

MMC, 4(1): 32–43. DOI: 10.3934/mmc.2024004 Received: 18 January 2023 Revised: 21 March 2023 Accepted: 08 April 2023 Published: 19 March 2024

http://www.aimspress.com/journal/mmc

Research article

Hopf algebra of labeled simple graphs arising from super-shuffle product

Jiaming Dong and Huilan Li*

School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China

* Correspondence: E-mail: lihl@sdnu.edu.cn.

Abstract: From the connections between permutations and labeled simple graphs, we generalized the super-shuffle product and the cut-box coproduct on permutations to labeled simple graphs. We then proved that the vector space spanned by labeled simple graphs is a Hopf algebra with these two operations.

Keywords: Hopf algebra; labeled simple graph; super-shuffle product; cut-box coproduct

1. Introduction

In 1964, Hopf first proposed Hopf algebra in order to study the properties of algebraic topology and algebraic groups [1]. In 1965, Milnor and Moore introduced the basic definitions and properties of Hopf algebras [2], then Chase and Sweedler did some relevant works and introduced common notations [3, 4]. After that, Hopf algebra has been used to study a lot of objects, such as posets [5], symmetric functions [6,7], quantum groups [8], and Clifford algebras [9].

In 1979, Joni and Rota first studied Hopf algebras on combinatorial objects, such as polynomials and puzzles [10]. In 1994 and 1995, Schmitt studied incidence Hopf algebras and a Hopf algebra on graphs with an addition invariant and introduced a variety of examples of incidence Hopf algebras arising from families of graphs, matroids, and distributive lattices, many of which generalize well-known Hopf algebras [11,12].

In 1997 and 1999, Connes and Kreimer studied Hopf algebra structures on rooted trees and rooted forests and their applications in renormalization in quantum field theories [13, 14]. This promotes the study of Hopf algebras on graphs. In 2020, Aval et al. mentioned a Hopf algebra on labeled graphs arising from the unshuffle coproduct [15].

For more Hopf algebras on graphs, please refer to [16–20].

Permutations are related to graphs closely. In 1995, Malvenuto and Reutenauer studied a Hopf algebra on permutations, where the product is the classic shuffle III [21]. In 2014, Vargas defined a commutative but noncocommutative Hopf algebra on permutations by the supershuffle product III and the cut-box coproduct Δ_{\circ} without a proof [22], which was done by Liu and Li in 2021 [23]. In 2020, Zhao and Li defined another commutative Hopf algebra structure on permutations and its duality and figured out closed-formulas of the antipodes [24]. It is well-known that permutations are elements of symmetric groups, which are widely used in various fields, such as the algebraic number theory [25].

A labeled simple graph is a simple graph with vertices labeled by distinct positive integers. In this paper, we generalize the super-shuffle product and the cut-box coproduct on permutations to labeled simple graphs. We prove that the vector space spanned by labeled simple graphs with these two operations is a Hopf algebra.

This paper is organized as follows. In Section 2, we review some basic concepts of Hopf algebra, give the definition of labeled simple graphs, and define the super-shuffle product and the cut-box coproduct on labeled simple graphs. In Section 3, we prove that the vector space spanned

by labeled simple graphs is a graded algebra with the supershuffle product and a graded coalgebra with the cut-box coproduct. Furthermore, we prove the compatibility of these operations, then the vector space is a Hopf algebra. Finally, we summarize our main conclusions in Section 4.

2. Basic definitions

2.1. Preliminaries

Here, we recall some basic definitions related to Hopf algebra and see [4] for more details. Let *C* be a \mathbb{K} -module over commutative ring \mathbb{K} .

Define \mathbb{K} -bilinear mappings *m* from $C \otimes C$ to *C* and μ from \mathbb{K} to *C*, such that the diagrams in Figure 1 are commutative, then (C, m, μ) is a \mathbb{K} -algebra. Here, *m* and μ are called a *product* and a *unit*, respectively.

Figure 1. Associative law and unitary property.

Define K-linear mappings Δ from *C* to $C \otimes C$ and ν from *C* to K, such that the diagrams in Figure 2 are commutative, then (C, Δ, ν) is a K-*coalgebra*. Here, Δ and ν are called a *coproduct* and a *co-unit*, respectively.

We say (C, m, μ, Δ, ν) is a *bialgebra* if (C, m, μ) is an algebra, (C, Δ, ν) is a coalgebra, and one of the following *compatibility* conditions holds:

- (i) Δ and co-unit ν are algebra homomorphisms;
- (ii) *m* and unit μ are coalgebra homomorphisms.

In fact, (i) and (ii) are equivalent; see [26] for details.

Figure 2. Coassociative law and co-unitary property.

A vector space C is graded if

$$C = \bigoplus_{n \ge 0} C_n$$

and we call it *connected* when $C_0 \cong \mathbb{K}$ [26]. The algebra (C, m, μ) is *graded* if the product *m* satisfies

$$m(C_i \otimes C_i) \subseteq C_{i+i}$$

and

$$\mu(\mathbb{K}) \subseteq C_0.$$

Similarly, the coalgebra (C, Δ, ν) is *graded* if the coproduct Δ satisfies

$$\Delta(C_n) \subseteq \bigoplus C_i \otimes C_{n-i}$$

and

$$\nu(C_n)=0,$$

when $n \ge 1$. A bialgebra is *graded* when its algebra and coalgebra structures are both graded.

For bialgebra (C, m, μ, Δ, ν) , we call $S: C \rightarrow C$ an *antipode* if it satisfies

$$m \circ (S \otimes \mathrm{id}) \circ \Delta = \mu \circ \nu = m \circ (\mathrm{id} \otimes S) \circ \Delta$$

i.e., the diagram in Figure 3 is commutative. A bialgebra is a *Hopf algebra* when it has an antipode.

Actually, a graded connected bialgebra must be a Hopf algebra [26].

Figure 3. Antipode.

2.2. Main concepts

In this subsection, we recall some basic concepts of graph theory, which can be found in [27].

A *labeled simple graph* $\Gamma = (V, E)$ is a finite graph with no cycles and no multiple edges whose vertices are distinct positive integers, where *V* is the set of all vertices of Γ , also denoted by $V(\Gamma)$, and *E* is the set of all edges of Γ , also denoted by $E(\Gamma)$. Obviously, $E \subseteq V \times V$. If $(i_1, i_2) \in E$, then $i_1 \neq i_2$ and $(i_2, i_1) \notin E$, since the graph Γ has no cycles and no multiple edges. In particular, Γ is the empty graph when $V = \emptyset$, denoted by ϵ .

Let $\Gamma = (V, E)$ and $I \subseteq V$. Define the *restriction of* Γ *on* I by $\Gamma_I = (I, E_I)$, where

$$E_{I} = \{(i, j) | i, j \in I, (i, j) \in E\},\$$

and we call Γ_I a *subgraph of* Γ . If *I* is a nontrivial subset of *V*, we call Γ_I a *true subgraph of* Γ . If the vertex sets of two subgraphs of Γ are disjoint, then we say that the subgraphs are *disjoint subgraphs*. If

$$\Gamma_1 = (V_1, E_1), \ \ \Gamma_2 = (V_2, E_2)$$

and

$$V_1 \cap V_2 = \emptyset,$$

then denote

$$\Gamma_1 \cup \Gamma_2 = (V_1 \cup V_2, E_1 \cup E_2).$$

Obviously, there are no edges between V_1 and V_2 .

We introduce the following notations for convenience:

$$[n] = \begin{cases} \{1, 2, \dots, n\}, & n > 0, \\ \emptyset, & n = 0, \end{cases}$$

Mathematical Modelling and Control

and

$$[i, j] = \begin{cases} \{i, i+1, \dots, j\}, & i \leq j, \\ \emptyset, & i > j. \end{cases}$$

Example 1. The labeled simple graph

$$\Gamma = ([8], \{(1, 2), (1, 3), (2, 3), (4, 5), (6, 7), (6, 8)\})$$

 $\Gamma = \frac{2}{1} \sum_{3} \int_{4}^{5} \int_{6}^{7} L_{8},$

can be represented as the graph

then

$$\Gamma_{\{1,3,5,7\}} = (\{1,3,5,7\}, \{(1,3)\}) = \int_{1}^{3} \bullet_{5} \bullet_{7},$$

$$\Gamma_{[4]} = ([4], \{(1,2), (1,3), (2,3)\}) = \int_{1}^{2} D_{3} \bullet_{4},$$

$$\Gamma_{[3,6]} = ([3,6], \{(4,5)\}) = \bullet_{3} \int_{4}^{5} \bullet_{6}.$$

Let

$$H_n = \{\Gamma \mid \Gamma = ([n], E) \text{ is a labeled simple graph}\},\$$

and \mathcal{H}_n be the vector space spanned by H_n over field \mathbb{K} , for a nonnegative integer *n*. In particular, $H_0 = \{\epsilon\}$ and $\mathcal{H}_0 = \mathbb{K}H_0$. Denote

$$H = \bigcup_{n=0}^{\infty} H_n$$
 and $\mathcal{H} = \bigoplus_{n=0}^{\infty} \mathcal{H}_n$.

Let $\Gamma = (V, E)$ be a nonempty labeled simple graph, where

$$V = \{v_1, v_2, \cdots, v_n\}.$$

Define the *restructure of* $\Gamma = (V, E)$ by \hat{V} to be $\hat{\Gamma} = (\hat{V}, \hat{E})$, where

$$\hat{V} = \{\hat{v}_1, \hat{v}_2, \cdots, \hat{v}_n\}$$

is a set of distinct positve integers satisfying

$$\hat{v}_i < \hat{v}_j \Leftrightarrow v_i < v_j,$$

and \hat{E} satisfies

$$(\hat{v}_i, \hat{v}_j) \in \hat{E} \Leftrightarrow (v_i, v_j) \in E,$$

for any $1 \le i, j \le n$.

Volume 4, Issue 1, 32-43.

Example 2. For

$$\Gamma = {}_5^2 {}_3 {}_8^7,$$

the restructure of Γ by [5] is ${}_{3}^{1} \stackrel{1}{\searrow} {}_{2}^{4} \stackrel{4}{\underset{5}{}_{5}}$ and the restructure of Γ by {1, 3, 5, 7, 9} is ${}_{5}^{1} \stackrel{1}{\underset{5}{}_{9}} \stackrel{7}{\underset{9}{}_{9}}$.

Let *I* be the set $\{i_1, i_2, \dots, i_n\}$ of distinct positive intergers with $i_1 < i_2 < \dots < i_n$. We define a mapping st_{*I*} from *I* to [|I|] to be the *standardization of I* satisfying st_{*I*} $(i_a) = a$ for $1 \le a \le n$. For $x, y \in I$, we have st_{*I*} $(x) < st_I(y)$ if, and only if, x < y. For a subset *S* of *I*, denote

$$\operatorname{st}_{I}(S) = {\operatorname{st}_{I}(i) | i \in S}$$

In general, the standardizations of a number in different sets are different. For example, let $I_1 = \{6, 7, 9\}$ and $I_2 = \{1, 3, 7, 9, 11\}$, then st_{*I*₁}(7) = 2 and st_{*I*₂}(7) = 3. For convenience, we omit the subscript of the set.

Define the *standard form* of $\Gamma = (V, E)$ by $st(\Gamma) = (st(V), st(E))$, where st(V) = [|V|] and st(E) satisfies

$$(\operatorname{st}(v_1), \operatorname{st}(v_2)) \in \operatorname{st}(E) \Leftrightarrow (v_1, v_2) \in E.$$

Obviously, the above standardizations are of the vertex set V, so we omit the subscript. In particular, we have $st(\epsilon) = \epsilon$. Thus, $st(\cdot)$ is a mapping from the set of all labeled simple graphs to H. In fact, the standard form of $\Gamma = (V, E)$ is the restructure of Γ by [|V|].

In addition, for a positive integer *n*, let $\Gamma^{\uparrow n}$ be the restructure of Γ by the set

$$V^{\uparrow n} := \{ v + n | v \in V \}.$$

Similarly, let $\Gamma^{\downarrow n}$ be the restructure of Γ by the set

$$V^{\downarrow n} := \{ v - n | v \in V \}$$

provided n is less than the minimum of V.

Example 3. For labeled simple graphs

$$5_{3} \bullet 2, 5_{2} \bullet 2^{1} \bullet 2^{7}, and \bullet 5,$$

their standard forms are

Mathematical Modelling and Control

For nonempty Γ in *H*, the standard form of any restructure of Γ must be Γ , i.e.,

$$\operatorname{st}(\widehat{\Gamma}) = (\operatorname{st}(\widehat{V}), \operatorname{st}(\widehat{E})) = (V, E) = \Gamma,$$

where the $\hat{\Gamma}$ is a restructure of Γ . Conversely, if the standard form of a labeled simple graph is Γ , then it must be a restructure of Γ .

Example 4. For

and

$$\Gamma = \mathbf{I}_1^2 \mathbf{I}_3^4 \bullet_5 \in H_5,$$

the restructure of Γ by [4, 8] is $\int_{4}^{5} \int_{6}^{7} \cdot \mathbf{8}$ and the restructure of Γ by {1, 3, 5, 7, 9} is $\int_{1}^{3} \int_{-5}^{7} \cdot \mathbf{9}$. We have

For $\Gamma = ([n], E)$ in H_n , we call *i* a *split* of Γ if

$$\Gamma_{[i]} \cup \Gamma_{[i+1,n]} = \Gamma,$$

where $0 \le i \le n$. Obviously, *i* is a split of Γ if, and only if, there are no edges between [*i*] and [*i* + 1, *n*] in Γ . By the definition, 0 and *n*, called *trivial splits*, are always splits of labeled simple graphs in H_n when $n \ge 1$. We call Γ *indecomposible* if it is nonempty and only has trivial splits.

For $\Gamma = ([n], E)$ in $H_n, n \ge 1$, assume that $\{i_0, i_1, \dots, i_s\}$ is the set of all splits of Γ , where

$$0 = i_0 < i_1 < \cdots < i_s = n,$$

then we call $\Gamma_{[i_{k-1}+1,i_k]}$ an *atom* of Γ , $1 \le k \le s$. Obviously, the standard form of an atom is indecomposible since there is no split of Γ in $[i_{k-1} + 1, i_k]$ for $1 \le k \le s$. Let

$$\Gamma_k = \operatorname{st}(\Gamma_{[i_{k-1}+1,i_k]})$$

for $1 \le k \le s$. We define the *decomposition* of Γ by

$$\Gamma = \Gamma_1 \diamond \Gamma_2 \diamond \cdots \diamond \Gamma_s.$$

Actually, if j_k : = $i_k - i_{k-1}$, then $\Gamma_k \in H_{j_k}$ for $1 \le k \le s$, and

$$\Gamma = \Gamma_1 \diamond \cdots \diamond \Gamma_s = \Gamma_1 \cup \Gamma_2^{\uparrow i_1} \cup \cdots \cup \Gamma_s^{\uparrow i_{s-1}}$$

In particular, when $\Gamma = \epsilon$, its decomposition is itself.

Example 5. (1) The set of splits of $\int_{1}^{2} \int_{3}^{5} \cdot 4$ is {0, 2, 5} and its decomposition is

$$\mathbf{e}_{1}^{2} \mathbf{e}_{3}^{5} \mathbf{e}_{4} = \operatorname{st}\left(\mathbf{e}_{1}^{2}\right) \diamond \operatorname{st}\left(\mathbf{e}_{3}^{5} \mathbf{e}_{4}\right) = \mathbf{e}_{1}^{2} \diamond \mathbf{e}_{1}^{3} \mathbf{e}_{2}.$$

The atoms of $\oint_1^2 \oint_3^5 \oint_4^4$ are \oint_1^2 and $\oint_3^5 \oint_4^4$.

(2) The set of splits of l_2^1 l_3^4 \cdot_5 is $\{0, 2, 4, 5\}$, so its decomposition is

$$\mathbf{J}_{2}^{1} \mathbf{J}_{3}^{4} \bullet_{5} = \operatorname{st}\left(\mathbf{J}_{2}^{1}\right) \diamond \operatorname{st}\left(\mathbf{J}_{3}^{4}\right) \diamond \operatorname{st}\left(\bullet_{5}\right) = \mathbf{J}_{2}^{1} \diamond \mathbf{J}_{1}^{2} \diamond \bullet_{1}$$

The atoms of $\mathbf{b}_{2}^{\mathbf{1}} \mathbf{b}_{3}^{\mathbf{4}} \mathbf{\bullet}_{5}$ are $\mathbf{b}_{2}^{\mathbf{1}}, \mathbf{b}_{3}^{\mathbf{4}}$, and $\mathbf{\bullet}_{5}$.

(3) The set of splits of ${}_{1}^{2} \searrow_{3}$ is {0,3}, so it is indecomposible. Its decomposition is itself, and so is its atom.

Define the *cut-box coproduct* Δ on \mathcal{H} by

$$\Delta(\Gamma) = \sum_{j=0}^{s} \Gamma_1 \diamond \cdots \diamond \Gamma_j \otimes \Gamma_{j+1} \diamond \cdots \diamond \Gamma_s$$
$$= \sum_{j=0}^{s} \operatorname{st}(\Gamma_{[1,i_j]}) \otimes \operatorname{st}(\Gamma_{[i_j+1,i_s]}),$$

for nonempty

$$\Gamma = \Gamma_1 \diamond \Gamma_2 \diamond \cdots \diamond \Gamma_s$$

in H_n with splits

$$0 = i_0 < i_1 < \cdots < i_s = n$$
 and $\Delta(\epsilon) = \epsilon \otimes \epsilon$.

Define the *co-unit* v from \mathcal{H} to \mathbb{K} by

$$\nu(\Gamma) = \begin{cases} 1, & \Gamma = \epsilon, \\ 0, & \text{otherwise} \end{cases}$$

for Γ in H.

Example 6.

$$\Delta \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \epsilon \otimes \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \epsilon \otimes \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \delta \otimes \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \delta \otimes \epsilon,$$

$$\Delta \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \Delta \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \Delta \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \delta \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \delta \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \delta \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \delta \begin{pmatrix} 1 \\ 2 \\$$

Mathematical Modelling and Control

$$\begin{split} \Delta(\mathbf{l}_{2}^{\mathbf{l}} \mathbf{t}_{3}^{\mathbf{4}} \bullet_{5}) &= \Delta(\mathbf{l}_{2}^{\mathbf{l}} \diamond \mathbf{t}_{1}^{2} \diamond \bullet_{1}) \\ &= \epsilon \otimes \mathbf{l}_{2}^{\mathbf{l}} \diamond \mathbf{l}_{1}^{2} \diamond \bullet_{1} + \mathbf{t}_{2}^{1} \otimes \mathbf{t}_{1}^{2} \diamond \bullet_{1} \\ &+ \mathbf{t}_{2}^{1} \diamond \mathbf{t}_{2}^{2} \otimes \bullet_{1} + \mathbf{t}_{2}^{1} \diamond \mathbf{t}_{1}^{2} \diamond \bullet_{1} \otimes \epsilon \\ &= \epsilon \otimes \mathbf{l}_{2}^{\mathbf{l}} \mathbf{t}_{3}^{\mathbf{4}} \bullet_{5} + \mathbf{t}_{2}^{1} \otimes \mathbf{l}_{1}^{2} \bullet_{3} + \mathbf{t}_{2}^{\mathbf{l}} \mathbf{t}_{3}^{\mathbf{4}} \otimes \bullet_{1} + \mathbf{t}_{2}^{\mathbf{l}} \mathbf{t}_{3}^{\mathbf{4}} \bullet_{5} \otimes \epsilon . \end{split}$$

Theorem 2.1. $(\mathcal{H}, \Delta, \nu)$ is a graded coalgebra.

Proof. It is easy to verify that v is a co-unit. Obviously,

$$(\mathrm{id}\otimes\Delta)\circ\Delta(\epsilon)=\epsilon\otimes\epsilon\otimes\epsilon=(\Delta\otimes\mathrm{id})\circ\Delta(\epsilon).$$

Suppose $\Gamma = ([n], E)$ with $n \ge 1$, and its decomposition is

$$\Gamma = \Gamma_1 \diamond \Gamma_2 \diamond \cdots \diamond \Gamma_s,$$

then,

$$\begin{aligned} (\mathrm{id} \otimes \Delta) \circ \Delta(\Gamma) \\ &= (\mathrm{id} \otimes \Delta) \circ \Delta(\Gamma_1 \diamond \Gamma_2 \diamond \cdots \diamond \Gamma_s) \\ &= (\mathrm{id} \otimes \Delta) \sum_{j=0}^s \Gamma_1 \diamond \cdots \diamond \Gamma_j \otimes \Gamma_{j+1} \diamond \cdots \diamond \Gamma_s \\ &= \sum_{j=0}^s \Gamma_1 \diamond \cdots \diamond \Gamma_j \otimes (\sum_{k=j}^s \Gamma_{j+1} \diamond \cdots \diamond \Gamma_k \otimes \Gamma_{k+1} \diamond \cdots \diamond \Gamma_s) \\ &= \sum_{0 \leq j \leq k \leq s} \Gamma_1 \diamond \cdots \diamond \Gamma_j \otimes \Gamma_{j+1} \diamond \cdots \diamond \Gamma_k \otimes \Gamma_{k+1} \diamond \cdots \diamond \Gamma_s \\ &= \sum_{k=0}^s (\sum_{j=0}^k \Gamma_1 \diamond \cdots \diamond \Gamma_j \otimes \Gamma_{j+1} \diamond \cdots \diamond \Gamma_k) \otimes \Gamma_{k+1} \diamond \cdots \diamond \Gamma_s \\ &= (\Delta \otimes \mathrm{id}) \sum_{k=0}^s \Gamma_1 \diamond \cdots \diamond \Gamma_k \otimes \Gamma_{k+1} \diamond \cdots \diamond \Gamma_s \\ &= (\Delta \otimes \mathrm{id}) \circ \Delta(\Gamma), \end{aligned}$$

where

$$\Gamma_{k+1} \diamond \cdots \diamond \Gamma_k = \epsilon$$

for $0 \le k \le s$. So, Δ satisfies the coassociative law. Hence, $(\mathcal{H}, \Delta, \nu)$ is a coalgebra.

By the definition of the coproduct Δ , we have

$$\Delta(\mathcal{H}_n) \subseteq \bigoplus \mathcal{H}_i \otimes \mathcal{H}_{n-i}$$

and

$$\nu(\mathcal{H}_n)=0.$$

when $n \ge 1$. So, $(\mathcal{H}, \Delta, \nu)$ is a graded coalgebra.

Volume 4, Issue 1, 32–43.

Define the *super-shuffle product* * on \mathcal{H} by

$$\Gamma_{1} * \Gamma_{2} = \sum_{\substack{I, J: |I|=m, |J|=n \\ I \cup J = [m+n] = V(\Gamma) \\ \operatorname{st}(\Gamma_{I}) = \Gamma_{1}, \operatorname{st}(\Gamma_{J}) = \Gamma_{2}}} \Gamma$$
(1)

for Γ_1 in H_m and Γ_2 in H_n . Sometimes, we denote it by $*(\Gamma_1, \Gamma_2)$. Obviously, the product * is commutative on \mathcal{H} . Define the *unit* μ from \mathbb{K} to \mathcal{H} by $\mu(1) = \epsilon$.

Actually, Γ_I is the restructure of Γ_1 by I, and Γ_J is the restructure of Γ_2 by J in (1). Given I and J satisfying |I| = m, |J| = n, and $I \cup J = [m + n]$, Γ traverses all graphs in H_{m+n} , which is a union of the restructure of $\Gamma_1 = (V_1, E_1)$ by I, the restructure of $\Gamma_2 = (V_2, E_2)$ by J, and some edges between \hat{V}_1 and \hat{V}_2 . That is, Γ traverses the set

$$P_{I,J} = \{ (\hat{V}_1 \cup \hat{V}_2, \hat{E}_1 \cup \hat{E}_2 \cup C) | \hat{V}_1 = I,$$
$$\hat{V}_2 = J, C \subseteq \hat{V}_1 \times \hat{V}_2 \}.$$

So, we rewrite (1) as

$$\Gamma_1 * \Gamma_2 = \sum_{\substack{I, \ J: \ |I|=m, \ |J|=n}} \sum_{\substack{\Gamma \in P_{I,J}}} \Gamma.$$
 (2)

That is, each term Γ in $\Gamma_1 * \Gamma_2$ is a graph by adding some edges between \hat{V}_1 and \hat{V}_2 to $\hat{\Gamma}_1 \cup \hat{\Gamma}_2$, where

$$\hat{V}_1 \cup \hat{V}_2 = [m+n],$$

i.e.,

$$\Gamma = (\hat{V}_1 \cup \hat{V}_2, \hat{E}_1 \cup \hat{E}_2 \cup C),$$
(3)

where *C* is a set of edges between \hat{V}_1 and \hat{V}_2 . Conversely, $(\hat{V}_1, \hat{V}_2, C)$ can uniquely determine a term in $\Gamma_1 * \Gamma_2$, where

$$\hat{V}_1 \cup \hat{V}_2 = [m+n]$$

and *C* is a set of edges between \hat{V}_1 and \hat{V}_2 . We consider two terms in $\Gamma_1 * \Gamma_2$ the same if, and only if, their corresponding \hat{V}_1 , \hat{V}_2 and *C* are the same. Thus, each term in $\Gamma_1 * \Gamma_2$ is unique.

Example 7.

$$\begin{array}{c} \mathbf{1}_{1}^{2} * \mathbf{0}_{1} = \frac{2}{1} \mathbf{0}_{3}^{2} + \frac{2}{1} \mathbf{0$$

Mathematical Modelling and Control

Here, we color the vertices of the term Γ in $\Gamma_1 * \Gamma_2$ restricted to Γ_1 red and to Γ_2 blue, respectively. In this example, although ${}_2^3 \triangleright_1$ and ${}_1^3 \triangleright_2$ are the same as graphs, we consider that they are different in $\Gamma_1 * \Gamma_2$ because their \hat{V}_1 and \hat{V}_2 are not the same. So, each term in $\Gamma_1 * \Gamma_2$ is unique.

In order to represent vertices in each term of $\Gamma_1 * \Gamma_2$ before restructure, we name the vertices in Γ_1 and Γ_2 , respectively, as

$$V(\Gamma_1) = \{v_{11}, v_{12}, \cdots, v_{1m}\}$$

$$V(\Gamma_2) = \{v_{21}, v_{22}, \cdots, v_{2n}\},\$$

where $v_{11} < v_{12} < \cdots < v_{1m}$ and $v_{21} < v_{22} < \cdots < v_{2n}$. Although v_{11} and v_{21} are both equal to 1, we consider that they are different because they belong to different graphs, then the vertex set of a term in $\Gamma_1 * \Gamma_2$ is

$$\hat{V}_1 \cup \hat{V}_2 = {\hat{v}_{11}, \cdots, \hat{v}_{1m}, \hat{v}_{21}, \cdots, \hat{v}_{2n}} = [m+n].$$

Theorem 2.2. $(\mathcal{H}, *, \mu)$ is a graded algebra.

Proof. It is easy to verify that μ is a unit. Suppose

$$\Gamma_1 = ([n_1], E_1), \quad \Gamma_2 = ([n_2], E_2)$$

and

and

$$\Gamma_3 = ([n_3], E_3)$$

in *H*. For any term Γ in $(\Gamma_1 * \Gamma_2) * \Gamma_3$, it corresponds to two disjoint subsets *J* and *K* of $[n_1+n_2+n_3]$ with $|J| = n_1+n_2$ and $|K| = n_3$, such that st (Γ_J) is a term in $\Gamma_1 * \Gamma_2$ and st $(\Gamma_K) = \Gamma_3$. It means

$$(\Gamma_1 * \Gamma_2) * \Gamma_3 = \sum_{\substack{J, K: \ |J| = n_1 + n_2, \ |K| = n_3 \\ J \cup K = [n_1 + n_2 + n_3] = V(\Gamma) \ \text{st}(\Gamma_J) \text{ is a term in } \Gamma_1 * \Gamma_2}} \Gamma.$$
(4)

For a fixed J in (4), st(Γ_J) corresponds to two disjoint subsets P and Q of $[n_1 + n_2]$ with $|P| = n_1$ and $|Q| = n_2$, such that

$$\operatorname{st}(\operatorname{st}(\Gamma_J)_P) = \Gamma_I$$

and

$$\operatorname{st}(\operatorname{st}(\Gamma_J)_Q) = \Gamma_2.$$

Therefore, there is a subset *M* of *J* with $|M| = n_1$ corresponding to *P*, i.e., st_{*J*}(*M*) = *P*, such that

$$\operatorname{st}(\Gamma_M) = \operatorname{st}(\operatorname{st}(\Gamma_J)_P) = \Gamma_1.$$

Volume 4, Issue 1, 32–43.

Similarly, there is a subset N of J with $|N| = n_2$ corresponding to Q, i.e., st_J(N) = Q, such that

$$\operatorname{st}(\Gamma_N) = \operatorname{st}(\operatorname{st}(\Gamma_I)_O) = \Gamma_2.$$

That means (4) can be rewritten as

$$(\Gamma_{1} * \Gamma_{2}) * \Gamma_{3} = \sum_{\substack{J, K: |J|=n_{1}+n_{2}, |K|=n_{3} \\ J \cup K = [n_{1}+n_{2}+n_{3}] = V(\Gamma)}} \sum_{\substack{M, N: |M|=n_{1}, |N|=n_{2} \\ M \cup N = J \\ st(\Gamma_{M}) = \Gamma_{1}, st(\Gamma_{N}) = \Gamma_{2}, st(\Gamma_{K}) = \Gamma_{3}}} \Gamma.$$
(5)

For a fixed subset J in $[n_1 + n_2 + n_3]$ with cardinality $n_1 + n_2$, P traverses all subsets with cardinality n_1 in $[n_1 + n_2]$ since st(Γ_J) traverses all terms in $\Gamma_1 * \Gamma_2$. Meanwhile, M traverses all subsets with cardinality n_1 in J. Therefore, M traverses all subsets with cardinality n_1 in $[n_1+n_2+n_3]$ since J traverses all subsets with cardinality $n_1 + n_2$ in $[n_1+n_2+n_3]$. At the same time, N traverses all subsets with cardinality n_2 in $[n_1 + n_2 + n_3]$ from $J = M \cup N$. Thus, (5) can be rewritten as

$$(\Gamma_{1} * \Gamma_{2}) * \Gamma_{3} = \sum_{\substack{M, N, K: |M|=n_{1}, |N|=n_{2}, |K|=n_{3} \\ M \cup N \cup K = [n_{1}+n_{2}+n_{3}] = V(\Gamma) \\ \operatorname{st}(\Gamma_{M}) = \Gamma_{1}, \operatorname{st}(\Gamma_{N}) = \Gamma_{2}, \operatorname{st}(\Gamma_{K}) = \Gamma_{3}} \Gamma.$$
(6)

Similarly, $\Gamma_1 * (\Gamma_2 * \Gamma_3)$ is equal to (6). Hence, * satisfies the associative law and $(\mathcal{H}, *, \mu)$ is an algebra.

By the definition of the product *, we have

$$\mathcal{H}_i * \mathcal{H}_i \subseteq \mathcal{H}_{i+i}$$

and

$$\mu(\mathbb{K}) \subseteq \mathcal{H}_0.$$

So, $(\mathcal{H}, *, \mu)$ is a graded algebra.

3. Main theorems

In this section, we will prove that $(\mathcal{H}, *, \mu, \Delta, \nu)$ is a Hopf algebra. Now, we give two lemmas.

Let $\Gamma_1 = (V_1, E_1)$ in H_m and $\Gamma_2 = (V_2, E_2)$ in H_n be nonempty graphs and Γ be a term in $\Gamma_1 * \Gamma_2$. Thus, Γ can be represented by $(\hat{V}_1 \cup \hat{V}_2, \hat{E}_1 \cup \hat{E}_2 \cup C)$ from (3), where

$$\hat{\Gamma}_1 := (\hat{V}_1, \hat{E}_1)$$

is the restructure of Γ_1 by \hat{V}_1 and

$$\hat{\Gamma}_2 := (\hat{V}_2, \hat{E}_2)$$

is the restructure of Γ_2 by \hat{V}_2 . Obviously,

$$\hat{V}_1 \cup \hat{V}_2 = [m+n].$$

Mathematical Modelling and Control

Lemma 3.1. Each atom of Γ in $\Gamma_1 * \Gamma_2$ can only contain subgraphs of $\hat{\Gamma}_1$ or $\hat{\Gamma}_2$ corresponding to some complete atoms in Γ_1 or Γ_2 .

Proof. Let

and

$$\Gamma_1 = (\{v_{11}, \cdots, v_{1m}\}, E_1)$$

$$\Gamma_2 = (\{v_{21}, \cdots, v_{2n}\}, E_2)$$

be nonempty in *H*, where $v_{11} < \cdots < v_{1m}$ and $v_{21} < \cdots < v_{2n}$. Consider a term Γ in $\Gamma_1 * \Gamma_2$. Suppose $\Gamma_{[i,j]}$ is an atom of Γ containing a nonempty subgraph of $\hat{\Gamma}_{1\{\hat{v}_{1k}\}_{k=p}^{q}}$, where $\hat{\Gamma}_{1\{\hat{v}_{1k}\}_{k=p}^{q}}$ corresponds to the atom $\Gamma_{1\{v_{1k}\}_{k=p}^{q}}$ of Γ_1 .

When p = q, there is only one element in $\{\hat{v}_{lk}\}_{k=p}^{q}$, then $\Gamma_{[i,j]}$ contains the complete atom $\hat{\Gamma}_{1\{\hat{v}_{lk}\}_{k=p}^{q}}$. Hence, the conclusion holds.

When $1 \leq p < q \leq m$, $\{v_{1k}\}_{k=p}^{q}$ contains at least two vertices. Suppose that $\Gamma_{[i,j]}$ contains a true subgraph of $\hat{\Gamma}_{1\{\hat{v}_{1k}\}_{k=p}^{q}}$. In fact, since $\{\hat{v}_{1k}\}_{k=p}^{q}$ maintains the order relationship in $\{v_{1k}\}_{k=p}^{q}$, the vertices of this true subgraph correspond to a true subinterval in $\{v_{1k}\}_{k=p}^{q}$. Let

$$\omega = \min\{k \mid \hat{v}_{1k} \in [i, j], p \le k \le q\}$$

and

$$\Omega = \max\{k \mid \hat{v}_{1k} \in [i, j], p \leq k \leq q\}.$$

We have $i \leq \hat{v}_{1\omega} \leq \hat{v}_{1\Omega} \leq j$, then

$$\{\hat{v}_{1k}\}_{k=\omega}^{\Omega} \subseteq [i, j]$$

and $\omega \neq p$ or $\Omega \neq q$ because $\Gamma_{[i,j]}$ contains a true subgraph of $\hat{\Gamma}_{1_{\{v_{i,k}\}_{k=n}^{q}}}$.

If $\omega \neq p$, then $\omega > p$. From

$$1 \leq \max_{1 \leq k \leq \omega - 1} \{ \hat{v}_{1k} \} < i \leq \min_{\omega \leq k \leq m} \{ \hat{v}_{1k} \},$$
$$\{ \hat{v}_{1k} \}_{k=1}^{\omega - 1} \subseteq [i - 1]$$

and

$$\{\hat{v}_{1k}\}_{k=\omega}^m \subseteq [i, m+n].$$

From $\Gamma_{[i,j]}$ is an atom of Γ and i - 1 is a split of Γ , there are no edges between [i - 1] and [i, m + n] in Γ . Therefore,

$$\Gamma_{\{\hat{v}_{1k}\}_{k=1}^{m}} = \Gamma_{\{\hat{v}_{1k}\}_{k=1}^{\omega-1}} \cup \Gamma_{\{\hat{v}_{1k}\}_{k=\omega}^{m}}.$$

Volume 4, Issue 1, 32-43.

By the definition of *, we have

$$\mathrm{st}(\Gamma_{\{\hat{v}_{1k}\}_{k=1}^m})=\Gamma_1$$

and

$$\operatorname{st}_{\hat{V}_1}(\hat{v}_{1k}) = v_{1k} = k.$$

Hence,

$$\begin{split} \Gamma_1 &= \operatorname{st}(\Gamma_{\{\hat{v}_{1k}\}_{k=1}^m}) \\ &= \operatorname{st}(\Gamma_{\{\hat{v}_{1k}\}_{k=1}^{\omega-1}} \cup \Gamma_{\{\hat{v}_{1k}\}_{k=\omega}^m}) \\ &= \Gamma_1[\omega-1] \cup \Gamma_1[\omega,m], \end{split}$$

where $p-1 < \omega - 1 < q$, i.e., $\omega - 1$ is a split of Γ_1 . However, there is no split of Γ_1 between p-1 and q, since $\Gamma_{1\{\nu_{lk}\}_{k=p}^{q}}$ is an atom of Γ_1 , which is a contradiction. Similarly, when $\Omega \neq q$, we have $p-1 < \Omega < q$ and Ω is a split of Γ_1 , a contradiction.

Thus, if an atom of Γ contains a true subgraph in $\hat{\Gamma}_1$, then this subgraph must correspond to some complete atoms of Γ_1 . Similarly, we can prove the conclusion holds for atoms in Γ_2 .

For simplicity, we restate Lemma 3.1 as: for any term Γ in $\Gamma_1 * \Gamma_2$, any atom of Γ can only contain some complete *original* atoms of Γ_1 or Γ_2 .

Remark 3.1. For Γ in H_n , suppose its decomposition is

$$\Gamma = \Gamma_1 \diamond \Gamma_2 \diamond \cdots \diamond \Gamma_s$$

with splits

$$0 = i_0 < i_1 < \cdots < i_s = n$$

then

$$\Delta(\Gamma) = \sum_{k=0}^{s} \Gamma_1 \diamond \cdots \diamond \Gamma_k \otimes \Gamma_{k+1} \diamond \cdots \diamond \Gamma_s$$
$$= \sum_{k=0}^{s} \operatorname{st}(\Gamma_{[1,i_k]}) \otimes \operatorname{st}(\Gamma_{[i_k+1,i_s]}).$$

If $\Theta_1 \otimes \Theta_2$ is the term in $\Delta(\Gamma)$, then Θ_1 is a standard form of the first *k* atoms of Γ for some $0 \le k \le s$. Let Γ be a term in $\Gamma_1 * \Gamma_2$ and $\Theta_1 \otimes \Theta_2$ be a term in $\Delta(\Gamma)$. From Lemma 3.1, Θ_1 only contains the standard forms of some complete original atoms of Γ_1 or Γ_2 . If the first few atoms of a labeled simple graph contain *l* vertices, then these vertices must be [*l*]. So, if Θ_1 contains *i* original atoms of Γ_1 , then they must be the

Mathematical Modelling and Control

first *i* atoms of Γ_1 . Similarly, if Θ_1 contains *j* original atoms of Γ_2 , then they must be the first *j* atoms of Γ_2 .

Let Γ_1 and Γ_2 be nonempty in *H*. Suppose their decompositions are

$$\Gamma_1 = \Gamma_{11} \diamond \cdots \diamond \Gamma_{1s}$$

and

$$\Gamma_2 = \Gamma_{21} \diamond \cdots \diamond \Gamma_{2t}.$$

Define $\Delta_{ij}(\Gamma_1 * \Gamma_2)$ to be the sum of all terms $\Theta_1 \otimes \Theta_2$ in $\Delta(\Gamma_1 * \Gamma_2)$, where Θ_1 contains the first *i* complete original atoms in Γ_1 and the first *j* complete original atoms in Γ_2 , $0 \le i \le s$, and $0 \le j \le t$.

Lemma 3.2. Let Γ_1 and Γ_2 be nonempty in H. Assume their decompositions are

$$\Gamma_1 = \Gamma_{11} \diamond \cdots \diamond \Gamma_{1s}$$
 and $\Gamma_2 = \Gamma_{21} \diamond \cdots \diamond \Gamma_{2t}$,

then,

$$\Delta_{ij}(\Gamma_1 * \Gamma_2) = (\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} * \Gamma_{21} \diamond \cdots \diamond \Gamma_{2j})$$
$$\otimes (\Gamma_{1\,i+1} \diamond \cdots \diamond \Gamma_{1s} * \Gamma_{2\,i+1} \diamond \cdots \diamond \Gamma_{2t}),$$

for $0 \le i \le s$ and $0 \le j \le t$.

Proof. Denote

$$V(\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i}) = V_{11},$$
$$|V_{11}| = h_1, \quad V_1 \setminus V_{11} = V_{12},$$

and

$$(E_1)_{V_{11}} = E_{11}, \quad (E_1)_{V_{12}} = E_{12}.$$

Similarly,

$$V(\Gamma_{21} \diamond \cdots \diamond \Gamma_{2j}) = V_{21}, |V_{21}| = h_2, V_2 \setminus V_{21} = V_{22},$$

and

and

$$(E_2)_{V_{21}} = E_{21}, \quad (E_2)_{V_{22}} = E_{22}.$$

Obviously,

$$\Gamma_1 = (V_{11} \cup V_{12}, E_{11} \cup E_{12})$$

$$\Gamma_2 = (V_{21} \cup V_{22}, E_{21} \cup E_{22}).$$

Volume 4, Issue 1, 32-43.

Next, we denote \hat{V}_{11} as the subset corresponding to V_{11} in \hat{V}_1 and $(\hat{V}_{11}, \hat{E}_{11})$ as the restructure (V_{11}, E_{11}) by \hat{V}_{11} . Similarly, we have $\hat{V}_{12}, \hat{E}_{12}, \hat{V}_{21}, \hat{E}_{21}, \hat{V}_{22}$, and \hat{E}_{22} .

By (3), each term Γ in $\Gamma_1 * \Gamma_2$,

$$\Gamma = (\hat{V}_1 \cup \hat{V}_2, \hat{E}_1 \cup \hat{E}_2 \cup C),$$

where *C* is a set of edges between \hat{V}_1 and \hat{V}_2 . Let $\Theta_1 \otimes \Theta_2$ be a term in $\Delta(\Gamma)$ and in $\Delta_{ij}(\Gamma_1 * \Gamma_2)$. By the definition of Δ_{ij} , $h_1 + h_2$ is a split of Γ ,

$$\hat{V}_{11} \cup \hat{V}_{21} = [h_1 + h_2],$$

 $\hat{V}_{12} \cup \hat{V}_{22} = [h_1 + h_2 + 1, m + n]$

and

$$\Theta_1 = \operatorname{st}(\Gamma_{[h_1+h_2]}) = \operatorname{st}(\Gamma_{\hat{V}_{11}\cup\hat{V}_{21}}).$$

Since $h_1 + h_2$ is a split of Γ , there are no edges between $[h_1 + h_2]$ and $[h_1 + h_2 + 1, m + n]$ in Γ . Thus, there are no edges between \hat{V}_{11} and \hat{V}_{22} and no edges between \hat{V}_{12} and \hat{V}_{21} . Therefore, *C* is $C_1 \cup C_2$, where

$$C_1 \subseteq \hat{V}_{11} \times \hat{V}_{21}$$

and

$$C_2 \subseteq \hat{V}_{12} \times \hat{V}_{22}.$$

Hence,

$$\Gamma = (\hat{V}_{11} \cup \hat{V}_{12} \cup \hat{V}_{21} \cup \hat{V}_{22}, \hat{E}_{11} \cup \hat{E}_{12} \cup \hat{E}_{21} \cup \hat{E}_{22} \cup C_1 \cup C_2).$$
(7)

Therefore,

$$\Theta_1 = \operatorname{st}[(\hat{V}_{11} \cup \hat{V}_{21}, \hat{E}_{11} \cup \hat{E}_{21} \cup C_1)]$$

and

$$\Theta_2 = \operatorname{st}[(\hat{V}_{12} \cup \hat{V}_{22}, \hat{E}_{12} \cup \hat{E}_{22} \cup C_2)],$$

then Θ_1 is a term in

$$\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} \ast \Gamma_{21} \diamond \cdots \diamond \Gamma_{2i}$$

for

 $\operatorname{st}((\Theta_1)_{\hat{V}_{11}}) = \operatorname{st}(\hat{V}_{11}, \hat{E}_{11}) = \Gamma_{11} \diamond \cdots \diamond \Gamma_{1i}$

and

$$\operatorname{st}((\Theta_1)_{\hat{V}_{21}}) = \operatorname{st}(V_{21}, E_{21}) = \Gamma_{21} \diamond \cdots \diamond \Gamma_{2j}$$

Mathematical Modelling and Control

Similarly, Θ_2 is a term in

$$\Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s} * \Gamma_{2,j+1} \diamond \cdots \diamond \Gamma_{2t}.$$

For given Θ_1 in $\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} * \Gamma_{21} \diamond \cdots \diamond \Gamma_{2i}$, let

$$S = \left\{ \Gamma \left| \begin{array}{c} \Gamma \text{ is a term in } \Gamma_1 * \Gamma_2 \text{ and } \exists \Theta_2 \text{ s.t. } \Theta_1 \otimes \Theta_2 \\ \text{ is a term in } \Delta(\Gamma) \text{ and in } \Delta_{ij}(\Gamma_1 * \Gamma_2) \end{array} \right\}$$

For each Γ in S,

$$\Gamma = (\hat{V}_{11} \cup \hat{V}_{12} \cup \hat{V}_{21} \cup \hat{V}_{22}, \hat{E}_{11} \cup \hat{E}_{12} \cup \hat{E}_{21} \cup \hat{E}_{22} \cup C_1 \cup C_2)$$

by (7), where \hat{V}_{11} , \hat{V}_{21} , and C_1 are fixed, since Θ_1 is fixed.

By (3), when Γ traverses all terms in $\Gamma_1 * \Gamma_2$, its \hat{V}_1 and \hat{V}_2 traverse all disjoint subsets of [m+n] with cardinalities m and n, respectively, and C traverses all subsets in $\hat{V}_1 \times \hat{V}_2$ for fixed \hat{V}_1 and \hat{V}_2 . Thus, \hat{V}_{12} and \hat{V}_{22} of Γ in S traverse all disjoint subsets of $[h_1 + h_2 + 1, m + n]$ with cardinalities $m - h_1$ and $n - h_2$, respectively. Also, C_2 of Γ in S traverses all subsets of $\hat{V}_{12} \times \hat{V}_{22}$ for fixed \hat{V}_{12} and \hat{V}_{22} . Correspondingly, for \hat{V}_{12} and \hat{V}_{22} of Γ in S, st $_{\hat{V}_{12}\cup\hat{V}_{22}}(\hat{V}_{12})$ and st $_{\hat{V}_{12}\cup\hat{V}_{21}}(\hat{V}_{22})$ traverse all disjoint subsets of $[m + n - h_1 - h_2]$ with cardinalities $m - h_1$ and $n - h_2$, respectively. Also, st $_{\hat{V}_{12}\cup\hat{V}_{22}}(C_2)$ traverse all subsets in

$$\operatorname{st}_{\hat{V}_{12}\cup\hat{V}_{22}}(\hat{V}_{12})\times\operatorname{st}_{\hat{V}_{12}\cup\hat{V}_{21}}(\hat{V}_{22})$$

for fixed \hat{V}_{12} and \hat{V}_{22} . From the arguments above and (2), for fixed Θ_1 in $\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} * \Gamma_{21} \diamond \cdots \diamond \Gamma_{2j}$, Θ_2 traverses all terms in $\Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s} * \Gamma_{2,j+1} \diamond \cdots \diamond \Gamma_{2t}$. Similarly, for fixed Θ_2 in $\Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s} * \Gamma_{2,j+1} \diamond \cdots \diamond \Gamma_{2t}$, Θ_1 traverses all terms in $\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} * \Gamma_{21} \diamond \cdots \diamond \Gamma_{2j}$. Therefore,

$$\Delta_{ij}(\Gamma_1 * \Gamma_2) = (\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} * \Gamma_{21} \diamond \cdots \diamond \Gamma_{2j})$$
$$\otimes (\Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s} * \Gamma_{2,j+1} \diamond \cdots \diamond \Gamma_{2t}).$$

Next, we show that $(\mathcal{H}, *, \mu, \Delta, \nu)$ is a Hopf algebra.

Theorem 3.1. $(\mathcal{H}, *, \mu, \Delta, \nu)$ is a bialgebra.

Proof. It is easy to verify ν is an algebra homomorphism. We only need to prove Δ is an algebra homomorphism, i.e.,

$$\Delta(\Gamma_1 * \Gamma_2) = \Delta(\Gamma_1) * \Delta(\Gamma_2) \tag{8}$$

Volume 4, Issue 1, 32–43.

for Γ_1 and Γ_2 in *H*.

If Γ_1 or Γ_2 is an empty graph, then (8) holds. Suppose

$$\Gamma_1 = (V_1, E_1) = \Gamma_{11} \diamond \cdots \diamond \Gamma_{1s}$$

in H_m and

$$\Gamma_2 = (V_2, E_2) = \Gamma_{21} \diamond \cdots \diamond \Gamma_{2t}$$

in H_n are nonempty graphs. Let

$$\Delta_i(\Gamma_1 * \Gamma_2) = \sum_{j=0}^t \Delta_{ij}(\Gamma_1 * \Gamma_2)$$

By Lemma 3.2, we have

$$\begin{split} \Delta_i(\Gamma_1 * \Gamma_2) = & \Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} \otimes (\Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s} * \Gamma_{21} \diamond \cdots \diamond \Gamma_{2t}) \\ & + (\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} * \Gamma_{21}) \\ & \otimes (\Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s} * \Gamma_{22} \diamond \cdots \diamond \Gamma_{2t}) \\ & + (\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} * \Gamma_{21} \diamond \Gamma_{22}) \\ & \otimes (\Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s} * \Gamma_{23} \diamond \cdots \diamond \Gamma_{2t}) \\ & + \cdots \\ & + (\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} * \Gamma_{21} \diamond \cdots \diamond \Gamma_{2t}) \otimes \Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s} \\ & = \sum_{j=0}^{t} (\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} * \Gamma_{21} \diamond \cdots \diamond \Gamma_{2j}) \\ & \otimes (\Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s} * \Gamma_{2,j+1} \diamond \cdots \diamond \Gamma_{2t}) \\ & = (\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} \otimes \Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s}) \\ & * (\sum_{j=0}^{t} \Gamma_{21} \diamond \cdots \diamond \Gamma_{2j} \otimes \Gamma_{2,j+1} \diamond \cdots \diamond \Gamma_{2t}) \\ & = (\Gamma_{11} \diamond \cdots \diamond \Gamma_{1i} \otimes \Gamma_{1,i+1} \diamond \cdots \diamond \Gamma_{1s}) * \Delta(\Gamma_2). \end{split}$$

Furthermore,

$$\begin{split} \Delta(\Gamma_1 * \Gamma_2) = &\Delta_0(\Gamma_1 * \Gamma_2) + \Delta_1(\Gamma_1 * \Gamma_2) + \dots + \Delta_s(\Gamma_1 * \Gamma_2) \\ = &(\sum_{i=0}^s \Gamma_{11} \diamond \dots \diamond \Gamma_{1i} \otimes \Gamma_{1,i+1} \diamond \dots \diamond \Gamma_{1s}) * \Delta(\Gamma_2) \\ = &\Delta(\Gamma_1) * \Delta(\Gamma_2). \end{split}$$

Hence, $(\mathcal{H}, *, \mu, \Delta, \nu)$ is a bialgebra.

Mathematical Modelling and Control

Example 8.

$$\begin{split} \Delta \begin{pmatrix} l_{1}^{2} * \bullet l \end{pmatrix} &= \Delta \begin{pmatrix} l_{1}^{2} \bullet 3 + l_{1}^{3} \bullet 2 + l_{2}^{3} \downarrow \bullet 1 + l_{1}^{2} \downarrow \bullet 3 + l_{1}^{3} \downarrow 2 + l_{2}^{3} \downarrow 1 + l_{1}^{2} \downarrow \bullet 3 \\ &+ l_{1}^{3} \uparrow 2 + l_{2}^{3} \downarrow \uparrow 1 + l_{1}^{2} \downarrow \circ 3 + l_{1}^{3} \downarrow 2 + l_{2}^{3} \downarrow \uparrow 1 \\ &= \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{2} \downarrow \bullet 3 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{2} \downarrow \bullet 3 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{2} \downarrow \bullet 3 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{2}^{3} \downarrow \bullet 1 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} \\ &+ \Delta \begin{pmatrix} l_{1}^{3} \downarrow \bullet 2 \end{pmatrix} + \lambda \begin{pmatrix} l_{1}^{3} \downarrow + \lambda \begin{pmatrix} l_$$

Corollary 3.1. $(\mathcal{H}, *, \mu, \Delta, \nu)$ is a Hopf algebra.

Proof. Since $(\mathcal{H}, *, \mu, \Delta, \nu)$ is a graded connected bialgebra, it is a Hopf algebra.

4. Conclusions

Many combinatorial objects have Hopf algebra structures. The labeled simple graphs are important combinatorial objects. In this paper, we generalize the super-shuffle product and the cut-box coproduct on permutations to labeled simple graphs. We prove that the vector space spanned by labeled simple graphs with the super-shuffle product and the cut-box coproduct is a Hopf algebra. In the future, we will study the duality of the Hopf algebra $(H, *, \mu, \Delta, \nu)$.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by National Natural Science Foundation of China (Nos. 11701339 and 12071265).

Conflict of interest

The authors declare that there are no conflicts of interest in this paper.

References

- H. Hopf, A Über die topologie der gruppenmannigfaltigkeiten und ihrer verallgemeinerungen, In: *Selecta Heinz Hopf*, Springer Science & Business Media, 1964, 119–151.
- J. W. Milnor, J. C. Moore, On the structure of Hopf algebras, J. Ann. Math., 81 (1965), 211–264. https://doi.org/10.2307/1970615
- S. U. Chase, M. E. Sweedler, *Hopf Algebras* and *Galois Theory*, **97** (1969), 52–83. https://doi.org/10.1007/BFb0101435
- 4. M. E. Sweedler, *Hopf algebras*, Springer Science & Business Media, Benjamin: New York, 1969.
- 5. R. Ehrenborg, On posets and Hopf algebras, *Adv. Math.*, **119** (1996), 1–25. https://doi.org/10.1006/aima.1996.0026
- I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, J. Y. Thibon, Noncommutative symmetric functions, *Adv. Math.*, **112** (1995), 218–348. https://doi.org/10.1006/aima.1995.1032
- 7. H. Li, J. Morse, P. Shields. Structure constants for *K*-theory of Grassmannians. J. Comb. Theory Ser. A, 144 (2016), 306-325. https://doi.org/10.1016/j.jcta.2016.06.016

- Christian Kassel, *Quantum groups*, Springer Science & Business Media, 1995. https://doi.org/10.1007/978-1-4612-0783-2
- T. Cheng, H. Huang, Y. Yang, Generalized Clifford algebras as algebras in suitable symmetric linear Grcategories, *Symmetry Integr. Geom. Methods Appl.*, 12 (2015), 004. https://doi.org/10.3842/SIGMA.2016.004
- S. A. Joni, G. C. Rota, Coalgebras and bialgebras in combinatorics, *Stud. Appl. Math.*, **61** (1979), 93–139. https://doi.org/10.1002/sapm197961293
- 11. W. R. Schmitt, Incidence Hopf algebras, *J. Pure Appl. Algebra*, **96** (1994), 299–330. https://doi.org/10.1016/0022-4049(94)90105-8
- W. R. Schmitt, Hopf algebra methods in graph theory, *J. Pure Appl. Algebra*, **101** (1995), 77–90. https://doi.org/10.1016/0022-4049(95)90925-B
- A. Connes, D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, In: *Quantum field theory: perspective and prospective*, Springer Science & Business Media, **530** (1999), 59–109. https://doi.org/10.1007/978-94-011-4542-8_4
- 14. D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories. Adv. (1998), Theor. Phys., 2 303-334. Math. https://doi.org/10.4310/ATMP.1998.V2.N2.A4
- J. C. Aval, N. Bergeron, J. Machacek, New invariants for permutations, orders and graphs, *J. Amer. Math. Soci.*, **10** (2020), 102080. https://doi.org/10.1016/j.aam.2020.102080
- 16. S. K. Lando, On a Hopf algebra in graph theory, *J. Comb. Theory Ser. B*, **80** (2000), 104–121. https://doi.org/10.1006/jctb.2000.1973
- 17. N. Jean-Christophe, M. T. Jean-Yves, T. Nicolas Algèbres de Hopf graphes, de Comptes Rendus Math., **333** (2004), 607-610. https://doi.org/10.1016/j.crma.2004.09.012
- 18. A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem II: the β-function, diffeomorphisms and the renormalization group, *Commun. Math. Phys.*, **216** (2001), 215–241. https://doi.org/10.1007/PL00005547

- L. Foissy, Finite dimensional comodules over the Hopf algebra of rooted trees, *J. Algebra*, 255 (2002), 89–120. https://doi.org/10.1016/S0021-8693(02)00110-2
- 20. X. Wang, S. Xu, X. Gao, A Hopf algebra on subgraphs of a graph, J. Algebra Appl., **19** (2020), 2050164. https://doi.org/10.1142/S0219498820501649
- 21. C. Malvenuto, C. Reutenauer, Duality between quasi-symmetrical functions and the Solomon descent algebra, J. Algebra, 177 (1995), 967–982. https://doi.org/10.1006/jabr.1995.1336
- Y. Vargas, Hopf algebra of permutation pattern functions, *Discrete Math. Theor. Comput. Sci.*, AT (2014), 839–850. https://doi.org/10.46298/dmtcs.2446
- 23. M. Liu, H. Li, A Hopf algebra on permutations arising from super-shuffle product, *Symmetry*, **13** (2021), 1010. https://doi.org/10.3390/sym13061010
- 24. M. Zhao, H. Li, A pair of dual Hopf algebras on permutations, *AIMS Math.*, 6 (2021), 5106–5123. https://doi.org/10.3934/math.2021302
- H. Li, T. MacHenry, A. Conci, Rational convolution roots of isobaric polynomials, *Rocky Mountain J. Math.*, 47 (2017), 1259–1275. https://doi.org/10.1216/RMJ-2017-47-4-1259
- D. Grinberg, V. Reiner, Hopf algebras in combinatorics, ArXiv, 2020. https://doi.org/10.48550/arXiv.1409.8356
- 27. D. B. West, *Introduction to graph theory*, Upper Saddle River: Prentice Hall, 2001.

AIMS Press

 $\bigcirc 20\overline{24}$ the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)