established a maximum likelihood estimation method for estimating the unknown parameters involved in the model, and some actuarial measures were calculated. Also, the potential of these actuarial statistics were provided via numerical simulation experiments. Finally, two real datasets of insurance losses were analyzed to prove the performance and superiority of the suggested model among all its competitors distributions.

    Citation: Hassan Alsuhabi. The new Topp-Leone exponentied exponential model for modeling financial data[J]. Mathematical Modelling and Control, 2024, 4(1): 44-63. doi: 10.3934/mmc.2024005

    Related Papers:

    [1] Qian Lin, Yan Zhu . Unicyclic graphs with extremal exponential Randić index. Mathematical Modelling and Control, 2021, 1(3): 164-171. doi: 10.3934/mmc.2021015
    [2] Ihtisham Ul Haq, Nigar Ali, Hijaz Ahmad . Analysis of a chaotic system using fractal-fractional derivatives with exponential decay type kernels. Mathematical Modelling and Control, 2022, 2(4): 185-199. doi: 10.3934/mmc.2022019
    [3] Shipeng Li . Impulsive control for stationary oscillation of nonlinear delay systems and applications. Mathematical Modelling and Control, 2023, 3(4): 267-277. doi: 10.3934/mmc.2023023
    [4] Xingwen Liu, Shouming Zhong . Stability analysis of delayed switched cascade nonlinear systems with uniform switching signals. Mathematical Modelling and Control, 2021, 1(2): 90-101. doi: 10.3934/mmc.2021007
    [5] Pshtiwan Othman Mohammed . Some positive results for exponential-kernel difference operators of Riemann-Liouville type. Mathematical Modelling and Control, 2024, 4(1): 133-140. doi: 10.3934/mmc.2024012
    [6] Hongwei Zheng, Yujuan Tian . Exponential stability of time-delay systems with highly nonlinear impulses involving delays. Mathematical Modelling and Control, 2025, 5(1): 103-120. doi: 10.3934/mmc.2025008
    [7] Saravanan Shanmugam, R. Vadivel, S. Sabarathinam, P. Hammachukiattikul, Nallappan Gunasekaran . Enhancing synchronization criteria for fractional-order chaotic neural networks via intermittent control: an extended dissipativity approach. Mathematical Modelling and Control, 2025, 5(1): 31-47. doi: 10.3934/mmc.2025003
    [8] Hongyu Ma, Dadong Tian, Mei Li, Chao Zhang . Reachable set estimation for 2-D switched nonlinear positive systems with impulsive effects and bounded disturbances described by the Roesser model. Mathematical Modelling and Control, 2024, 4(2): 152-162. doi: 10.3934/mmc.2024014
    [9] Gani Stamov, Ekaterina Gospodinova, Ivanka Stamova . Practical exponential stability with respect to $ h- $manifolds of discontinuous delayed Cohen–Grossberg neural networks with variable impulsive perturbations. Mathematical Modelling and Control, 2021, 1(1): 26-34. doi: 10.3934/mmc.2021003
    [10] Yuchen Yuan, Ying Fang . Optimal reinsurance design under the VaR risk measure and asymmetric information. Mathematical Modelling and Control, 2022, 2(4): 165-175. doi: 10.3934/mmc.2022017
  • We proposed in this article a new three-parameter distribution, which is referred as the Topp-Leone exponentiated exponential model is proposed. It is used in modeling claim and risk data applied in actuarial and insurance studies. The probability density function of the suggested distribution can be unimodel and positively skewed. Different distributional and mathematical properties of the TL-EE model were provided. Furthermore, we established a maximum likelihood estimation method for estimating the unknown parameters involved in the model, and some actuarial measures were calculated. Also, the potential of these actuarial statistics were provided via numerical simulation experiments. Finally, two real datasets of insurance losses were analyzed to prove the performance and superiority of the suggested model among all its competitors distributions.



    Statistical distributions are a fundamental tool for understanding and predicting phenomena in the real world. Many researchers have been interested in developing a novel family of, which have more efficient in modeling numerous kinds of skewed data in different fields, such as environmental, biomedical, finance, and insurance (for example, see Meraou and raqab [1], Hashemi et al. [2], and Abdelghani et al. [3]). For further information on analyzing experimental data, one may refer to Naderi et al. [4], Nadarajah [5], Chakraborty et al. [6], and the references cited therein.

    Various statistical distributions have been considered in this context and in the last decades. These new models are generated using various methods, like adding one or more parameters to the already existing model, and it provides great pliancy in fitting asymmetric data in practice. For more information, on may refer to some recently generated distributions, namely, the new version of the beta power transformed family for [7], Marshal-Olkin generated family for [8], alpha power transformed for [9], extended alpha power transformed family for [10], Kumaraswamy Marshal-Olkin family for [11], bivariate Kavya-Manoharan transformation family for [12], new hyperbolic sine-generator for [13], and Kavya-Manoharan Weibull-G family for[14].

    Choosing the best statistical distribution for modeling data is a critical and challenging task. There are situations where the modeled probability distributions fail to choose the best fit to the different types of datasets, precisely in risk measurement, economic, financial, actuarial sciences, and insurance losses, there is no claim since of the heavier tails. Indeed, this is a desirable case for the benefit of insurance companies. Some record values from numerous areas such as insurance, actuarial sciences, and economics, exist with observations far from the data's mean. Outliers or heavier tails can cause this. Classical distributions fail to model this type of dataset. Thus, heavy-tailed distributions are needed to describe the datasets appropriately. Heavy-tailed distributions available in the literature are: heavy-tailed log-logistic distribution by [15], heavy-tailed beta-power transformed Weibull distribution by [16], alpha power inverse Weibull distribution by [17], and a heavy-tailed and over dispersed collective risk model by [18]. For more details, see [19,20,21,22,23,24,25,26]. An approach to modeling the number of claims, in this case, is to use the Topp-Leone generated (TL-G) family of distributions. Recently, [27] derived this new version of the generation family. Its cumulative distribution function (CDF) can be expressed as

    G(y;η,λ)=(1(1H(y;η))2)λ,yR,λ>0. (1.1)

    The associated probability density function (PDF) of TL-G is given by

    g(y;η,λ)=2λh(y;η)(1H(y;η))(1(1H(y;η))2)λ1, (1.2)

    where h(y;η) and H(y;η) represent PDF and CDF of the parent model. In the literature, The TL-G family has been studied by different authors, for example the TL Weibull distribution has been considered by [28], which he takes the Weibull distribution baseline distribution and studying different statistical properties. [29] has proposed alpha power inverted TL distribution and studied different distributional properties. TL Frèchet distribution is studied by [30]. In the same way, TL modified Weibull distribution is derived by [31], and presents the type Ⅱ TL Bur Ⅻ distribution [32]. They showed that the new distribution is more flexible than other generalizations of the Bur distribution.

    It's worth noting that the extended exponential (EE) distribution is the commonly used distribution for analyzing skewed data and complementary risk scenarios. It is as a new generation of an exponential (Exp) distribution, which can be used in various practical cases, including fitting the claim severity in actuarial science, following the work of [33,34,35,36,37,38,39,40,41,42,43,44,45].

    The research [46] introduced the EE model. The corresponding PDF and CDF of EE distribution are

    ψ(t;α,θ)=αθeθt(1eθt)α1,   t>0 (1.3)

    and

    Ψ(t;α,θ)=(1eθt)α, (1.4)

    where, α>0 is the shape parameter and θ>0 is the scale parameter.

    The objective of this work is: Firstly, we define a novel version of the EE distribution which is more efficient to modeling the complex, skewed and asymmetric datasets. The new extension model is the TL extended exponential (TL-EE) model and it has three parameters. It can be positively skewed and unimodal. The unknown parameters of the TL-EE model have been estimated using the maximum likelihood estimation (MLE) technique. Second main objective is devoted to exploring three well-known actuarial measures for the TL-EE model including value at risk (VaR), tail value at risk (TVaR), and tail variance premium (TVP). These indicator risks have been a great potential in portfolio optimization under uncertainty.

    The rest of this article is structured as follows. Section 2 introduces the new TL-EE model and derives various distributional properties. Also, different basic statistical properties for the suggested model were presented in Section 3. We discuss the model's parameters for TL-EE distribution in Section 4. Brief simulation experiments have been conducted in Section 5. Further, various actuarial measures from the TL-EE model have been derived in Section 6. Finally, two real datasets representing the insurance losses is performed in Section 7 for examine the potential of the proposed TL-EE model. In the last section, closing remarks are devoted.

    Here, the proposed TL-EE model with some distributional properties are derived. Let Z be a random variable that follows a TL-EE with parameters θ, α and λ (ZTL-EE(θ,α,λ)). According to Eqs (1.1)–(1.4), the CDF and PDF of the TL-EE model are obtained, respectively, to be

    FTL-EE(z;θ,α,λ)=(1(1(1eθz)α)2)λ, (2.1)

    whether z>0,θ,α,λ>0, and

    fTL-EE(z;θ,α,λ)=2λαθeθz(1eθz)α1(1(1eθz)α)(1(1(1eθz)α)2)λ1. (2.2)

    It is clear that from Eq (2.1), if α=1, the TL-EE model becomes the TL-Exponential distribution. For various values of the model parameters, Figures 1 and 2 sketched graphs of the PDF and CDF of the TL-EE model, respectively. The PDF of the TL-EE model is decreasing if α<1 and is unimodal if α>1.

    Figure 1.  Density plots for the TL-EE model under different selected parameter values.
    Figure 2.  Graphs for CDF of the TL-EE model using several parametric values θ, α, and λ.

    Now, the survival with hazard rate functions (SF, HR) of the TL-EE distribution is expressed by

    STL-EE(z;θ,α,λ)=1(1(1(1eθz)α)2)λ

    and

    hTL-EE(z;θ,α,λ)=2λαθeθz(1eθz)α1(1(1eθz)α)(1(1(1eθz)α)2).

    Figures 3 depicts the graphs of HR of the TL-EE model using numerous selected records of parameters. From Figures 3, it can be seen that the HR of the TL-EE model is increasing with shape parameter α>1 and decreasing with shape parameter α<1.

    Figure 3.  Graphs for HR of the TL-EE model using several parametric values θ, α, and λ.

    In this section, the quantile function, skewness, kurtosis and moment-generating function of the proposed model are established.

    Let ZTL-EE(θ,α,λ). The quantile function of Z

    zu=Q(u)=F1TL-EE(u), 0<u<1

    is obtained as follows:

    zu=1θlog{1[1(1u1/λ)1/2]1/α}. (3.1)

    By using (3.1), a random sample from the TL-EE model is obtained with u follows a uniform random number (0, 1).

    By taking

    u=14,12,and34

    in (3.1), we can be illustrated the 1st quantile, median, and 3rd quantile, respectively.

    The skewness (Skew) and the kurtosis (Kurt) measures of Z are obtained to be

    S=z1/4+z3/42z1/2z3/4z1/4

    and

    K=z7/8z5/8+z3/8z1/8z6/8z2/8,

    The rth moment of Z can be expressed by

    μr=0zr fTL-EE(z;θ,α,λ)dz=2αλθri=0 πi(α,λ) Φi(t;r,α), (3.2)

    where

    πi(α,λ)=(1)i(α1i)(λ1i)

    and

    Φi(t;r,α)=10(log(t))r ti1 (1(1t)α)2i+1dt.

    Proof.

    μr=0zr2λαθeθz(1eθz)α1(1(1eθz)α)(1(1(1eθz)α)2)λ1 dz.

    By taking t=eθz, then

    μr=2λαθr10(log(t))rt(1t)α1(1(1t)α)(1(1(1t)α)2)λ1 dt.

    Using the series representation

    (1y)a1=i=0(1)i(a1i) yi.

    The formula of the rth moment of Z can be written as

    μr=2λαθr10i=0(1)i(α1i)(λ1i)log(t))rti1(1(1t)α) (1(1t)α)2i dt=2λαθr10i=0(1)i(α1i)(λ1i)log(t))rti1(1(1t)α)2i+1 dt=2αλθri=0 πi(α,λ) Φi(t;r,α).

    From (3.2), the mean, 2nd moment, and variance of Z can be written as

    μ1=2αλθi=0 πi(α,λ) Φi(t;1,α),
    μ2=2αλθ2i=0 πi(α,λ) Φi(t;2,α),

    and

    Var(Z)=μ21μ2.

    Consequently, the coefficient of variation (CV) of Z is obtained to be

    CV(Z)=Var(Z)μ1.

    At the end, The moment-generating function of Z can be expressed by

    MZ(l)=E[elz]=2αλk=0i=0 πi(α,λ) lkk! θk Φi(t;k,α). (3.3)

    The proof is completed.

    Proof.

    MZ(l)=0elz 2λαθeθz(1eθz)α1(1(1eθz)α)(1(1(1eθz)α)2)λ1dz.

    By using the series representation

    elz=i=0lkzkk!

    and taking

    t=eθz,

    we have

    MZ(l)=2λα10k=0i=0(1)i(α1i)(λ1i)lk log(t))kk!ti1(1(1t)α)2i+1dt=2αλk=0i=0 πi(α,λ) lkk! θk Φi(t;k,α).

    The cumulant generating function (CGF) KZ(l) of the TL-EE distribution can be resulted as

    KZ(l)=log{2αλk=0i=0 πi(α,λ) lkk! θk Φi(t;k,α)}. (3.4)

    The characteristic function ϕZ(l) of the TL-EE model can be concluded from MZ(l) and it is given as

    MZ(l)=E[eilz]=2αλk=0i=0 πi(α,λ)ilkk! θk Φi(t;k,α), (3.5)

    where

    i=1

    is the imaginary unit.

    The different statistic measures of TL-EE distribution are recorded in Tables 1 and 2, whereas Figures 4 and 5 plotted the 3D curves by applying various selected values of the parameters. From the numerical results of Tables 1 and 2, we have:

    Table 1.  Various statistical measures for theTL-EE model at λ = 1.5.
    θ μ1 Var CV S K
    α=0.25 0.5 0.2460 0.2550 2.0523 4.2055 25.407
    1 0.1230 0.0637 2.0523 4.2055 25.407
    1.5 0.0820 0.0283 2.0523 4.2055 25.407
    2 0.0615 0.0159 2.0523 4.2055 25.407
    α=0.5 0.5 0.6196 0.6258 1.2768 2.5999 9.7552
    1 0.3098 0.1564 1.2768 2.5999 9.7552
    1.5 0.2065 0.0695 1.2768 2.5999 9.7552
    2 0.1549 0.0391 1.2768 2.5999 9.7552
    α=0.75 0.5 0.9702 0.9287 0.9932 2.0249 5.9692
    1 0.4851 0.2321 0.9932 2.0249 5.9692
    1.5 0.3234 0.1031 0.9932 2.0249 5.9692
    2 0.2425 0.0580 0.9932 2.0249 5.9692
    α=1 0.5 1.2813 1.1606 0.8407 1.7251 4.3798
    1 0.6406 0.2901 0.8407 1.7251 4.3798
    1.5 0.4271 0.1289 0.8407 1.7251 4.3798
    2 0.3203 0.0725 0.8407 1.7251 4.3798

     | Show Table
    DownLoad: CSV
    Table 2.  Various statistical measures for theTL-EE model at λ = 3.
    θ μ1 Var CV S K
    α=0.25 0.5 0.4325 0.4196 1.4976 3.1710 14.660
    1 0.2162 0.1049 1.4976 3.1710 14.660
    1.5 0.1441 0.0466 1.4976 3.1710 14.66
    2 0.1081 0.0262 1.4976 3.1710 14.660
    α=0.5 0.5 0.9848 0.8709 0.9476 2.0392 6.1814
    1 0.4924 0.2177 0.9476 2.0392 6.1814
    1.5 0.3282 0.0967 0.9476 2.0392 6.1814
    2 0.2462 0.0544 0.9476 2.0392 6.1814
    α=0.75 0.5 1.4485 1.1686 0.7462 1.6458 4.1135
    1 0.7242 0.2921 0.7462 1.6458 4.1135
    1.5 0.4828 0.1298 0.7462 1.6458 4.1135
    2 0.3621 0.0730 0.7462 1.6458 4.1135
    α=1 0.5 1.8340 1.3685 0.6378 1.4452 3.2372
    1 0.9170 0.3421 0.6378 1.4452 3.2372
    1.5 0.6113 0.1520 0.6378 1.4452 3.2372
    2 0.4585 0.0855 0.6378 1.4452 3.2372

     | Show Table
    DownLoad: CSV
    Figure 4.  3D curves for various statistical properties of the TL-EE model in Table 1.
    Figure 5.  3D curves for various statistical properties of the TL-EE model in Table 2.

    (1) The measures of Mean and Var of Z decrease when θ tends to be increases with fixed α and λ, and CV, S, and K measures have constants values, which indicate that these measures are free of parameter of θ.

    (2) If α tends to be increases with θ and λ are fixed, the Mean and Var measures augment, whereas the CV, S and K decrease.

    (3) The proposed TL-EE model is more efficient in analyzing more datasets.

    Let Z1:nZ2:nZn:n denote the order statistic of a random sample of size n Z1,Z2,,Zn from the TL-EE model. The PDF of kth order statistic of Zk:n can be formulated as

    gZk:n(x)=n!(k1)!(nk)![F(z)]k1[1F(z)]nkf(z). (4.1)

    With replacing (4.1), we get

    gZk:n(x)=2λαθeθzn!(k1)!(nk)![1(1(1eθz)α)2]λk1×[1(1(1(1eθz)α)2)λ]nk×(1eθz)α1(1(1eθz)α). (4.2)

    Specifically, we can obtain the PDF of the first and latest order statistics

    Z1:n=min{Z1,Z2,...,Zn}andZn:n=max{Z1,Z2,...,Zn}

    and they are given, respectively, by

    gZ1:n(x)=2nλαθeθz[1(1(1eθz)α)2]λ1×[1(1(1(1eθz)α)2)λ]n1×(1eθz)α1(1(1eθz)α) (4.3)

    and

    gZn:n(x)=2nλαθeθz[1(1(1eθz)α)2]λn1×(1eθz)α1(1(1eθz)α). (4.4)

    At the end, the rth order moment of Zr:n for the TL-EE model is written as follows

    E(Zrk:n)=0zrgZk:n(z)dz,

    where gZk:n(z) is given in (4.2).

    Rényi entropy is a very important tool in information measure. It is introduced as

    R(p)=11plog(0[f(z;θ,α,λ)]pdz),p1,p>0.

    For the TL-EE model, we get

    I=0[f(z;θ,α,λ)]p=(2αλθ)p0epθz(1eθz)p(α1)×(1(1eθz)p)αdz×(1(1(1eθz)α)2)p(λ1).

    By taking t=eθz, we have

    I=2pαpλpθp110tp(1t)p(α1)(1(1t)p)α×(1(1(1t)α)2)p(λ1)dt.

    Using the series representation,

    (1y)a1=i=0(1)i(a1i) yi.

    So, we have

    I=2pαpλpθp110i=0(1)i(p(α1)i) tp+i(1(1t)p)α×(1(1(1t)α)2)p(λ1)dt=2pαpλpθp11pi=0ηi(α,p)Ψi(t,α,λ,p)

    with

    ηi(α,p)=(1)i(p(α1)i)

    and

    Ψi(t,α,λ,p)=10tp+i(1(1t)p)α(1(1(1t)α)2)p(λ1)dt.

    Consequently, Rényi entropy of the TL-EE distribution is given by

    R(p)=11plog{2pαpλpθp11pi=0ηi(α,p)Ψi(t,α,λ,p)}.

    Suppose z1,z2,,zn are n observations from the TL-EE model. Furthermore, the log-likelihood function corresponding to Eq (2.2) can be written as

    LL(Ω)=nlog(2λαθ)θni=1zi+(α1)ni=1log(1eθzi)+(λ1)ni=1log(1(1(1eθzi)α)2)+ni=1log(1(1eθzi)α). (6.1)

    Here, Ω=(θ,α,λ). To get the MLEs of θ, α, and λ, we maximize Eq (6.1) with respect to the unknown parameters and then equate the result to zero. That is,

    lθ=nθ+ni=1αzieθzi(1eθzi)(α1)(1(1eθzi)α)2ni=1(1(1eθzi)α)αzieθzi(1eθzi)(α1)1(1(1eθzi)α)2ni=1zi+ni=1zieθzi1eθzi=0, (6.2)
    lα=nαni=1(1eθzi)αlog(1eθzi)(1(1eθzi)α)2ni=1((1eθzi)α1)(1eθzi)αlog(1eθzi)(1(1(1eθzi)α)2)+ni=1log(1eθzi)=0, (6.3)

    and

    lλ=nλ+ni=1log(1(1(1eθzi)α)2)=0. (6.4)

    Clearly, from Eqs (6.2)–(6.4) the final estimates cannot be resulted in explicit form. To overcome this problem, numerous approximate techniques such as bisection method, fixed point, and Newton-Raphson are produced to obtain the final estimates of Ω.

    Here, we perform an Monte Carlo Markov Chain simulation analysis to examine the potential of the MLEs of the proposed model for different sample sizes n={100,250,500,705,1000} using the quantile function of the proposed model and for different parameter sets

    Set1=(θ=0.6,α=0.8,λ=0.5),
    Set2=(θ=0.25,α=0.5,λ=0.7),
    Set3=(θ=0.75,α=1.0,λ=0.9)

    and

    Set4=(θ=0.8,α=0.25,λ=1.2).

    The above steps are provided to obtain a random sample from the TL-EE model:

    Step 1. Drawn u from uniform with interval [0,1].

    Step 2. Obtain z as

    z=1θlog{1[1(1u1/λ)1/2]1/α}.

    We computed the average estimate (AE), the average mean square errors (MSEs), the average biases (AB), and associated mean relative errors (MREs) based on M=1000 times. These values are given as follows:

    AE=1MMi=1^εε,AB=1MMi=1|^εεεε|,MSE=1MMi=1(^εεεε)2,MRE=1MMi=1|^εεεε|/εε,

    where

    εε=(θ,α,λ).

    Tables 36 summarize the results of the simulation study of the TL-EE model. It is noted from the results that a the AEs of all parameters converge to the actual values of parameters. Also, the ABs, MSEs, and MREs decrease as n tends to be increase based on MLE technique which ensure that the estimates of unknown parameters are consistent and asymptotically unbiased.

    Table 3.  AEs, ABs, MSEs, and MREs for the proposed TL-EE model using Set1.
    Simple size Est. ˆθ ˆα ˆλ
    100 AE 0.6932 1.3583 1.0299
    AB 0.0932 0.5583 0.5299
    MSE 0.0664 1.4037 1.3624
    MRE 0.1553 0.6979 1.0598
    250 AE0.6341 1.0291 0.6319
    AB0.0341 0.2291 0.1319
    MSE0.0225 0.4660 0.3173
    MRE0.0569 0.2864 0.2638
    500 AE0.6255 0.9456 0.5500
    AB0.0255 0.1456 0.0500
    MSE0.0130 0.2324 0.0889
    MRE0.0426 0.1820 0.1001
    750 AE0.6075 0.8852 0.5434
    AB0.0075 0.0852 0.0434
    MSE0.0054 0.1477 0.0581
    MRE0.0125 0.1065 0.0869
    1000 AE0.6047 0.8728 0.5401
    AB0.0047 0.0728 0.0401
    MSE0.0043 0.1318 0.0519
    MRE 0.0078 0.0911 0.0803

     | Show Table
    DownLoad: CSV
    Table 4.  AEs, ABs, MSEs, and MREs for the proposed TL-EE model using Set2.
    Simple size Est. ˆθ ˆα ˆλ
    100 AE 0.3099 1.0043 0.8253
    AB0.0599 0.5043 0.1253
    MSE0.0143 0.8638 1.5698
    MRE0.2396 1.0086 0.1790
    250 AE0.2668 0.6964 0.8021
    AB0.0168 0.1964 0.1021
    MSE0.0052 0.2768 0.4464
    MRE0.0674 0.3928 0.1636
    500 AE0.2485 0.5278 0.8099
    AB0.0014 0.0278 0.1099
    MSE0.0019 0.0493 0.1588
    MRE0.0056 0.0557 0.1570
    750 AE0.2552 0.5480 0.7556
    AB0.0052 0.04806 0.0556
    MSE0.0016 0.0596 0.1034
    MRE0.0208 0.0961 0.0795
    1000 AE0.2553 0.5312 0.7357
    AB0.0053 0.0312 0.03574
    MSE0.0011 0.0268 0.0693
    MRE 0.0210 0.0624 0.0510

     | Show Table
    DownLoad: CSV
    Table 5.  AEs, ABs, MSEs, and MREs for the proposed TL-EE model using Set3.
    Simple size Est. ˆθ ˆα ˆλ
    100 AE 0.8480 2.1978 1.9580
    AB0.0980 1.1978 1.0580
    MSE0.0665 1.2910 1.7854
    MRE0.1307 1.1978 1.1756
    250 AE0.8246 1.5339 1.3104
    AB0.0346 0.5339 0.4104
    MSE0.0302 1.0916 1.6425
    MRE0.0861 0.5339 0.4560
    500 AE0.7731 1.2048 1.1657
    AB0.0231 0.2048 0.2657
    MSE0.0130 0.6911 1.1267
    MRE0.0275 0.2048 0.2953
    750 AE0.7656 1.1924 0.9820
    AB0.0156 0.1924 0.0820
    MSE0.0087 0.4560 0.3348
    MRE0.0208 0.1924 0.0911
    1000 AE0.7653 1.1837 0.9436
    AB0.0153 0.1837 0.0436
    MSE0.0082 0.4025 0.1537
    MRE 0.0204 0.1837 0.0485

     | Show Table
    DownLoad: CSV
    Table 6.  TAEs, ABs, MSEs, and MREs for the proposed TL-EE model using Set4.
    Simple size Est. ˆθ ˆα ˆλ
    100 AE 0.9913 0.4293 2.4947
    AB0.1913 0.1793 1.2947
    MSE0.1833 0.2143 1.9780
    MRE0.2391 0.7172 1.0789
    250 AE0.8291 0.3066 1.5424
    AB0.0291 0.0566 0.3424
    MSE0.0882 0.06599 1.4114
    500 AE0.8240 0.2643 1.3341
    AB0.0240 0.0143 0.1341
    MSE0.0217 0.0087 0.3792
    MRE0.0300 0.0572 0.1118
    750 AE0.8172 0.2658 1.2881
    AB0.0172 0.0140 0.0881
    MSE0.0163 0.0070 0.2778
    MRE0.0208 0.0653 0.0734
    1000 AE0.8163 0.2650 1.2237
    AB0.0163 0.0150 0.02376
    MSE0.0137 0.0048 0.1518
    MRE 0.0204 0.0602 0.0198

     | Show Table
    DownLoad: CSV

    The exposure market risk in a portfolio of instruments is one of the most important tasks of actuarial sciences. In the last decades, various characteristics of risk measures have been considered for example, one may refer to [47,48,49]). This part of the study introduces the final expression of VaR, TVaR, and TVP measures for the TL-EE model.

    The VaR at level significance q defined the quantile function of proposed model, which introducing the percentage loss in the portfolio value. Let Z follows the TL-EE distribution. The expression of VaR, denoted by T1, for the TL-EE is given by

    VaRq(Z)=inf{z:F(z)>q}=F1Z(q),

    WHERE 0<q<1. Hence, the VaR of Z is

    T1=1θlog{1[1(1q1/λ)1/2]1/α}. (8.1)

    The TVaR or conditional tail expectation quantifies the average of losses above the VaR for some given confidence level. The TVaR, denoted by T2 for the proposed TL-EE model, is determined by using the following relation

    T2=E[ZZ>VaRq(Z)]=11qVaRqzfZ(z;θ,α,λ)dz=2αλθ(1q)i=0 πi(α,λ) Φi(t;1,α)

    with

    Φi(t;1,α)=VaRqlog(t) ti1 (1(1t)α)2i+1dt.

    The TVP has great importance in the portfolio sector. The expression of TVP, denoted T4, of the TL-EE model is defined by the following equation:

    T4=T2+δT3,

    where 0<δ<1 and

    T3=1(1q)VaRqz2fZ(z;θ,α,λ) dz(T2)2.

    The numerical experiments for T1, T2, and T3 of the TL-EE model and other well known distributions such as EE and Exp for various parametric values are shown in this part. The parameters were calculated using the ML approach. The three risk metrics were computed using the 1000 replications of process, and the final results were summarized in Tables 7 and 8.

    Table 7.  The values of T1, T2, and T4 for the TL-EE and different fitting models.
    Model Par q T1 T2 T4
    TL-EE θ=2.5 0.60 1.6234 1.8534 1.8810
    α=4.25 0.65 1.6583 1.8839 1.9132
    λ=100 0.70 1.6969 1.9183 1.9493
    0.75 1.7408 1.9583 1.9910
    0.80 1.7926 2.0064 2.0407
    0.85 1.8570 2.0673 2.1032
    0.90 1.9449 2.1519 2.1892
    0.95 2.0903 2.2941 2.3329
    EE θ=2.5 1.3107 1.4156 1.2374 1.4161
    α=4.25 0.65 0.9357 1.3689 1.4812
    0.70 1.0078 1.4353 1.5546
    0.75 1.0905 1.5127 1.6391
    0.80 1.1891 1.6063 1.7397
    0.85 1.3131 1.7256 1.8658
    0.90 1.4838 1.8919 2.0388
    0.95 1.7692 2.1731 2.3266
    Exp θ=2.5 0.60 0.3665 0.7665 0.8625
    0.65 0.4199 0.8199 0.9239
    0.70 0.4815 0.8815 0.9935
    0.75 0.5545 0.9545 1.0745
    0.80 0.6437 1.0437 1.1717
    0.85 0.7588 1.1588 1.2948
    0.90 0.9210 1.3210 1.4650
    0.95 1.1982 1.5982 1.7502

     | Show Table
    DownLoad: CSV
    Table 8.  The values of T1, T2, and T4 for the TL-EE and different fitting models.
    Model Par q T1 T2 T4
    TL-EE θ=4.0 0.60 1.0991 1.2434 1.2543
    α=6.5 0.65 1.1211 1.2625 1.2740
    λ=85 0.70 1.1453 1.2841 1.2963
    0.75 1.1729 1.3091 1.3220
    0.80 1.2054 1.3393 1.3527
    0.85 1.2458 1.3775 1.3915
    0.90 1.3008 1.4304 1.4450
    0.95 1.3919 1.5194 1.5346
    EE θ=4.0 0.60 0.6456 0.9230 0.9644
    α=6.5 0.65 0.6867 0.9598 1.0040
    0.70 0.7325 1.00159 1.0485
    0.75 0.7849 1.0502 1.0999
    0.80 0.8472 1.1091 1.1614
    0.85 0.9253 1.1839 1.2388
    0.90 1.0325 1.2881 1.3456
    0.95 1.2114 1.4642 1.5242
    Exp θ=4.0 0.60 0.2290 0.4790 0.5165
    0.65 0.2624 0.5124 0.5530
    0.70 0.3009 0.5509 0.5947
    0.75 0.3465 0.5965 0.6434
    0.80 0.4023 0.6523 0.7023
    0.85 0.4742 0.7242 0.7774
    0.90 0.5756 0.8256 0.8818
    0.95 0.7489 0.9989 1.0583

     | Show Table
    DownLoad: CSV

    For visual comparisons, we presented the findings visually as shown in Figures 6 and 7. From these results and Figures, we conclude that the TL-EE model is heavier than EE and Exp distributions which make it very suitable to fit heavy tailed datasets.

    Figure 6.  Curves for value of T1, T2, and T4 in Table 7.
    Figure 7.  Curves for value of T1, T2, and T4 in Table 8.

    In this section, we consider the data from fire losses, and it contains records of all the total loss amounts in thousands of Norwegian Krone (NKR) from 1972 to 1992. The recorded datasets are taken from norfire function () containing in the CASdatasets package [50], and it was also studied by [51]. Table 9 reported different characteristic measures of the proposed dataset. The skewness measure refers that the recorded data is positively skewed.

    Table 9.  Basic statistics of Norwegian fire insurance dataset.
    Mean Q2 Sd Q1 Q3 Skew Kurt
    520.0 573.5 134.7 676.0 697.1 772.5 982.0

     | Show Table
    DownLoad: CSV

    The adaptability of the TL-EE model is made by discussing its efficacy to that of other analogous models like EE, Exp, Poisson Lomax (PL) (see [52]), Poisson exponential (PE) (see [53]), Weibull (Wei), Lindley (Lin), zero truncated Poisson gamma (ZTPGA) (see [3]), Power Lindley (PLin) (see [54]), Exponential geometric (EG) (see [55]), and Two parameters Mira (TPM) (see [56]) distributions. The PDFs of the suggested models are:

    (1) PL distribution:

    f(z;α,λ,θ)=αθλ(eθ1) (1+z/λ)α1 eθ(1(1+z/λ)α);

    where z, α,λ,θ>0.

    (2) PE distribution:

    f(z;λ,θ)=λθeθ1 eλz+θ(1eλz);wherez>0,  λ,θ>0.

    (3) Exp distribution:

    f(z;λ)=λeλz;wherez>0, λ>0.

    (4) Lin distribution:

    f(z;λ)=λ2λ+1(1+z)eλz;wherez>0, λ>0.

    (5) Wei distribution:

    f(z;μ,σ)=μσ(zσ)μ1 e(zσ)μ;wherez>0, μ,σ>0.

    (6) ZTPGA:

    f(z,α,λ,θ)=θλαzα1eλz(eθ1)Γ(α)eθHα,λ(z);

    where zx>0, α,λ,θ>0, and Hα,λ(z) is the CDF of gamma distribution.

    (7) PLin:

    f(z,α,β)=αβ2β+1(1+zα) zα1 eβzα;wherez>0, α,β>0.

    (8) EG:

    f(z,λ,p)=pλeλz(p+(1p)eλx)2;

    where z>0, λ>0, 0<p<1.

    (9) TPM:

    f(z,α,δ)=δ3(αz2+2)eδz2(α+δ2);wherez>0,  α,δ>0.

    The results of the MLEs and the corresponding log-likelihood (ll) function of TL-EE model with proposed compared distributions are reported in Table 10. Now, To determination about the best model for modeling the dataset, numerous measures including Akaike information criterion (A1), correction Akaike information criterion (A2), Hannan Quinn information criterion (A3), Bayesian Information criterion (B1) and Kolmogorov-Smirnov (KS) statistics with associated P-values are computed. The results of all these measures are recorded in Table 11. From these results, we can deduce that the TL-EE model is a more suitable candidate distribution for analyzing the Norwegian fire insurance dataset. The estimated PDF, CDF, and survival function of the TL-EE model with the empirical dataset, the scaled total time on the test (TTT), the probability-probability (PP), and box plots for the Norwegian fire insurance dataset are sketched in Figure 8 and 9. These figures confirms this conclusion.

    Table 10.  The estimated parameters with corresponding ll values of fitted models.
    Distribution Par ll
    TL-EE ˆθ=0.0048 ˆα=2.8201  ˆλ=67.987 -344.054
    EE ˆθ=0.0064 ˆα=55.743 -349.589
    PL ˆα = 470.909  ˆλ=590.227  ˆθ=8.4518 -348.5498
    PE ˆλ=0.0065 ˆθ=59.178 -349.538
    Wei ˆμ=5.5134 ˆσ= 753.625 -349.229
    Exp ˆλ=0.0014 -415.080
    Lin ˆλ=0.0028 -394.886
    ZTPGA ˆα=5.0374 ˆλ=0.0146  ˆθ=21.882 -344.680
    PLin ˆα=0.0786 ˆβ= 2.1419 -380.426
    EG ˆα=0.0043 ˆp= 0.0858 -380.322
    TPM ˆα=0.0043 ˆδ= 0.8077 -383.885

     | Show Table
    DownLoad: CSV
    Table 11.  Comparison criterion and goodness-of-fit statistics for Norwegian fire dataset.
    Model A1 A2 A3 B1 KS P-value
    TL-EE 694.109 694.580 696.438 700.131 0.1018 0.618
    EE 703.178 704.409 705.731 709.193 0.1320 0.292
    PL 703.099 703.570 705.428 709.121 0.1190 0.417
    PE 703.077 703.308 704.630 707.092 0.1357 0.262
    Wei 702.458 702.689 704.011 706.473 0.1212 0.393
    Exp 832.160 832.236 832.937 834.168 0.5257 1.2×1013
    Lin 791.772 791.847 792.548 793.779 0.4396 1.1×109
    ZTPGA 695.360 695.831 697.689 701.382 0.1046 0.5839
    PLin 764.852 765.082 766.404 768.866 0.3852 2.5×1006
    EG 764.645 764.876 766.198 768.660 0.38.26 7.5×1006
    TPM 771.770 772.001 773.323 775.785 0.3873 1.36×1007

     | Show Table
    DownLoad: CSV
    Figure 8.  TTT, PP and box plots of the TL-EE for the dataset.
    Figure 9.  Graphs of the estimated PDF, CDF, and SF of the TL-EE for Norwegian fire insurance data.

    Further, we compute the risk measures of the TL-EE, EE, and Exp models using the Norwegian fire insurance dataset. The results are displayed in Table 12, and it can be concluded that the values of actuarial measures of the TL-EE distribution are very close to their corresponding empirical values for the Norwegian fire dataset. The suggested TL-EE model is very suitable to fit and analyze the Norwegian fire dataset. Figure 10 confirms this conclusion.

    Table 12.  Results of T1, T2, and T4 using the Norwegian fire insurance.
    Model Par q T1 T2 T4
    Empirical 0.85 875.8 925.7 982.0
    0.90 917.8 939.6 1285.2
    0.95 933.6 955.6 1335.8
    0.99 1041.1 1194.8 1571.9
    TL-EE ˆθ=0.0048 0.85 825.0 932.4 10280.6
    ˆα=2.8201 0.90 869.9 975.6 10714.9
    ˆλ=67.987 0.95 944.2 1048.2 11156.3
    0.99 1111.6 1214.3 11601.9
    EE ˆα=55.743 0.85 910.8 1073.0 22573.1
    ˆθ=0.0064 0.90 978.3 138.4 23600.3
    0.95 1090.5 1248.5 24654.0
    0.99 1344.7 1501.1 25649.0
    Exp ˆλ= 0.0014 0.85 1322.4 2019.5 415065.0
    0.90 1605.1 2302.2 439644.4
    0.95 2088.2 2785.3 464424.4
    0.99 33210.2 3907.3 484983.8

     | Show Table
    DownLoad: CSV
    Figure 10.  Graphical plots of the computational value of VaR, TVaR, and TVP using the dataset.

    In this subsection, we presented the dataset from a group medical insurance and it contains values of all the claim amounts exceeding 25,000 USD over the period 1991. The values of dataset were taken from http://www.soa.org. Before progressing further, let us provide some basic statistics of the observed value of dataset, which is provided in Table 13. The skewness measure give first indicator that the proposed data is skewed to the right, and the plot of TTT, PP, and box are displayed in Figure 11.

    Table 13.  Basic statistics of the medical insurance claim dataset.
    Mean Q2 Sd Q1 Q3 Skew Kurt
    487.2 427.8 248.0 301.1 585.4 1.932 4.471

     | Show Table
    DownLoad: CSV
    Figure 11.  TTT, PP, and box plots of the medical insurance claim data.

    The TL-EE distribution and the other proposed models are estimated by using the MLE method. Table 14 summarized the results of the MLEs and the corresponding ll function. Furthermore, to select the model which fits the dataset well, we compute various statistical measures such as A1, A2, A3, B1, KS, and P-value, and the are reported in Table 15. From these results, we can deduce that the TL-EE model is a more suitable candidate distribution for analyzing the dataset. The estimated PDF, CDF, and survival function of the TL-EE model with the empirical dataset are drawn in Figure 12. This figure ensures this conclusion.

    Table 14.  The estimated parameters with corresponding ll values of fitted models.
    Distribution Par ll
    TL-EE ˆθ=0.0029 ˆα=0.4591  ˆλ=38.326 -331.867
    EE ˆθ=0.0049 ˆα=5.7608 -334.355
    PL ˆα = 133.818  ˆλ=190.851  ˆθ=3.9591 -332.767
    PE ˆλ=0.0068 ˆθ=14.346 -333.323
    Wei ˆμ=2.1057 ˆσ= 552.523 -340.802
    Exp ˆλ=0.0020 -359.435
    Lin ˆλ=0.0040 -345.044
    ZTPGA ˆα=1.8306 ˆλ=0.0077  ˆθ=6.1417 -335.129
    PLin ˆα=1.5245 ˆβ= 0.0001 -337.759
    EG ˆα=0.0076 ˆp= 0.0338 -339.999
    TPM ˆα=0.0062 ˆδ= 0.3874 -338.991

     | Show Table
    DownLoad: CSV
    Table 15.  Comparison criterion and goodness-of-fit statistics for the medical insurance claim dataset.
    Model A1 A2 A3 B1 KS P-value
    TL-EE 669.734 670.256 671.919 675.470 0.1089 0.5567
    EE 672.711 672.967 674.167 676.535 0.1470 0.2082
    PL 671.534 672.055 673.718 677.270 0.1124 0.5162
    PE 670.646 670.901 672.102 674.470 0.1181 0.4535
    Wei 685.604 685.859 687.060 689.428 0.1803 0.0678
    Exp 720.871 720.954 721.599 722.783 0.4094 4.2×1008
    Lin 692.089 692.172 692.817 694.001 0.2846 0.0004
    ZTPGA 676.258 676.780 678.442 681.994 0.1104 0.5383
    PLin 679.518 679.773 680.974 683.342 0.1520 0.1784
    EG 683.998 684.253 685.454 687.822 0.1707 0.0961
    TPM 681.982 682.237 683.438 685.806 0.2147 0.0167

     | Show Table
    DownLoad: CSV
    Figure 12.  Estimated PDF, CDF and SF using second dataset for the TL-EE model.

    Finally, we provide the results of risk measures of the TL-EE, EE, and Exp models using the medical insurance claim dataset. The results are given in Table 16, and it can be concluded that the values of actuarial measures of the TL-EE model are very close to their corresponding empirical values for the medical insurance claim dataset. Hence, the proposed TL-EE model is very suitable to fit and analyze the medical insurance claim dataset. Figure 13 ensures this result.

    Table 16.  Results of T1, T2, and T4 using the medical insurance claim data set.
    Model Par q T1 T2 T4
    Empirical 0.85 664.3 925.8 11899.1
    0.90 726.9 1071.7 7070.6
    0.95 910.2 1207.3 3901.6
    0.99 1347.8 1500.3 1500.3
    TL-EE ˆθ=0.0029 0.85 687.2 942.0 26230.5
    ˆα=0.4591 0.90 759.2 1027.0 27617.5
    ˆλ=38.326 0.95 879.9 1170.6 29096.2
    0.99 1156.6 1500.8 30579.1
    EE ˆα=0.0049 0.85 731.0 861.8 37517.5
    ˆθ=5.7608 0.90 818.4 932.3 39320.7
    0.95 964.4 1051.9 41155.2
    0.99 1296.3 1328.3 42819.2
    Exp ˆλ= 0.0020 0.85 948.5 1448.5 213948.6
    0.90 1151.2 1651.2 226651.3
    0.95 1497.8 1997.8 239499.0
    0.99 2302.5 2802.5 250302.6

     | Show Table
    DownLoad: CSV
    Figure 13.  Graphical plots of the computational value of VaR, TVaR, and TVP using the dataset.

    This article uses a new class of distributions based on a TL family of distributions. It is named a TL-EE model. Different distributional and mathematical properties of this model are provided including, rth moment, moment generating and characteristic function as well as distribution of order statistic and Reny entropy. The MLE was used to estimate the parameters of the proposed distribution. Various actuarial measures are computed, and brief simulation analyses are illustrated to see the efficiency of the TL-EE in risk insurance. In the end, we have illustrated two financial datasets, and it is checked that the TL-EE model regularly outperforms other competitor distributions. In future work, we will use various censored methods, including progressive censoring shames under different types along with illustration of accelerated life tests with numerous kinds of stress load.

    The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

    The author acknowledges the reviwers for their comments.

    The author declares that there are is conflict of interest in this paper.



    [1] M. A. Meraou, M. Z. Raqab, Statistical properties and different estimation procedures of poisson-Lindley distribution, J. Stat. Theory Appl., 20 (2021), 33–45. https://doi.org/10.2991/jsta.d.210105.001 doi: 10.2991/jsta.d.210105.001
    [2] F. Hashemi, M. Naderi, A. Jamalizadeh, Normal mean-variance Lindley Birnbaum-Saunders distribution, Stat. Interface, 12 (2019), 585–597. https://doi.org/10.4310/SII.2019.V12.N4.A8 doi: 10.4310/SII.2019.V12.N4.A8
    [3] R. J. Abdelghani, M. A. Meraou, M. Z. Raqab, Bivariate compound distribution based on Poisson maxima of gamma variates and related applications, Int. J. Appl. Math., 34 (2021), 957. https://doi.org/10.12732/ijam.v34i5.6 doi: 10.12732/ijam.v34i5.6
    [4] M. Naderi, F. Hashemi, A. Bekker, A. Jamalizadeh, Modeling right-skewed fnancial data streams: a likelihood inference based on the generalized Birnbaum-Saunders mixture model, Appl. Math. Comput., 376 (2021), 125109. https://doi.org/10.1016/j.amc.2020.125109 doi: 10.1016/j.amc.2020.125109
    [5] S. Nadarajah, The skew logistic distribution, AStA Adv. Stat. Anal., 93 (2009), 187–203. https://doi.org/10.1007/s10182-009-0105-6 doi: 10.1007/s10182-009-0105-6
    [6] S. Chakraborty, P. J. Hazarika, M. M. Ali, A new skew logistic distribution and its properties, Pak. J. Stat., 28 (2012), 513–524.
    [7] Z. Ahmad, E. Mahmoudi, M. Alizadeh, Modelling insurance losses using a new beta power transformed family of distributions, Commun. Stat., 51 (2022), 4470–4491. https://doi.org/10.1080/03610918.2020.1743859 doi: 10.1080/03610918.2020.1743859
    [8] A. W. Marshall, I. A. Olkin, New method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641 doi: 10.1093/biomet/84.3.641
    [9] A. Mahdavi, D. Kundu, A new method for generating distributions with an application to exponential distribution, Commun. Stat., 46 (2017), 6543–6557. https://doi.org/10.1080/03610926.2015.1130839 doi: 10.1080/03610926.2015.1130839
    [10] Z. Ahmad, M. Ilyas, G. G. Hamedani, The extended alpha power transformed family of distributions: properties and applications, J. Data Sci., 17 (2019), 726–741. https://doi.org/10.6339/JDS.201910_17(4).0006 doi: 10.6339/JDS.201910_17(4).0006
    [11] M. Alizadeh, M. H. Tahir, M. C. Gauss, M. Mansoor, M. Zubair, G. G. Hamedani, The Kumaraswamy Marshal-Olkin family of distributions, J. Egypt. Math. Soc., 23 (2015), 546–557. https://doi.org/10.1016/j.joems.2014.12.002 doi: 10.1016/j.joems.2014.12.002
    [12] A. Fayomi, E. M. Almetwally, M. E. Qura, Exploring new horizons: advancing data analysis in kidney patient infection rates and UEFA champions league scores using bivariate Kavya-Manoharan transformation family of distributions, Mathematics, 11 (2023), 2986. https://doi.org/10.3390/math11132986 doi: 10.3390/math11132986
    [13] A. Ahmad, N. Alsadat, M. N. Atchade, S. Q. ul Ain, A. M. Gemeay, M. A, Meraou, et al., New hyperbolic sine-generator with an example of Rayleigh distribution: simulation and data analysis in industry, Alex. Eng. J., 73 (2023), 415–426. https://doi.org/10.1016/j.aej.2023.04.048 doi: 10.1016/j.aej.2023.04.048
    [14] I. Elbatal, S. M. Alghamdi, F. Jamal, S. Khan, E. M. Almetwally, M. Elgarhy, Kavya-Manoharan Weibull-g family of distributions: statistical inference under progressive type-Ⅱ censoring scheme, Adv. Appl. Stat., 87 (2023), 191–223. https://doi.org/10.17654/0972361723034 doi: 10.17654/0972361723034
    [15] A. A. M. Teamah, A. A. Elbanna, A. M. Gemeay, Heavy-tailed log-logistic distribution: properties, risk measures and applications, Stat. Optim. Inf. Comput., 9 (2021), 910–941. https://doi.org/10.19139/soic-2310-5070-1220 doi: 10.19139/soic-2310-5070-1220
    [16] J. Zhao, Z. Ahmad, E. Mahmoudi, E. H. Hafez, M. M. M. El-Din, A new class of heavy-tailed distributions: modeling and simulating actuarial measures, Complexity, 2021 (2021), 5580228. https://doi.org/10.1155/2021/5580228 doi: 10.1155/2021/5580228
    [17] P. M. Chiroque-Solano, F. A. da S. Moura, A heavy-tailed and overdispersed collective risk model, arXiv, 2021. https://doi.org/10.48550/arXiv.2101.09022
    [18] A. M. Basheer, Alpha power inverse weibull distribution with reliability application, J. Taibah Univ. Sci., 13 (2019), 423–432. https://doi.org/10.1080/16583655.2019.1588488 doi: 10.1080/16583655.2019.1588488
    [19] E. Yildirim, E. S. Ilıkkan, A. M. Gemeay, N. Makumi, M. E. Bakr, O. S. Balogun, Power unit Burr-XII distribution: statistical inference with applications, AIP Adv., 13 (2023), 105107. https://doi.org/10.1063/5.0171077 doi: 10.1063/5.0171077
    [20] M. Shakil, M. Munir, N. Kausar, M. Ahsanullah, A. Khadim, M. Sirajo, et al., Some inferences on three parameters Birnbaum-Saunders distribution: statistical properties, characterizations and applications, Comput. J. Math. Stat. Sci., 2 (2023), 197–222. https://doi.org/10.21608/cjmss.2023.224583.1011 doi: 10.21608/cjmss.2023.224583.1011
    [21] L. P. Sapkota, V. Kumar, A. M. Gemeay, M. E. Bakr, O. S. Balogun, A. H. Muse, New Lomax-G family of distributions: statistical properties and applications, AIP Adv., 13 (2023), 095128. https://doi.org/10.1063/5.0171949 doi: 10.1063/5.0171949
    [22] A. Z. Afify, A. M. Gemeay, N. A. Ibrahim, The heavy-tailed exponential distribution: risk measures, estimation, and application to actuarial data, Mathematics, 8 (2020), 1276. https://doi.org/10.3390/math8081276 doi: 10.3390/math8081276
    [23] A. A. M. Teamah, M. A. Elbanna, A. M. Gemeay, Heavy-tailed log-logistic distribution: properties, risk measures and applications, Stat. Optim. Inf. Comput., 9 (2021), 910–941. https://doi.org/10.19139/soic-2310-5070-1220 doi: 10.19139/soic-2310-5070-1220
    [24] A. M. Gemeay, K. Karakaya, M. E. Bakr, O. S. Balogun, M. N. Atchadé, E. Hussam, Power Lambert uniform distribution: statistical properties, actuarial measures, regression analysis, and applications, AIP Adv., 13 (2023), 095318. https://doi.org/10.1063/5.0170964 doi: 10.1063/5.0170964
    [25] M. Kamal, M. N. Atchadé, Y. M. Sokadjo, Nayabuddin, E. Hussam, A. M. Gemeay, et al., Statistical study for Covid-19 spread during the armed crisis faced by Ukrainians, Alex. Eng. J., 78 (2023), 419–425. https://doi.org/10.1016/j.aej.2023.07.040 doi: 10.1016/j.aej.2023.07.040
    [26] S. D. Tomarchio, A. Punzo, Dichotomous unimodal compound models: application to the distribution of insurance losses, J. Appl. Stat., 47 (2020), 2328–2353. https://doi.org/10.1080/02664763.2020.1789076 doi: 10.1080/02664763.2020.1789076
    [27] A. Al-Shomrani, O. Arif, A. Shawky, S. Hanif, M. Q. Shahbaz, Topp-Leone family of distributions: some properties and application, Pak. J. Stat. Oper. Res., 12 (2016), 443–451. https://doi.org/10.18187/pjsor.v12i3.1458 doi: 10.18187/pjsor.v12i3.1458
    [28] D. O. Tuoyo, F. C. Opone, N. Ekhosuehi, Topp-Leone Weibull distribution: its properties and applications, Earthline J. Math. Sci., 7 (2021), 381–401. https://doi.org/10.34198/ejms.7221.381401 doi: 10.34198/ejms.7221.381401
    [29] G. M. Ibrahim, A. S. Hassan, E. M. Almetwally, H. M. Almongy, Parameter estimation of alpha power inverted Topp-Leone distribution with applications, Intell. Autom. Soft Comput., 29 (2021), 353–371. https://doi.org/10.32604/iasc.2021.017586 doi: 10.32604/iasc.2021.017586
    [30] L. P. Sapkota, Topp-Leone Fréchet distribution with theory and application, Janapriya J. Interdiscip. Stud., (2021), 65–80.
    [31] A. S. Alyami, E. Ibrahim, N. Alotaibi, E. M. Almetwally, M. H. Okasha, M. Elgarhy, Topp-Leone modified Weibull model: theory and applications to medical and engineering data, Appl. Sci., 12 (2022), 10431. https://doi.org/10.3390/app122010431 doi: 10.3390/app122010431
    [32] A. A. Ogunde, O. E. Adenijia, Type Ⅱ Topp-Leone Bur Ⅻ distribution: properties and applications to failure time data, Sci. Afr., 16 (2022), e01200. https://doi.org/10.1016/j.sciaf.2022.e01200 doi: 10.1016/j.sciaf.2022.e01200
    [33] A. E. Teamah, A. A. Elbanna, A. M. Gemeay, Right truncated fréchet-weibull distribution: statistical properties and application, Delta J. Sci., 41 (2019), 20–29. https://doi.org/10.21608/djs.2020.139880 doi: 10.21608/djs.2020.139880
    [34] M. M. Ristić, N. Balakrishnan, The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., 82 (2012), 1191–1206. https://doi.org/10.1080/00949655.2011.574633 doi: 10.1080/00949655.2011.574633
    [35] M. Nagy, E. M. Almetwally, A. M. Gemeay, H. S. Mohammed, T. M. Jawa, N. Sayed-Ahmed, et al., The new novel discrete distribution with application on COVID-19 mortality numbers in Kingdom of Saudi Arabia and Latvia, Complexity, 2021 (2021), 7192833. https://doi.org/10.1155/2021/7192833 doi: 10.1155/2021/7192833
    [36] T. A. de Andrade, M. Bourguignon, G. M. Cordeiro, The exponentiated generalized extended exponential distribution, J. Data Sci., 14 (2016), 393–413. https://doi.org/10.6339/JDS.201607_14(3).0001 doi: 10.6339/JDS.201607_14(3).0001
    [37] M. A. Almuqrin, A. M. Gemeay, M. A. El-Raouf, M. Kilai, R. Aldallal, E. Hussam, A flexible extension of reduced kies distribution: properties, inference, and applications in biology, Complexity, 2022 (2022), 6078567. https://doi.org/10.1155/2022/6078567 doi: 10.1155/2022/6078567
    [38] M. M. Salama, E. S. A. El-Sherpieny, A. E. A. Abd-Elaziz, The length-biased weighted exponentiated inverted exponential distribution: properties and estimation, Comput. J. Math. Stat. Sci., 2 (2023), 181–196.
    [39] M. M. Raqab, M. Ahsanullah, Estimation of the location and scale parameters of generalized exponential distribution based on order statistics, J. Stat. Comput. Simul., 69 (2021), 109–123. https://doi.org/10.1080/00949650108812085 doi: 10.1080/00949650108812085
    [40] G. Mustafa, M. Ijaz, F. Jamal, Order statistics of inverse pareto distribution, Comput. J. Math. Stat. Sci., 1 (2022), 51–62. https://doi.org/10.21608/cjmss.2022.272724 doi: 10.21608/cjmss.2022.272724
    [41] S. Nadarajah, The exponentiated exponential distribution: a survey, AStA Adv. Stat. Anal., 95 (2011), 219–251. https://doi.org/10.1007/s10182-011-0154-5 doi: 10.1007/s10182-011-0154-5
    [42] S. E. Abu-Youssef, B. I. Mohammed, M. G. Sief, An extended exponentiated exponential distribution and its properties, Int. J. Comput. Appl., 121 (2015), 1–6. https://doi.org/10.5120/21533-4518 doi: 10.5120/21533-4518
    [43] E. S. A. El-Sherpieny, E. M. Almetwally, A. H. Muse, E. Hussam, Data analysis for COVID-19 deaths using a novel statistical model: simulation and fuzzy application, Plos One, 18 (2023), e0283618. https://doi.org/10.1371/journal.pone.0283618 doi: 10.1371/journal.pone.0283618
    [44] E. Hussam, M. A. Sabry, M. M. A. El-Raouf, E. M. Almetwally, Fuzzy vs. traditional reliability model for inverse Weibull distribution, Axioms, 12 (2023), 582. https://doi.org/10.3390/axioms12060582 doi: 10.3390/axioms12060582
    [45] C. Chesneau, V. Kumar, M. Khetan, M. Arshad, On a modified weighted exponential distribution with applications, Math Comput. Appl., 27 (2022), 17. https://doi.org/10.3390/mca27010017 doi: 10.3390/mca27010017
    [46] R. D. Gupta, D. Kundu, Generalized exponential distribution: existing results and some recent developments, J. Stat. Plan. Infer., 137 (2007), 3537–3547. https://doi.org/10.1016/j.jspi.2007.03.030 doi: 10.1016/j.jspi.2007.03.030
    [47] M. A. Meraou, N. M. Al-Kandari, M. Z. Raqab, D. Kundu, Analysis of skewed data by using compound poisson exponential distribution with applications to insurance claims, J. Stat. Comput. Simul., 92 (2022), 928–956. https://doi.org/10.1080/00949655.2021.1981324 doi: 10.1080/00949655.2021.1981324
    [48] M. A. Meraou, N. M. Al-Kandari, M. Z. Raqab, Univariate and bivariate compound models based on random sum of variates with application to the insurance losses data, J. Stat. Theory Pract., 16 (2022), 56. https://doi.org/10.1007/s42519-022-00282-8 doi: 10.1007/s42519-022-00282-8
    [49] N. M. Alfaer, A. M. Gemeay, H. M. Aljohani, A. Z. Afify, The extended log-logistic distribution: inference and actuarial applications, Mathematics, 9 (2021), 1386. https://doi.org/10.3390/math9121386 doi: 10.3390/math9121386
    [50] C. Dutang, A. Charpentier, CASdatasets: insurance datasets, 2019. Available from: http://dutangc.free.fr/pub/RRepos/web/CASdatasets-index.html.
    [51] V. Brazauskas, A. Kleefeld, Modeling severity and measuring tail risk of Norwegian fire claims, N. Amer. Actuar. J., 20 (2016), 1–16. https://doi.org/10.1080/10920277.2015.1062784 doi: 10.1080/10920277.2015.1062784
    [52] A. Bander, S. Hanaa, The Poisson-Lomax distribution, Rev. Colomb. Estad., 37 (2014), 223–243. https://doi.org/10.15446/rce.v37n1.44369 doi: 10.15446/rce.v37n1.44369
    [53] V. G. Cancho, F. Louzada-Neto, G. D. Barriga, Poisson-exponential lifetime distribution, Comput. Stat. Data Anal., 55 (2011), 677–686. https://doi.org/10.1016/j.csda.2010.05.033 doi: 10.1016/j.csda.2010.05.033
    [54] M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan, L. J. Al-Enezi, Power lindley distribution and associated inference, Comput. Stat. Data Anal., 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026 doi: 10.1016/j.csda.2013.02.026
    [55] K. Adamidis, T. Dimitrakopoulou, S. Loukas, On an extension of the exponential-geometric distribution, Stat. Probab. Lett., 73 (2005), 259–269. https://doi.org/10.1016/j.spl.2005.03.013 doi: 10.1016/j.spl.2005.03.013
    [56] S. Sen, S. K. Ghosh, H. Al-Mofleh, The mirra distribution for modeling time-to-event data sets, Springer, 2021, 59–73. https://doi.org/10.1007/978-981-16-13685
    [57] N. Alsadat, A. S. Hassan, A. M. Gemeay, C. Chesneau, M. Elgarhy, Different estimation methods for the generalized unit half-logistic geometric distribution: using ranked set sampling, AIP Adv., 13 (2023), 085230. https://doi.org/10.1063/5.0169140 doi: 10.1063/5.0169140
  • This article has been cited by:

    1. Zakiah I. Kalantan, Eman M. Swielum, Neama T. AL-Sayed, Abeer A. EL-Helbawy, Gannat R. AL-Dayian, Mervat Abd Elaal, Bayesian and E-Bayesian Estimation for a Modified Topp Leone–Chen Distribution Based on a Progressive Type-II Censoring Scheme, 2024, 16, 2073-8994, 981, 10.3390/sym16080981
    2. Ahmed R. El-Saeed, Badr Aloraini, Safar M. Alghamdi, Statistical modeling of disability: Using a new extended Topp Leone inverse exponential model, 2025, 18, 16878507, 101447, 10.1016/j.jrras.2025.101447
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1342) PDF downloads(125) Cited by(2)

Figures and Tables

Figures(13)  /  Tables(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog