Research article Special Issues

Exploring complicated behaviors of a delay differential equation

  • Received: 22 October 2022 Revised: 11 December 2022 Accepted: 02 January 2023 Published: 14 February 2023
  • Complicated behaviors of a delay differential equation are explored through the Euler discretization method. It rigorously shows that the corresponding discrete equation can be chaotic under some conditions, which reflects that there exist complicated behaviors in the original delay differential equation.

    Citation: Zongcheng Li. Exploring complicated behaviors of a delay differential equation[J]. Mathematical Modelling and Control, 2023, 3(1): 1-6. doi: 10.3934/mmc.2023001

    Related Papers:

  • Complicated behaviors of a delay differential equation are explored through the Euler discretization method. It rigorously shows that the corresponding discrete equation can be chaotic under some conditions, which reflects that there exist complicated behaviors in the original delay differential equation.



    加载中


    [1] S. Busenbrg, M. Martelli, Delay Differential Equations and Dynamical Systems, Berlin: Springer, 1991.
    [2] Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340–353. https://dx.doi.org/10.22436/jnsa.008.04.07 doi: 10.22436/jnsa.008.04.07
    [3] Z. Wang, S. Li, Barycentric interpolation collocation method for nonlinear problems, Beijing: National Defense Industry Press, 2015.
    [4] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math., 39 (2020), 92. https://doi.org/10.1007/s40314-020-1114-z doi: 10.1007/s40314-020-1114-z
    [5] M. Du, J. Li, Y. Wang, W. Zhang, Numerical simulation of a class of three-dimensional Kolmogorov model with chaotic dynamic behavior by using barycentric interpolation collocation method, Complexity, 2019 (2019), 3426974. https://doi.org/10.1155/2019/3426974 doi: 10.1155/2019/3426974
    [6] Z. He, X. Lai, Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Analysis: Real World Applications, 12 (2011), 403–417. https://doi.org/10.1016/j.nonrwa.2010.06.026 doi: 10.1016/j.nonrwa.2010.06.026
    [7] Z. Li, Q. Zhao, D. Liang, Chaotic behavior in a class of delay difference equations, Advance in Difference Equations, 2013 (2013), 99. https://doi.org/10.1186/1687-1847-2013-99 doi: 10.1186/1687-1847-2013-99
    [8] W. Gurney, S. Blythe, R. Nisbeth, Nicholson's blowflies revisited, Nature, 287 (1978), 17–21. https://doi.org/10.1038/287017a0 doi: 10.1038/287017a0
    [9] M. Mackey, Commodity price fluctuations: Price dependent delays and nonlinearities as explanatory factors, J. Econ. Theory, 48 (1990), 497. https://doi.org/10.1016/0022-0531(89)90039-2 doi: 10.1016/0022-0531(89)90039-2
    [10] M. Adhikari, E. Coutsias, J. McIver, Periodic solutions of a singularly perturbed delay differential equation, Physica D, 237 (2008), 3307–3321. https://doi.org/10.1016/j.physd.2008.07.019 doi: 10.1016/j.physd.2008.07.019
    [11] M. Jiang, Y. Shen, J. Jian, X. Liao, Stability, bifurcation and a new chaos in the logistic differential equation with delay, Phys. Lett. A, 350 (2006), 221–227. https://doi.org/10.1016/j.physleta.2005.10.019 doi: 10.1016/j.physleta.2005.10.019
    [12] M. Jiang, Y. Shen, H. Luo, X. Liao, Nonlinear behavior of the parameterized logistic differential systems, Appl. Math. Comput., 189 (2007), 1694–1704. https://doi.org/10.1016/j.amc.2006.12.049 doi: 10.1016/j.amc.2006.12.049
    [13] J. Kaplan, J. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl., 48 (1974), 317–324. https://doi.org/10.1016/0022-247X(74)90162-0 doi: 10.1016/0022-247X(74)90162-0
    [14] P. Dormayer, The stability of special symmetric solutions of $\dot{x} = \alpha f(x(t-1))$ with small amplitudes, Nonlinear Analysis: Theory, Methods and Applications, 14 (1990), 701–715. https://doi.org/10.1016/0362-546X(90)90045-I doi: 10.1016/0362-546X(90)90045-I
    [15] Y. Shi, G. Chen, Discrete chaos in Banach spaces, Science in China, Series A: Mathematics, Chinese version: 34 (2004), 595–609; English version: 48 (2005), 222–238. https://doi.org/10.1360/03ys0183
    [16] F. Marotto, On redefining a snap-back repeller, Chaos, Solitons and Fractals, 25 (2005), 25–28. https://doi.org/10.1016/j.chaos.2004.10.003 doi: 10.1016/j.chaos.2004.10.003
    [17] Y. Shi, P. Yu, Chaos induced by regular snap-back repellers, J. Math. Anal. Appl., 337 (2008), 1480–1494. https://doi.org/10.1016/j.jmaa.2007.05.005 doi: 10.1016/j.jmaa.2007.05.005
    [18] Y. Shi, P. Yu, G. Chen, Chaotification of dynamical systems in Banach spaces, Int. J. Bifurcat. Chaos, 16 (2006), 2615–2636. https://doi.org/10.1142/S021812740601629X doi: 10.1142/S021812740601629X
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1262) PDF downloads(107) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog