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1. Introduction

In 1964, Hopf first proposed Hopf algebra in order to
study the properties of algebraic topology and algebraic
groups [1]. In 1965, Milnor and Moore introduced the
basic definitions and properties of Hopf algebras [2], then
Chase and Sweedler did some relevant works and introduced
common notations [3, 4]. After that, Hopf algebra has
been used to study a lot of objects, such as posets [5],
symmetric functions [6,7], quantum groups [8], and Clifford
algebras [9].

In 1979, Joni and Rota first studied Hopf algebras on
combinatorial objects, such as polynomials and puzzles [10].
In 1994 and 1995, Schmitt studied incidence Hopf algebras
and a Hopf algebra on graphs with an addition invariant
and introduced a variety of examples of incidence Hopf
algebras arising from families of graphs, matroids, and
distributive lattices, many of which generalize well-known
Hopf algebras [11, 12].

In 1997 and 1999, Connes and Kreimer studied Hopf
algebra structures on rooted trees and rooted forests and
their applications in renormalization in quantum field
theories [13, 14]. This promotes the study of Hopf algebras
on graphs. In 2020, Aval et al. mentioned a Hopf algebra
on labeled graphs arising from the unshuffle coproduct [15].

For more Hopf algebras on graphs, please refer to [16–20].

Permutations are related to graphs closely. In 1995,
Malvenuto and Reutenauer studied a Hopf algebra on
permutations, where the product is the classic shuffle
x [21]. In 2014, Vargas defined a commutative but non-
cocommutative Hopf algebra on permutations by the super-
shuffle product x and the cut-box coproduct ∆⋄ without a
proof [22], which was done by Liu and Li in 2021 [23].
In 2020, Zhao and Li defined another commutative Hopf
algebra structure on permutations and its duality and figured
out closed-formulas of the antipodes [24]. It is well-known
that permutations are elements of symmetric groups, which
are widely used in various fields, such as the algebraic
number theory [25].

A labeled simple graph is a simple graph with vertices
labeled by distinct positive integers. In this paper, we
generalize the super-shuffle product and the cut-box
coproduct on permutations to labeled simple graphs. We
prove that the vector space spanned by labeled simple graphs
with these two operations is a Hopf algebra.

This paper is organized as follows. In Section 2, we
review some basic concepts of Hopf algebra, give the
definition of labeled simple graphs, and define the super-
shuffle product and the cut-box coproduct on labeled simple
graphs. In Section 3, we prove that the vector space spanned
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by labeled simple graphs is a graded algebra with the super-
shuffle product and a graded coalgebra with the cut-box
coproduct. Furthermore, we prove the compatibility of these
operations, then the vector space is a Hopf algebra. Finally,
we summarize our main conclusions in Section 4.

2. Basic definitions

2.1. Preliminaries

Here, we recall some basic definitions related to Hopf
algebra and see [4] for more details. Let C be a K-module
over commutative ring K.

DefineK-bilinear mappings m from C⊗C to C and µ from
K to C, such that the diagrams in Figure 1 are commutative,
then (C,m, µ) is a K-algebra. Here, m and µ are called a
product and a unit, respectively.

C ⊗C ⊗C C ⊗C

C ⊗C C

m ⊗ id

m

id ⊗ m m

C ⊗C

K ⊗C C C ⊗ K
��

mµ ⊗ id id ⊗ µ

Figure 1. Associative law and unitary property.

Define K-linear mappings ∆ from C to C ⊗ C and ν from
C to K, such that the diagrams in Figure 2 are commutative,
then (C,∆, ν) is a K-coalgebra. Here, ∆ and ν are called a
coproduct and a co-unit, respectively.

We say (C,m, µ,∆, ν) is a bialgebra if (C,m, µ) is an
algebra, (C,∆, ν) is a coalgebra, and one of the following
compatibility conditions holds:

(i) ∆ and co-unit ν are algebra homomorphisms;

(ii) m and unit µ are coalgebra homomorphisms.

In fact, (i) and (ii) are equivalent; see [26] for details.

C C ⊗C

C ⊗C C ⊗C ⊗C

∆

id ⊗ ∆

∆ ∆ ⊗ id

C

K ⊗C C ⊗C C ⊗ K
id ⊗ νν ⊗ id

∆� �

Figure 2. Coassociative law and co-unitary
property.

A vector space C is graded if

C =
⊕
n⩾0

Cn

and we call it connected when C0 � K [26]. The algebra
(C,m, µ) is graded if the product m satisfies

m(Ci ⊗C j) ⊆ Ci+ j

and

µ(K) ⊆ C0.

Similarly, the coalgebra (C,∆, ν) is graded if the coproduct
∆ satisfies

∆(Cn) ⊆
⊕

Ci ⊗Cn−i

and

ν(Cn) = 0,

when n ⩾ 1. A bialgebra is graded when its algebra and
coalgebra structures are both graded.

For bialgebra (C,m, µ,∆, ν), we call S : C → C an
antipode if it satisfies

m ◦ (S ⊗ id) ◦ ∆ = µ ◦ ν = m ◦ (id ⊗ S ) ◦ ∆,

i.e., the diagram in Figure 3 is commutative. A bialgebra is
a Hopf algebra when it has an antipode.

Actually, a graded connected bialgebra must be a Hopf
algebra [26].
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C ⊗C C ⊗C

C K C

C ⊗C C ⊗C

S ⊗ id

m∆

ν µ

∆

id ⊗ S

m

Figure 3. Antipode.

2.2. Main concepts

In this subsection, we recall some basic concepts of graph
theory, which can be found in [27].

A labeled simple graph Γ = (V, E) is a finite graph with
no cycles and no multiple edges whose vertices are distinct
positive integers, where V is the set of all vertices of Γ, also
denoted by V(Γ), and E is the set of all edges of Γ, also
denoted by E(Γ). Obviously, E ⊆ V × V . If (i1, i2) ∈ E, then
i1 , i2 and (i2, i1) < E, since the graph Γ has no cycles and
no multiple edges. In particular, Γ is the empty graph when
V = ∅, denoted by ϵ.

Let Γ = (V, E) and I ⊆ V . Define the restriction of Γ on I

by ΓI = (I, EI), where

EI = {(i, j)|i, j ∈ I, (i, j) ∈ E},

and we call ΓI a subgraph of Γ. If I is a nontrivial subset of
V , we call ΓI a true subgraph of Γ. If the vertex sets of two
subgraphs of Γ are disjoint, then we say that the subgraphs
are disjoint subgraphs. If

Γ1 = (V1, E1), Γ2 = (V2, E2)

and
V1 ∩ V2 = ∅,

then denote

Γ1 ∪ Γ2 = (V1 ∪ V2, E1 ∪ E2).

Obviously, there are no edges between V1 and V2.
We introduce the following notations for convenience:

[n] =

{1, 2, . . . , n}, n > 0,

∅, n = 0,

and

[i, j] =

{i, i + 1, . . . , j}, i ⩽ j,

∅, i > j.

Example 1. The labeled simple graph

Γ = ([8], {(1, 2), (1, 3), (2, 3), (4, 5), (6, 7), (6, 8)})

can be represented as the graph

Γ =
2

1 3
5

4

7

6 8,

then

Γ{1,3,5,7} = ({1, 3, 5, 7}, {(1, 3)}) =
3

1 5 7,

Γ[4] = ([4], {(1, 2), (1, 3), (2, 3)}) =
2

1 3 4,

Γ[3,6] = ([3, 6], {(4, 5)}) = 3
5

4 6.

Let

Hn = {Γ | Γ = ([n], E) is a labeled simple graph},

and Hn be the vector space spanned by Hn over field K, for
a nonnegative integer n. In particular, H0 = {ϵ} and H0 =

KH0. Denote

H =
∞⋃

n=0

Hn and H =

∞⊕
n=0

Hn.

Let Γ = (V, E) be a nonempty labeled simple graph, where

V = {v1, v2, · · · , vn}.

Define the restructure of Γ = (V, E) by V̂ to be Γ̂ = (V̂ , Ê),
where

V̂ = {v̂1, v̂2, · · · , v̂n}

is a set of distinct positve integers satisfying

v̂i < v̂ j ⇔ vi < v j,

and Ê satisfies

(v̂i, v̂ j) ∈ Ê ⇔ (vi, v j) ∈ E,

for any 1 ⩽ i, j ⩽ n.
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Example 2. For

Γ =
2

5 3
7

8,

the restructure of Γ by [5] is
1

3 2
4

5 and the restructure of Γ

by {1, 3, 5, 7, 9} is
1

5 3
7

9.

Let I be the set {i1, i2, · · · , in} of distinct positive intergers
with i1 < i2 < · · · < in. We define a mapping stI from I to
[|I|] to be the standardization of I satisfying stI(ia) = a for
1 ⩽ a ⩽ n. For x, y ∈ I, we have stI(x) < stI(y) if, and only
if, x < y. For a subset S of I, denote

stI(S ) = {stI(i)|i ∈ S }.

In general, the standardizations of a number in different
sets are different. For example, let I1 = {6, 7, 9} and
I2 = {1, 3, 7, 9, 11}, then stI1 (7) = 2 and stI2 (7) = 3. For
convenience, we omit the subscript of the set.

Define the standard form of Γ = (V, E) by st(Γ) =
(st(V), st(E)), where st(V) = [|V |] and st(E) satisfies

(st(v1), st(v2)) ∈ st(E)⇔ (v1, v2) ∈ E.

Obviously, the above standardizations are of the vertex set
V , so we omit the subscript. In particular, we have st(ϵ) = ϵ.
Thus, st(·) is a mapping from the set of all labeled simple
graphs to H. In fact, the standard form of Γ = (V, E) is the
restructure of Γ by [|V |].

In addition, for a positive integer n, let Γ↑n be the
restructure of Γ by the set

V↑n := {v + n|v ∈ V}.

Similarly, let Γ↓n be the restructure of Γ by the set

V↓n := {v − n|v ∈ V}

provided n is less than the minimum of V .

Example 3. For labeled simple graphs

5

3 2,
5 1

2

7

6, and 5,

their standard forms are

st
(5

3 2

)
=

3

2 1, st
(

5 1

2

7

6

)
=

3 1

2

5

4,

st ( 5) = 1,

and (5

3 2

)↑3
=

8

6 5,
(5

3 2

)↓1
=

4

2 1.

For nonempty Γ in H, the standard form of any restructure
of Γ must be Γ, i.e.,

st(Γ̂) = (st(V̂), st(Ê)) = (V, E) = Γ,

where the Γ̂ is a restructure of Γ. Conversely, if the standard
form of a labeled simple graph is Γ, then it must be a
restructure of Γ.

Example 4. For

Γ =
2

1

4

3 5 ∈ H5,

the restructure of Γ by [4, 8] is
5

4

7

6 8 and the restructure of

Γ by {1, 3, 5, 7, 9} is
3

1

7

5 9. We have

Γ =
2

1

4

3 5 = st
(

5

4

7

6 8

)
= st

(
3

1

7

5 9

)
.

For Γ = ([n], E) in Hn, we call i a split of Γ if

Γ[i] ∪ Γ[i+1,n] = Γ,

where 0 ⩽ i ⩽ n. Obviously, i is a split of Γ if, and only
if, there are no edges between [i] and [i + 1, n] in Γ. By
the definition, 0 and n, called trivial splits, are always splits
of labeled simple graphs in Hn when n ⩾ 1. We call Γ
indecomposible if it is nonempty and only has trivial splits.

For Γ = ([n], E) in Hn, n ⩾ 1, assume that {i0, i1, · · · , is} is
the set of all splits of Γ, where

0 = i0 < i1 < · · · < is = n,

then we call Γ[ik−1+1,ik] an atom of Γ, 1 ⩽ k ⩽ s. Obviously,
the standard form of an atom is indecomposible since there
is no split of Γ in [ik−1 + 1, ik] for 1 ⩽ k ⩽ s. Let

Γk = st(Γ[ik−1+1,ik])

for 1 ⩽ k ⩽ s. We define the decomposition of Γ by

Γ = Γ1 ⋄ Γ2 ⋄ · · · ⋄ Γs.

Actually, if jk: = ik − ik−1, then Γk ∈ H jk for 1 ⩽ k ⩽ s, and

Γ = Γ1 ⋄ · · · ⋄ Γs = Γ1 ∪ Γ
↑i1
2 ∪ · · · ∪ Γ

↑is−1
s .

In particular, when Γ = ϵ, its decomposition is itself.
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Example 5. (1) The set of splits of
2

1

5

3 4 is {0, 2, 5} and its
decomposition is

2

1

5

3 4 = st
(

2

1

)
⋄ st

(
5

3 4

)
=

2

1 ⋄
3

1 2.

The atoms of
2

1

5

3 4 are
2

1 and
5

3 4.

(2) The set of splits of
1

2

4

3 5 is {0, 2, 4, 5}, so its
decomposition is

1

2

4

3 5 = st
(

1

2

)
⋄ st

(
4

3

)
⋄ st ( 5) =

1

2 ⋄
2

1 ⋄ 1.

The atoms of
1

2

4

3 5 are
1

2,
4

3, and 5.

(3) The set of splits of
2

1 3 is {0, 3}, so it is
indecomposible. Its decomposition is itself, and so is its
atom.

Define the cut-box coproduct ∆ onH by

∆(Γ) =
s∑

j=0

Γ1 ⋄ · · · ⋄ Γ j ⊗ Γ j+1 ⋄ · · · ⋄ Γs

=

s∑
j=0

st(Γ[1,i j]) ⊗ st(Γ[i j+1,is]),

for nonempty
Γ = Γ1 ⋄ Γ2 ⋄ · · · ⋄ Γs

in Hn with splits

0 = i0 < i1 < · · · < is = n and ∆(ϵ) = ϵ ⊗ ϵ.

Define the co-unit ν fromH to K by

ν(Γ) =

1, Γ = ϵ,

0, otherwise,

for Γ in H.

Example 6.

∆(
2

1 3) =ϵ ⊗
2

1 3 +
2

1 3 ⊗ ϵ,

∆(
2

1

5

3 4) =∆(
2

1 ⋄
3

1 2)

=ϵ ⊗
2

1 ⋄
3

1 2 +
2

1 ⊗
3

1 2 +
2

1 ⋄
3

1 2 ⊗ ϵ

=ϵ ⊗
2

1

5

3 4 +
2

1 ⊗
3

1 2 +
2

1

5

3 4 ⊗ ϵ,

∆(
1

2

4

3 5) =∆(
1

2 ⋄
2

1 ⋄ 1)

=ϵ ⊗
1

2 ⋄
2

1 ⋄ 1 +
1

2 ⊗
2

1 ⋄ 1

+
1

2 ⋄
2

1 ⊗ 1 +
1

2 ⋄
2

1 ⋄ 1 ⊗ ϵ

=ϵ ⊗
1

2

4

3 5 +
1

2 ⊗
2

1 3 +
1

2

4

3 ⊗ 1 +
1

2

4

3 5 ⊗ ϵ.

Theorem 2.1. (H ,∆, ν) is a graded coalgebra.

Proof. It is easy to verify that ν is a co-unit. Obviously,

(id ⊗ ∆) ◦ ∆(ϵ) = ϵ ⊗ ϵ ⊗ ϵ = (∆ ⊗ id) ◦ ∆(ϵ).

Suppose Γ = ([n], E) with n ⩾ 1, and its decomposition is

Γ = Γ1 ⋄ Γ2 ⋄ · · · ⋄ Γs,

then,

(id ⊗ ∆) ◦ ∆(Γ)

= (id ⊗ ∆) ◦ ∆(Γ1 ⋄ Γ2 ⋄ · · · ⋄ Γs)

= (id ⊗ ∆)
s∑

j=0

Γ1 ⋄ · · · ⋄ Γ j ⊗ Γ j+1 ⋄ · · · ⋄ Γs

=

s∑
j=0

Γ1 ⋄ · · · ⋄ Γ j ⊗ (
s∑

k= j

Γ j+1 ⋄ · · · ⋄ Γk ⊗ Γk+1 ⋄ · · · ⋄ Γs)

=
∑

0⩽ j⩽k⩽s

Γ1 ⋄ · · · ⋄ Γ j ⊗ Γ j+1 ⋄ · · · ⋄ Γk ⊗ Γk+1 ⋄ · · · ⋄ Γs

=

s∑
k=0

(
k∑

j=0

Γ1 ⋄ · · · ⋄ Γ j ⊗ Γ j+1 ⋄ · · · ⋄ Γk) ⊗ Γk+1 ⋄ · · · ⋄ Γs

= (∆ ⊗ id)
s∑

k=0

Γ1 ⋄ · · · ⋄ Γk ⊗ Γk+1 ⋄ · · · ⋄ Γs

= (∆ ⊗ id) ◦ ∆(Γ),

where
Γk+1 ⋄ · · · ⋄ Γk = ϵ

for 0 ⩽ k ⩽ s. So, ∆ satisfies the coassociative law. Hence,
(H ,∆, ν) is a coalgebra.

By the definition of the coproduct ∆, we have

∆(Hn) ⊆
⊕
Hi ⊗Hn−i

and
ν(Hn) = 0,

when n ⩾ 1. So, (H ,∆, ν) is a graded coalgebra. □
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Define the super-shuffle product ∗ onH by

Γ1 ∗ Γ2 =
∑

I, J: |I|=m, |J|=n
I∪J=[m+n]=V(Γ)

st(ΓI )=Γ1, st(ΓJ )=Γ2

Γ (1)

for Γ1 in Hm and Γ2 in Hn. Sometimes, we denote it by
∗(Γ1,Γ2). Obviously, the product ∗ is commutative on H .
Define the unit µ from K toH by µ(1) = ϵ.

Actually, ΓI is the restructure of Γ1 by I, and ΓJ is the
restructure of Γ2 by J in (1). Given I and J satisfying |I| = m,
|J| = n, and I ∪ J = [m + n], Γ traverses all graphs in Hm+n,
which is a union of the restructure of Γ1 = (V1, E1) by I, the
restructure of Γ2 = (V2, E2) by J, and some edges between
V̂1 and V̂2. That is, Γ traverses the set

PI,J = {(V̂1 ∪ V̂2, Ê1 ∪ Ê2 ∪C)|V̂1 = I,

V̂2 = J,C ⊆ V̂1 × V̂2}.

So, we rewrite (1) as

Γ1 ∗ Γ2 =
∑

I, J: |I|=m, |J|=n
I∪J=[m+n]

∑
Γ∈PI,J

Γ. (2)

That is, each term Γ in Γ1 ∗ Γ2 is a graph by adding some
edges between V̂1 and V̂2 to Γ̂1 ∪ Γ̂2, where

V̂1 ∪ V̂2 = [m + n],

i.e.,
Γ = (V̂1 ∪ V̂2, Ê1 ∪ Ê2 ∪C), (3)

where C is a set of edges between V̂1 and V̂2. Conversely,
(V̂1, V̂2,C) can uniquely determine a term in Γ1 ∗ Γ2, where

V̂1 ∪ V̂2 = [m + n]

and C is a set of edges between V̂1 and V̂2. We consider two
terms in Γ1 ∗ Γ2 the same if, and only if, their corresponding
V̂1, V̂2 and C are the same. Thus, each term in Γ1 ∗ Γ2 is
unique.

Example 7.

2

1 ∗ 1 =
2

1 3 +
2

1 3 +
2

1 3 +
2

1 3

+
3

1 2 +
3

1 2 +
3

1 2 +
3

1 2

+
3

2 1 +
3

2 1 +
3

2 1 +
3

2 1.

Here, we color the vertices of the term Γ in Γ1 ∗Γ2 restricted
to Γ1 red and to Γ2 blue, respectively. In this example,

although
3

2 1 and
3

1 2 are the same as graphs, we consider
that they are different in Γ1 ∗ Γ2 because their V̂1 and V̂2 are
not the same. So, each term in Γ1 ∗ Γ2 is unique.

In order to represent vertices in each term of Γ1∗Γ2 before
restructure, we name the vertices in Γ1 and Γ2, respectively,
as

V(Γ1) = {v11, v12, · · · , v1m}

and
V(Γ2) = {v21, v22, · · · , v2n},

where v11 < v12 < · · · < v1m and v21 < v22 < · · · < v2n.
Although v11 and v21 are both equal to 1, we consider that
they are different because they belong to different graphs,
then the vertex set of a term in Γ1 ∗ Γ2 is

V̂1 ∪ V̂2 = {v̂11, · · · , v̂1m, v̂21, · · · , v̂2n} = [m + n].

Theorem 2.2. (H , ∗, µ) is a graded algebra.

Proof. It is easy to verify that µ is a unit. Suppose

Γ1 = ([n1], E1), Γ2 = ([n2], E2)

and
Γ3 = ([n3], E3)

in H. For any term Γ in (Γ1 ∗ Γ2) ∗ Γ3, it corresponds to two
disjoint subsets J and K of [n1+n2+n3] with |J| = n1+n2 and
|K| = n3, such that st(ΓJ) is a term in Γ1 ∗Γ2 and st(ΓK) = Γ3.
It means

(Γ1 ∗ Γ2) ∗ Γ3 =
∑

J, K: |J|=n1+n2, |K|=n3
J∪K=[n1+n2+n3]=V(Γ)

∑
st(ΓK )=Γ3

st(ΓJ ) is a term in Γ1∗Γ2

Γ. (4)

For a fixed J in (4), st(ΓJ) corresponds to two disjoint subsets
P and Q of [n1 + n2] with |P| = n1 and |Q| = n2, such that

st(st(ΓJ)P) = Γ1

and
st(st(ΓJ)Q) = Γ2.

Therefore, there is a subset M of J with |M| = n1

corresponding to P, i.e., stJ(M) = P, such that

st(ΓM) = st(st(ΓJ)P) = Γ1.
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Similarly, there is a subset N of J with |N | = n2

corresponding to Q, i.e., stJ(N) = Q, such that

st(ΓN) = st(st(ΓJ)Q) = Γ2.

That means (4) can be rewritten as

(Γ1 ∗ Γ2) ∗ Γ3 =
∑

J, K: |J|=n1+n2, |K|=n3
J∪K=[n1+n2+n3]=V(Γ)

∑
M, N: |M|=n1, |N |=n2

M∪N=J
st(ΓM )=Γ1, st(ΓN )=Γ2, st(ΓK )=Γ3

Γ.
(5)

For a fixed subset J in [n1 + n2 + n3] with cardinality n1 +

n2, P traverses all subsets with cardinality n1 in [n1 + n2]
since st(ΓJ) traverses all terms in Γ1 ∗ Γ2. Meanwhile, M

traverses all subsets with cardinality n1 in J. Therefore, M

traverses all subsets with cardinality n1 in [n1+n2+n3] since
J traverses all subsets with cardinality n1+n2 in [n1+n2+n3].
At the same time, N traverses all subsets with cardinality n2

in [n1 + n2 + n3] from J = M ∪N. Thus, (5) can be rewritten
as

(Γ1 ∗ Γ2) ∗ Γ3 =
∑

M, N, K: |M|=n1, |N |=n2, |K|=n3
M∪N∪K=[n1+n2+n3]=V(Γ)

st(ΓM )=Γ1, st(ΓN )=Γ2, st(ΓK )=Γ3

Γ. (6)

Similarly, Γ1 ∗ (Γ2 ∗ Γ3) is equal to (6). Hence, ∗ satisfies the
associative law and (H , ∗, µ) is an algebra.

By the definition of the product ∗, we have

Hi ∗ H j ⊆ Hi+ j

and
µ(K) ⊆ H0.

So, (H , ∗, µ) is a graded algebra. □

3. Main theorems

In this section, we will prove that (H , ∗, µ,∆, ν) is a Hopf
algebra. Now, we give two lemmas.

Let Γ1 = (V1, E1) in Hm and Γ2 = (V2, E2) in Hn be
nonempty graphs and Γ be a term in Γ1 ∗ Γ2. Thus, Γ can
be represented by (V̂1 ∪ V̂2, Ê1 ∪ Ê2 ∪C) from (3), where

Γ̂1 := (V̂1, Ê1)

is the restructure of Γ1 by V̂1 and

Γ̂2 := (V̂2, Ê2)

is the restructure of Γ2 by V̂2. Obviously,

V̂1 ∪ V̂2 = [m + n].

Lemma 3.1. Each atom of Γ in Γ1 ∗ Γ2 can only contain

subgraphs of Γ̂1 or Γ̂2 corresponding to some complete

atoms in Γ1 or Γ2.

Proof. Let

Γ1 = ({v11, · · · , v1m}, E1)

and

Γ2 = ({v21, · · · , v2n}, E2)

be nonempty in H, where v11 < · · · < v1m and v21 < · · · <

v2n. Consider a term Γ in Γ1 ∗ Γ2. Suppose Γ[i, j] is an atom
of Γ containing a nonempty subgraph of Γ̂1{v̂1k}

q
k=p

, where
Γ̂1{v̂1k}

q
k=p

corresponds to the atom Γ1{v1k}
q
k=p

of Γ1.

When p = q, there is only one element in {v̂1k}
q
k=p,

then Γ[i, j] contains the complete atom Γ̂1{v̂1k}
q
k=p

. Hence, the
conclusion holds.

When 1 ⩽ p < q ⩽ m, {v1k}
q
k=p contains at least

two vertices. Suppose that Γ[i, j] contains a true subgraph

of Γ̂1{v̂1k}
q
k=p

. In fact, since {v̂1k}
q
k=p maintains the order

relationship in {v1k}
q
k=p, the vertices of this true subgraph

correspond to a true subinterval in {v1k}
q
k=p. Let

ω = min{k | v̂1k ∈ [i, j], p ⩽ k ⩽ q}

and

Ω = max{k | v̂1k ∈ [i, j], p ⩽ k ⩽ q}.

We have i ⩽ v̂1ω ⩽ v̂1Ω ⩽ j, then

{v̂1k}
Ω
k=ω ⊆ [i, j]

and ω , p or Ω , q because Γ[i, j] contains a true subgraph
of Γ̂1{v1k}

q
k=p

.

If ω , p, then ω > p. From

1 ⩽ max
1⩽k⩽ω−1

{v̂1k} < i ⩽ min
ω⩽k⩽m

{v̂1k},

{v̂1k}
ω−1
k=1 ⊆ [i − 1]

and

{v̂1k}
m
k=ω ⊆ [i,m + n].

From Γ[i, j] is an atom of Γ and i − 1 is a split of Γ, there
are no edges between [i − 1] and [i,m + n] in Γ. Therefore,

Γ{v̂1k}
m
k=1
= Γ{v̂1k}

ω−1
k=1
∪ Γ{v̂1k}

m
k=ω
.
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By the definition of ∗, we have

st(Γ{v̂1k}
m
k=1

) = Γ1

and
stV̂1

(v̂1k) = v1k = k.

Hence,

Γ1 = st(Γ{v̂1k}
m
k=1

)

= st(Γ{v̂1k}
ω−1
k=1
∪ Γ{v̂1k}

m
k=ω

)

= Γ1[ω−1] ∪ Γ1[ω,m],

where p−1 < ω−1 < q, i.e., ω−1 is a split of Γ1. However,
there is no split of Γ1 between p − 1 and q, since Γ1{v1k}

q
k=p

is an atom of Γ1, which is a contradiction. Similarly, when
Ω , q, we have p − 1 < Ω < q and Ω is a split of Γ1, a
contradiction.

Thus, if an atom of Γ contains a true subgraph in Γ̂1, then
this subgraph must correspond to some complete atoms of
Γ1. Similarly, we can prove the conclusion holds for atoms
in Γ2. □

For simplicity, we restate Lemma 3.1 as: for any term Γ
in Γ1 ∗ Γ2, any atom of Γ can only contain some complete
original atoms of Γ1 or Γ2.

Remark 3.1. For Γ in Hn, suppose its decomposition is

Γ = Γ1 ⋄ Γ2 ⋄ · · · ⋄ Γs

with splits
0 = i0 < i1 < · · · < is = n,

then

∆(Γ) =
s∑

k=0

Γ1 ⋄ · · · ⋄ Γk ⊗ Γk+1 ⋄ · · · ⋄ Γs

=

s∑
k=0

st(Γ[1,ik]) ⊗ st(Γ[ik+1,is]).

If Θ1 ⊗ Θ2 is the term in ∆(Γ), then Θ1 is a standard form of
the first k atoms of Γ for some 0 ⩽ k ⩽ s. Let Γ be a term in
Γ1 ∗Γ2 and Θ1 ⊗Θ2 be a term in ∆(Γ). From Lemma 3.1, Θ1

only contains the standard forms of some complete original
atoms of Γ1 or Γ2. If the first few atoms of a labeled simple
graph contain l vertices, then these vertices must be [l]. So,
if Θ1 contains i original atoms of Γ1, then they must be the

first i atoms of Γ1. Similarly, if Θ1 contains j original atoms
of Γ2, then they must be the first j atoms of Γ2.

Let Γ1 and Γ2 be nonempty in H. Suppose their
decompositions are

Γ1 = Γ11 ⋄ · · · ⋄ Γ1s

and

Γ2 = Γ21 ⋄ · · · ⋄ Γ2t.

Define ∆i j(Γ1 ∗ Γ2) to be the sum of all terms Θ1 ⊗ Θ2 in
∆(Γ1 ∗ Γ2), where Θ1 contains the first i complete original
atoms in Γ1 and the first j complete original atoms in Γ2,
0 ⩽ i ⩽ s, and 0 ⩽ j ⩽ t.

Lemma 3.2. Let Γ1 and Γ2 be nonempty in H. Assume their

decompositions are

Γ1 = Γ11 ⋄ · · · ⋄ Γ1s and Γ2 = Γ21 ⋄ · · · ⋄ Γ2t,

then,

∆i j(Γ1 ∗ Γ2) =(Γ11 ⋄ · · · ⋄ Γ1i ∗ Γ21 ⋄ · · · ⋄ Γ2 j)

⊗ (Γ1,i+1 ⋄ · · · ⋄ Γ1s ∗ Γ2, j+1 ⋄ · · · ⋄ Γ2t),

for 0 ⩽ i ⩽ s and 0 ⩽ j ⩽ t.

Proof. Denote

V(Γ11 ⋄ · · · ⋄ Γ1i) = V11,

|V11| = h1, V1\V11 = V12,

and

(E1)V11
= E11, (E1)V12

= E12.

Similarly,

V(Γ21 ⋄ · · · ⋄ Γ2 j) = V21, |V21| = h2, V2\V21 = V22,

and

(E2)V21
= E21, (E2)V22

= E22.

Obviously,

Γ1 = (V11 ∪ V12, E11 ∪ E12)

and

Γ2 = (V21 ∪ V22, E21 ∪ E22).
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Next, we denote V̂11 as the subset corresponding to V11

in V̂1 and (V̂11, Ê11) as the restructure (V11, E11) by V̂11.
Similarly, we have V̂12, Ê12, V̂21, Ê21, V̂22, and Ê22.

By (3), each term Γ in Γ1 ∗ Γ2,

Γ = (V̂1 ∪ V̂2, Ê1 ∪ Ê2 ∪C),

where C is a set of edges between V̂1 and V̂2. Let Θ1⊗Θ2 be
a term in ∆(Γ) and in ∆i j(Γ1 ∗ Γ2). By the definition of ∆i j,
h1 + h2 is a split of Γ,

V̂11 ∪ V̂21 = [h1 + h2],

V̂12 ∪ V̂22 = [h1 + h2 + 1,m + n]

and

Θ1 = st(Γ[h1+h2]) = st(ΓV̂11∪V̂21
).

Since h1 + h2 is a split of Γ, there are no edges between
[h1 + h2] and [h1 + h2 + 1,m + n] in Γ. Thus, there are no
edges between V̂11 and V̂22 and no edges between V̂12 and
V̂21. Therefore, C is C1 ∪C2, where

C1 ⊆ V̂11 × V̂21

and

C2 ⊆ V̂12 × V̂22.

Hence,

Γ = (V̂11∪V̂12∪V̂21∪V̂22, Ê11∪Ê12∪Ê21∪Ê22∪C1∪C2). (7)

Therefore,

Θ1 = st[(V̂11 ∪ V̂21, Ê11 ∪ Ê21 ∪C1)]

and

Θ2 = st[(V̂12 ∪ V̂22, Ê12 ∪ Ê22 ∪C2)],

then Θ1 is a term in

Γ11 ⋄ · · · ⋄ Γ1i ∗ Γ21 ⋄ · · · ⋄ Γ2 j

for

st((Θ1)V̂11
) = st(V̂11, Ê11) = Γ11 ⋄ · · · ⋄ Γ1i

and

st((Θ1)V̂21
) = st(V̂21, Ê21) = Γ21 ⋄ · · · ⋄ Γ2 j.

Similarly, Θ2 is a term in

Γ1,i+1 ⋄ · · · ⋄ Γ1s ∗ Γ2, j+1 ⋄ · · · ⋄ Γ2t.

For given Θ1 in Γ11 ⋄ · · · ⋄ Γ1i ∗ Γ21 ⋄ · · · ⋄ Γ2 j, let

S =

Γ
∣∣∣∣∣∣∣∣Γ is a term in Γ1 ∗ Γ2 and ∃ Θ2 s.t. Θ1 ⊗ Θ2

is a term in ∆(Γ) and in ∆i j(Γ1 ∗ Γ2)

 .
For each Γ in S ,

Γ = (V̂11 ∪ V̂12 ∪ V̂21 ∪ V̂22, Ê11 ∪ Ê12 ∪ Ê21 ∪ Ê22 ∪C1 ∪C2)

by (7), where V̂11, V̂21, and C1 are fixed, since Θ1 is fixed.
By (3), when Γ traverses all terms in Γ1 ∗Γ2, its V̂1 and V̂2

traverse all disjoint subsets of [m+n] with cardinalities m and
n , respectively, and C traverses all subsets in V̂1×V̂2 for fixed
V̂1 and V̂2. Thus, V̂12 and V̂22 of Γ in S traverse all disjoint
subsets of [h1 + h2 + 1,m + n] with cardinalities m − h1 and
n − h2, respectively. Also, C2 of Γ in S traverses all subsets
of V̂12 × V̂22 for fixed V̂12 and V̂22. Correspondingly, for V̂12

and V̂22 of Γ in S , stV̂12∪V̂22
(V̂12) and stV̂12∪V̂21

(V̂22) traverse
all disjoint subsets of [m + n − h1 − h2] with cardinalities
m − h1 and n − h2, respectively. Also, stV̂12∪V̂22

(C2) traverses
all subsets in

stV̂12∪V̂22
(V̂12) × stV̂12∪V̂21

(V̂22)

for fixed V̂12 and V̂22. From the arguments above and (2), for
fixed Θ1 in Γ11 ⋄ · · · ⋄ Γ1i ∗ Γ21 ⋄ · · · ⋄ Γ2 j, Θ2 traverses all
terms in Γ1,i+1 ⋄ · · · ⋄ Γ1s ∗ Γ2, j+1 ⋄ · · · ⋄ Γ2t. Similarly, for
fixed Θ2 in Γ1,i+1 ⋄ · · · ⋄ Γ1s ∗ Γ2, j+1 ⋄ · · · ⋄ Γ2t, Θ1 traverses
all terms in Γ11 ⋄ · · · ⋄ Γ1i ∗ Γ21 ⋄ · · · ⋄ Γ2 j. Therefore,

∆i j(Γ1 ∗ Γ2) =(Γ11 ⋄ · · · ⋄ Γ1i ∗ Γ21 ⋄ · · · ⋄ Γ2 j)

⊗ (Γ1,i+1 ⋄ · · · ⋄ Γ1s ∗ Γ2, j+1 ⋄ · · · ⋄ Γ2t).

□

Next, we show that (H , ∗, µ,∆, ν) is a Hopf algebra.

Theorem 3.1. (H , ∗, µ,∆, ν) is a bialgebra.

Proof. It is easy to verify ν is an algebra homomorphism.
We only need to prove ∆ is an algebra homomorphism, i.e.,

∆(Γ1 ∗ Γ2) = ∆(Γ1) ∗ ∆(Γ2) (8)
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for Γ1 and Γ2 in H.

If Γ1 or Γ2 is an empty graph, then (8) holds. Suppose

Γ1 = (V1, E1) = Γ11 ⋄ · · · ⋄ Γ1s

in Hm and

Γ2 = (V2, E2) = Γ21 ⋄ · · · ⋄ Γ2t

in Hn are nonempty graphs. Let

∆i(Γ1 ∗ Γ2) =
t∑

j=0

∆i j(Γ1 ∗ Γ2).

By Lemma 3.2, we have

∆i(Γ1 ∗ Γ2) =Γ11 ⋄ · · · ⋄ Γ1i ⊗ (Γ1,i+1 ⋄ · · · ⋄ Γ1s ∗ Γ21 ⋄ · · · ⋄ Γ2t)

+ (Γ11 ⋄ · · · ⋄ Γ1i ∗ Γ21)

⊗ (Γ1,i+1 ⋄ · · · ⋄ Γ1s ∗ Γ22 ⋄ · · · ⋄ Γ2t)

+ (Γ11 ⋄ · · · ⋄ Γ1i ∗ Γ21 ⋄ Γ22)

⊗ (Γ1,i+1 ⋄ · · · ⋄ Γ1s ∗ Γ23 ⋄ · · · ⋄ Γ2t)

+ · · ·

+ (Γ11 ⋄ · · · ⋄ Γ1i ∗ Γ21 ⋄ · · · ⋄ Γ2t) ⊗ Γ1,i+1 ⋄ · · · ⋄ Γ1s

=

t∑
j=0

(Γ11 ⋄ · · · ⋄ Γ1i ∗ Γ21 ⋄ · · · ⋄ Γ2 j)

⊗ (Γ1,i+1 ⋄ · · · ⋄ Γ1s ∗ Γ2, j+1 ⋄ · · · ⋄ Γ2t)

=(Γ11 ⋄ · · · ⋄ Γ1i ⊗ Γ1,i+1 ⋄ · · · ⋄ Γ1s)

∗ (
t∑

j=0

Γ21 ⋄ · · · ⋄ Γ2 j ⊗ Γ2, j+1 ⋄ · · · ⋄ Γ2t)

=(Γ11 ⋄ · · · ⋄ Γ1i ⊗ Γ1,i+1 ⋄ · · · ⋄ Γ1s) ∗ ∆(Γ2).

Furthermore,

∆(Γ1 ∗ Γ2) =∆0(Γ1 ∗ Γ2) + ∆1(Γ1 ∗ Γ2) + · · · + ∆s(Γ1 ∗ Γ2)

=(
s∑

i=0

Γ11 ⋄ · · · ⋄ Γ1i ⊗ Γ1,i+1 ⋄ · · · ⋄ Γ1s) ∗ ∆(Γ2)

=∆(Γ1) ∗ ∆(Γ2).

Hence, (H , ∗, µ,∆, ν) is a bialgebra. □

Example 8.

∆

( 2

1 ∗ 1

)
=∆

(2

1 3 +
3

1 2 +
3

2 1 +
2

1 3 +
3

1 2 +
3

2 1 +
2

1 3

+
3

1 2 +
3

2 1 +
2

1 3 +
3

1 2 +
3

2 1

)
=∆

(2

1 3

)
+ ∆

(3

1 2

)
+ ∆

(3

2 1

)
+ ∆

(2

1 3

)
+ ∆

(3

1 2

)
+ ∆

(3

2 1

)
+ ∆

(3

1 2

)
+ ∆

(3

2 1

)
+ ∆

(2

1 3

)
+ ∆

(3

1 2

)
+ ∆

(3

2 1

)
=ϵ ⊗

2

1 3 +
2

1 ⊗ 1 +
2

1 3 ⊗ ϵ + ϵ ⊗
3

1 2 +
3

1 2 ⊗ ϵ

+ ϵ ⊗
3

2 1 + 1 ⊗
2

1 +
3

2 1 ⊗ ϵ + ϵ ⊗
2

1 3 +
2

1 3 ⊗ ϵ

+ ϵ ⊗
3

1 2 +
3

1 2 ⊗ ϵ + ϵ ⊗
3

2 1 +
3

2 1 ⊗ ϵ + ϵ ⊗
2

1 3

+
2

1 3 ⊗ ϵ + ϵ ⊗
3

1 2 +
3

1 2 ⊗ ϵ + ϵ ⊗
3

2 1 +
3

2 1 ⊗ ϵ

+ ϵ ⊗
2

1 3 +
2

1 3 ⊗ ϵ + ϵ ⊗
3

1 2 +
3

1 2 ⊗ ϵ + ϵ ⊗
3

2 1

+
3

2 1 ⊗ ϵ

=

(
ϵ ⊗

2

1 3 + ϵ ⊗
3

1 2 + ϵ ⊗
3

2 1 + ϵ ⊗
2

1 3 + ϵ ⊗
3

1 2

+ ϵ ⊗
3

2 1 + ϵ ⊗
2

1 3 + ϵ ⊗
3

1 2 + ϵ ⊗
3

2 1 + ϵ ⊗
2

1 3

+ϵ ⊗
3

1 2 + ϵ ⊗
3

2 1

)
+

(2

1 3 ⊗ ϵ +
3

1 2 ⊗ ϵ +
3

2 1 ⊗ ϵ

+
2

1 3 ⊗ ϵ +
3

1 2 ⊗ ϵ +
3

2 1 ⊗ ϵ +
2

1 3 ⊗ ϵ +
3

1 2 ⊗ ϵ

+
3

2 1 ⊗ ϵ +
2

1 3 ⊗ ϵ +
3

1 2 ⊗ ϵ +
3

2 1 ⊗ ϵ
)
+

2

1 ⊗ 1

+ 1 ⊗
2

1

=

(
ϵ ⊗

2

1

)
∗ (ϵ ⊗ 1) +

( 2

1 ⊗ ϵ
)
∗ ( 1 ⊗ ϵ) +

( 2

1 ⊗ ϵ
)
∗ (ϵ ⊗ 1)

= +

(
ϵ ⊗

2

1

)
∗ ( 1 ⊗ ϵ)

(
ϵ ⊗

2

1 +
2

1 ⊗ ϵ
)
∗ (ϵ ⊗ 1 + 1 ⊗ ϵ)

=∆

( 2

1

)
∗ ∆ ( 1) .

Corollary 3.1. (H , ∗, µ,∆, ν) is a Hopf algebra.

Proof. Since (H , ∗, µ,∆, ν) is a graded connected bialgebra,
it is a Hopf algebra. □

4. Conclusions

Many combinatorial objects have Hopf algebra structures.
The labeled simple graphs are important combinatorial
objects. In this paper, we generalize the super-shuffle
product and the cut-box coproduct on permutations to
labeled simple graphs. We prove that the vector space
spanned by labeled simple graphs with the super-shuffle
product and the cut-box coproduct is a Hopf algebra. In
the future, we will study the duality of the Hopf algebra
(H, ∗, µ,∆, ν).
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