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Abstract: Chameleon chaotic systems are nonlinear dynamical systems whose chaotic attractors can transform between hidden and
self-excited types by tuning system parameters to modify equilibrium points. This paper proposes a novel family of chameleon chaotic
systems, which can exhibit three types of chaotic attractors: self-excited attractors with a nonhyperbolic equilibrium, hidden attractors
with a stable equilibrium, and hidden attractors with no equilibrium points. Bifurcation analysis uncovers the mechanisms by which
self-excited and hidden chaotic attractors arise in this family of chameleon systems. It is demonstrated that various forms of chaos
emerge through period-doubling routes associated with changes in the coefficient of a linear term. An electronic circuit is designed
and simulated in Multisim to realize a hidden chaotic system with no equilibrium points. It is demonstrated that the electronic circuit
simulation is consistent with the theoretical model. This research has the potential to enhance our comprehension of chaotic attractors,
especially the hidden chaotic attractors.
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1. Introduction

Chaos arises in dynamical systems governed by nonlinear
deterministic equations. It is characterized by sensitivity
to initial conditions, topological transitivity, and the
presence of dense periodic orbits. Nonlinearity in the
underlying equations allows for stretching, folding, and
reinjection of trajectories in phase space, resulting in
complex long-term evolution [1]. Chaos systems have
found widespread applications in various domains, with
mathematical modeling playing a crucial role. These
domains include biology [2], economics [3], physics [4] and
many others. Based on the mathematical framework, we
can simulate the functioning and mechanisms of systems
within these domains. In recent years, there has been
growing interest in experimental investigations of chaotic
attractors [5, 6].

Around 2010, the classification of attractors into hidden
and self-excited types was introduced in several papers

by Leonov, Kuznetsov et al. [7–9]. Since then, many
researchers have further examined properties of hidden
attractors and methods to find them, publishing a series
of related works [10, 11]. An attractor is classified
as a self-excited attractor if its basin of attraction
intersects with any open neighborhood of an unstable
equilibrium point. On the other hand, it is called a
hidden attractor if its basin of attraction is not connected
with any unstable equilibrium point. Hidden attractors are
significant in engineering applications because they can
lead to unexpected and potentially disastrous responses
to perturbations in structures such as bridges or airplane

wings [12]. Therefore, identifying and analyzing hidden
attractors is crucial for ensuring the safety and reliability of
these structures. Over the past few years, the identification
of hidden attractors has given rise to the development of
the theory of hidden oscillations [13]. In 2023, Wang
et al. [14] demonstrated that chaotic systems can display
various types of symmetries, such as involutional, circulant,

http://www.aimspress.com/journal/mmc
http://dx.doi.org/ 10.3934/mmc.2023032


401

and conditional (approximate) symmetries. It enhanced
our understanding of self-excited and hidden attractors in
chaotic systems with various symmetries.

Self-excited attractors can be located by a standard
procedure. This involves choosing an initial state in a
neighborhood of an unstable equilibrium, allowing the
system to evolve for a transient period, observing the
trajectory, and tracing the state of oscillation. Many
well-known dynamical systems, such as the Lorenz,
Chen, Lu and Tigan systems, can exhibit self-excited
attractors [15]. Hidden attractors are challenging to find as
their basins of attraction can be small and their dimensions
lower than the system’s. The identification of hidden
attractors in multidimensional systems demands specialized
numerical procedures to pinpoint initial conditions within
their attraction basins and compute trajectories. The
joint application of homotopy and numerical continuation
systematically identifies suitable initial data to expose
hidden attractors [16]. In the pursuit of uncovering hidden
attractors, researchers have proposed the use of perpetual
points as a potential tool [17]. Perpetual points are
characterized by the property of having zero acceleration but
nonzero velocity. In certain dynamical systems, perpetual
points have been shown to be effective in revealing
coexisting hidden attractors [18]. However, it has been
demonstrated in [19] that perpetual points do not offer a
reliable general method for finding hidden attractors.

Hidden attractors have been observed in a wide variety of
dynamical systems, including systems without equilibrium
points [20], systems with only stable equilibrium points [21],
and systems with an infinite number of equilibria situated
on curves or surfaces [22]. These different types of systems
represent distinct challenges for the analysis and control of
their dynamical behavior. Pham et al. explored instances
of interconversion between these three types, as described
in [23–25].

A chameleon chaotic system is a type of system that
exhibits a chaotic attractor which can switch between being
a hidden attractor and a self-excited attractor, based on
the parameter values. In 2017, Jafari et al. [26] proposed
a simple chameleon chaotic system that exhibited three
types of hidden attractors as well as self-excited attractors.
This system demonstrates how the behavior of a dynamical

system depends on the values of its parameters, highlighting
the importance of studying hidden attractors for a better
understanding of complex systems. In 2018, Wu et al. [27]
demonstrated that the Hamilton energy feedback scheme can
effectively control the dynamic behavior of the chameleon
chaotic flow. In 2021, Mobayen et al. [28] introduced nine
chameleon chaotic systems by adding two parameters to
a 3D chaotic system with quadratic nonlinearities. The
analysis of these systems revealed three categories of hidden
attractors and a self-excited attractor.

In dissipative systems, multistability refers to the
coexistence of several possible attractors for a given set
of parameters [29]. Each attractor has its own basin of
attraction–the set of initial conditions that will eventually
converge to that attractor. The basins of attraction of
different attractors are separated by basin boundaries [30].
Multistable dynamical systems are highly sensitive to noise,
initial conditions, and parameters [31]. In 2015, Sharma
et al. [32] presented the method of linear augmentation
to control multistability in hidden chaotic systems, which
is significant for engineering applications needing specific
outputs. In 2023, Ahmadi et al. [33] introduced a new
non-autonomous mega-extreme multistable chaotic system
with complex dynamics. Also in 2023, Moalemi et al. [34]
developed a novel mega-stable system with attractors
mimicking real-life object shapes.

A Hopf bifurcation is a local bifurcation where an
equilibrium of a dynamical system changes stability as
a parameter is varied. It occurs at points where the
system has a non-hyperbolic equilibrium connected with
a pair of purely imaginary eigenvalues. There are no zero
eigenvalues, and additional transversality conditions are
met. The bifurcation can be supercritical or subcritical,
resulting in either a stable or an unstable limit cycle within
an invariant two-dimensional manifold, respectively. The
latter scenario is potentially dangerous, because stable
large-amplitude limit cycles can coexist with the stable
equilibrium point [35]. In 2017, Stankevich et al. [36]
revisited the dynamics of the Chua circuit and studied
the scenario relating subcritical Hopf bifurcations near
equilibria to the emergence of hidden attractors. It was
conjectured in [36] that a subcritical Hopf bifurcation of
an equilibrium in a bounded autonomous system generally
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leads to hidden attractors. Various nonlinear dynamical
systems have provided substantial evidence supporting this
conjecture, as shown by Zhao et al. [37], Liu et al. [38] and
Li et al. [39]. In 2023, Kumarasamy et al. [40] revealed
new routes to hidden attractors in nonlinear systems through
saddle-node bifurcations of periodic orbits.

This paper introduces and investigates a family of
chameleon systems, uncovering the mechanisms behind
the emergence of self-excited chaotic attractors and hidden
chaotic attractors. In Section 2, we present a family
of chameleon systems with linear, affine, and quadratic
functions in the variable z. Depending on the form of
the function, the system can exhibit a self-excited chaotic
attractor with a nonhyperbolic equilibrium, a hidden chaotic
attractor with a stable equilibrium, or a hidden chaotic
attractor with no equilibrium. In Section 3, the bifurcation
diagrams are plotted and analyzed individually to uncover
the distinct routes to chaos for each of the three systems.
Section 4 is devoted to Hopf bifurcation analysis. In
Section 5, the Multisim software is utilized to perform
circuit design and simulation for a hidden chaotic system
with no equilibrium points. Finally, concluding remarks are
presented in Section 6.

2. A family of chameleon systems

In this paper, we consider a family of quadratic systems

dx
dt
= y,

dy
dt
= −x + y z,

dz
dt
= µ(z) − 5 x y + x z,

(2.1)

where µ(z) is an element of the set P, consisting of
polynomials in R[z] with degree 1 or 2. The divergence
function of the system is given by

Div( f (x, y, z)) = x + z + µ′(z), (2.2)

where f (x, y, z) denotes the vector field associated to the
system. System (2.1) is dissipative in a certain region where
the system has a negative average divergence. This means
that, on average, the volume element contracts with the flow
as time advances. The simplest example is the region defined

by

x + z + µ′(z) < 0.

In order to understand the dynamical behavior of
the system through theoretical analysis and numerical
simulations, we introduce the following three polynomials:

µ1(z) = −b z, (2.3)

µ2(z) = a − b z, (2.4)

µ3(z) = a − b z + c z2. (2.5)

In Section 3, these polynomials will be utilized to gain
insight into the routes to chaos that the system takes as the
parameter b varies.

Based on the forthcoming observations, we come to know
that system (2.1) is a chameleon system, indicating that the
system has the capability to generate self-excited and hidden
chaotic attractors. The precise manifestation depends on the
nature of the function µ(z).

2.1. Self-excited chaotic flow with a nonhyperbolic

equilibrium: µ(z) = −z

Consider the system (2.1) with µ(z) = µ1(z) and b = 1,
where µ1(z) is defined in (2.3). It has a unique equilibrium
at the origin. The eigenvalues of the linear part of the system
at this point are λ1,2 = ±i and λ3 = −1. This nonhyperbolic
equilibrium is determined to be unstable based on the Hopf
bifurcation analysis in Section 4. The system displays a self-
excited chaotic attractor (blue) in the form of a thin ring-
shaped structure, as depicted in Figure 1. A cross section of
the attractor in the y-z plane (at x = 0) is shown in Figure 2,
revealing the chaotic behavior through the presence of an
infinite number of scattered points on the cross section.
The Lyapunov exponents of the attractor were calculated
using the Wolf algorithm [41], employing the ode113 solver
with a time-step of 0.05 for a total simulation duration
of 40000 units. The attractor has Lyapunov exponents
of (0.0680483, 0.000398604,−1.55594) and a Kaplan-Yorke
dimension of 2.04399. The positive maximum Lyapunov
exponent indicates the presence of chaos in the system. In
addition, the sum of all the Lyapunov exponents is negative,
indicating that the system is dissipative.
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Figure 1. Self-excited chaotic attractor of
system (2.1) with µ(z) = −z, visualized by
an orbit starting from the initial conditions
(x(0), y(0), z(0)) = (0, 1, 0) near the unstable
equilibrium at the origin (marked with a red star).

Figure 2. Cross section in the y-z plane (at x = 0)
of the chaotic attractor of system (2.1) with µ(z) =
−z and initial conditions x(0) = z(0) = 0, y(0) = 1.

2.2. Hidden chaotic flow with a stable equilibrium:

µ(z) = −0.01 − z

Consider system (2.1) with

µ(z) = µ2(z) and a = −0.01, b = 1,

where µ2(z) is defined in (2.4). It has a unique equilibrium
at

x = 0, y = 0 and z = −0.01

with the eigenvalues

λ1,2 =
−1 ±

√
39999i

200
, λ3 = −1.

This singularity is a stable node-focus. All initial conditions
in the vicinity of the equilibrium spiral towards the
equilibrium point. Besides the point attractor, the system
also has a hidden chaotic attractor, as highlighted in
Figure 3. The Lyapunov exponents of this attractor are
(0.0585773, 0.0000779879,−1.54072). Thus the Kaplan-
Yorke dimension is 2.03807. There is a decrease in the
maximal Lyapunov exponent when moving from the self-
excited chaotic attractor in subsection 2.1 to the hidden
chaotic attractor in subsection 2.2.

Figure 3. Hidden chaotic attractor of system (2.1)
with µ(z) = −0.01− z and initial conditions x(0) =
z(0) = 0, y(0) = 1. Red star: stable equilibrium at
x = 0, y = 0, z = −0.01.

For system (2.1) with µ(z) = −0.01 − z, a cross section
of the basins of attraction of two attractors in the y(0)-z(0)
plane at x(0) = 0 is illustrated in Figure 4. It shows the
regions of initial conditions that lead to either the hidden
chaotic attractor or the stable equilibrium point x = y = 0,
z = −0.01. The magenta region corresponds to the hidden
chaotic attractor, shown in the cross section as black lines.
The red region corresponds to the stable equilibrium point.
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Figure 4. Cross section of the basins of attraction
of two attractors in the y(0)-z(0) plane at x(0) = 0
for system (2.1) with µ(z) = −0.01 − z. Initial
conditions within the magenta region lead to the
emergence of the hidden chaotic attractor, shown
in the cross section as black lines. In contrast,
initial conditions within the red region lead to the
stable equilibrium point.

2.3. Hidden chaotic flow without equilibrium:

µ(z) = 0.1 − 0.195 z + 0.1 z2

Consider system (2.1) with

µ(z) = µ3(z) and a = 0.1, b = 0.195, c = 0.1,

where µ3(z) is defined in (2.5). It does not contain any
equilibrium points. With initial conditions

x(0) = 0, y(0) = 1, z(0) = 0,

a hidden chaotic attractor of the system can be found in
Figure 5.

By computations, this attractor is found to have Lyapunov
exponents (0.0329968, 0.000201782,−0.866228), leading
to a Kaplan-Yorke dimension of 2.03833. A cross section of
the attractor in the y-z plane at x = 0 is illustrated in Figure 6,
revealing the chaotic behavior through the presence of an
infinite number of scattered points on the cross section.

Figure 5. Hidden chaotic attractor of system
(2.1) with µ(z) = 0.1 − 0.195z + 0.1z2 and initial
conditions x(0) = z(0) = 0, y(0) = 1.

Figure 6. Cross section of the hidden chaotic
attractor of system (2.1) in the y-z plane at x = 0,
with µ(z) = 0.1 − 0.195z + 0.1z2 and the initial
conditions x(0) = z(0) = 0, y(0) = 1.

3. Bifurcation analysis

In order to provide clarity on the chaotic behavior
presented in Section 2, we will discuss the relationship
between the parameter b and the long-term behavior of the
system. We will employ bifurcation diagrams to investigate
the mechanisms underlying the chaotic dynamics.
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3.1. Self-excited dynamics: µ(z) = −b z and b ∈ [0.4, 1.6]

For system (2.1), we assume that µ(z) takes the form
µ(z) = −b z with b ∈ [0.4, 1.6]. In this case, the system
has a unique equilibrium at origin with eigenvalues λ1,2 =

±i, λ3 = −b. The singularity is unstable, as concluded from
the Hopf bifurcation analysis in Section 4. As a result, we
need to study the self-excited dynamics in the system.

From Figure 1, we have observed a self-excited chaotic
attractor at b = 1. To understand its underlying mechanism,
we construct a bifurcation diagram Figure 7 by varying
parameter b, while maintaining fixed initial conditions
x(0) = z(0) = 0 and y(0) = 1. This allows us to monitor
how the behavior of x evolves with respect to the parameter
b. As the parameter b increases from b = 0.4 to b = 1.6,
the initial limit cycle undergoes a period-doubling route to
chaos. Periodic windows can be found for some low periods,
such as period-3 (b ∈ [1.02, 1.10]) and period-5 (near
b = 1.505). The Lyapunov exponent spectrum of the system
with respect to the parameter b is displayed in Figure 8.
The qualitative behavior of the attractor can be specified
by determining the signs of the Lyapunov exponents. The
triple (0,−,−) corresponds to a limit cycle, while (+, 0,−)
corresponds to a chaotic attractor. The Lyapunov exponent
spectrum shown in Figure 8 is consistent with the bifurcation
diagram shown in Figure 7.

Figure 7. Bifurcation diagram of x for system
(2.1) versus the parameter b ∈ [0.4, 1.6] with
µ(z) = −bz and initial conditions x(0) = z(0) =
0, y(0) = 1.

(a) The first two Lyapunov exponents L1,2.

(b) The third Lyapunov exponent L3.

Figure 8. Lyapunov exponent spectrum of system
(2.1) versus the parameter b ∈ [0.4, 1.6] with
µ(z) = −bz and initial conditions x(0) = z(0) =
0, y(0) = 1.
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3.2. Hidden dynamics with a stable equilibrium:

µ(z) = −0.01 − b z and b ∈ [0.4, 1.6]

Let us consider system (2.1) with µ(z) = −0.01 −
bz, allowing the parameter b to vary within the range
of [0.4, 1.6]. It has a unique equilibrium at

x = y = 0, z = −(100 b)−1

with eigenvalues given by

λ1,2 = (200 b)−1
(
−1 ±

√
(200 b)2 − 1 i

)
, λ3 = −b.

As all these eigenvalues have negative real parts due to the
constraint that b falls within the range of [0.4, 1.6], the
singularity is a stable node-focus. When b = 1, there
exhibits a hidden chaotic attractor, coexisting with a stable
node-focus located at

x = y = 0, z = −100(−1),

as depicted in Figure 3.
With the initial conditions x(0) = z(0) = 0, y(0) = 1,

Figure 9 gives the bifurcation diagram of x with respect to
the parameter b. The bifurcation diagram starts with steady-
state response (stable equilibrium) in the interval [0.4, 0.45).
At the critical value b = 0.45, a discontinuous transition
takes place, shifting from a point attractor to a period-1
limit cycle. As b increases further, the branch of limit
cycles experiences a period-doubling route to hidden chaotic
behavior.

Figure 9. Bifurcation diagram of x for system
(2.1) versus the parameter b ∈ [0.4, 1.6] with
µ(z) = −0.01 − bz and initial conditions x(0) =
z(0) = 0, y(0) = 1.

At the value b = 0.45, it is noteworthy that the system
displays bistable behavior. Bistable behavior refers to
a phenomenon in a dynamical system where there are
two distinct attractors that the system can settle into. In
Figure 10, orbits (in blue and red) respectively converge to
a stable equilibrium point and a stable limit cycle from the
initial conditions of (0.5, 0, 0) and (−0.5, 0, 0).

Figure 10. Two orbits of system (2.1) with
µ(z) = −0.01 − 0.45z. The blue orbit of the
initial conditions (x(0), y(0), z(0)) = (0.5, 0, 0)
settles into a stable equilibrium point, while the
red one of the initial conditions (x(0), y(0), z(0)) =
(−0.5, 0, 0) tends towards a stable limit cycle.

The Lyapunov exponent spectrum of the system with
respect to the parameter b is depicted in Figure 11. The
type of the attractor can be determined by analyzing the
signs of the Lyapunov exponents. The pattern (−,−,−)
corresponds to a stable equilibrium, (0,−,−) corresponds to
a limit cycle, and (+, 0,−) corresponds to a chaotic attractor.
The Lyapunov exponent spectrum shown in Figure 11 aligns
with the bifurcation diagram shown in Figure 9.

3.3. From self-excited attractor to hidden attractor via b

decrease: µ(z) = 0.1 − b z + 0.1 z2, where b ∈ [0, 1]

Let us consider system (2.1) with

µ(z) = 0.1 − b z + 0.1 z2,

where b is a parameter ranging within the interval [0, 1]. We
will study the influence of the parameter b on the dynamical
behavior of the system.

Mathematical Modelling and Control Volume 3, Issue 4, 400–415.



407

(a) The first two Lyapunov exponents L1,2.

(b) The third Lyapunov exponent L3.

Figure 11. Lyapunov exponent spectrum of
system (2.1) versus the parameter b ∈ [0.4, 1.6]
with µ(z) = −0.01 − bz and initial conditions
x(0) = z(0) = 0, y(0) = 1.

3.3.1. Local analysis

If b ∈ [0, 0.2), then the system has no equilibrium point.
If b = 0.2, there exists a single equilibrium at P : (0, 0, 1).
If b ∈ (0.2, 1], then the system has two equilibria at

P1,2 : (0, 0, 5 b ±
√

25 b2 − 1).

At b = 0.2, the Jacobian matrix of the system at P has
three distinct eigenvalues:

λ1 = 0, λ2,3 =
1 ± i

√
3

2
.

Since there are two eigenvalues with positive real parts and
one zero eigenvalue, the equilibrium P is nonhyperbolic and
unstable, with a one-dimensional center manifold Wc(P) and
a two-dimensional unstable manifold Wu(P).

Proposition 3.1. For system (2.1) with

µ(z) = 0.1 − 0.2 z + 0.1 z2,

the center manifold and unstable manifold at the equilibrium

P(0, 0, 1) are give by:

Wc(P) : x =y = 0, (3.1)

Wu(P) : z =1 − y + x +
1
10

y2 −
11
10

xy −
39
20

x2 + · · · , (3.2)

respectively.

Proof. We need to consider the following system

dx
dt
= y,

dy
dt
= −x + y z,

dz
dt
= 0.1 − 0.2 z + 0.1 z2 − 5 x y + x z,

(3.3)

which has a unique equilibrium located at P(0, 0, 1). The
Jacobian matrix of the system at P has three distinct
eigenvalues:

λ1 = 0, λ2,3 =
1 ± i

√
3

2
.

Since the eigenvector corresponding to λ1 is (0, 0, 1)T , the
center space at P is the z-axis: x = y = 0. Furthermore, the
z-axis is invariant under the flow of system (3.3). Thus we
can conclude that the center manifold of system (3.3) at P

can be denoted by

Wc(P) : x = y = 0.
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Using the transformation
x =

v
2
+

√
3

2
w,

y = −
v
2
+

√
3

2
w,

z = u + v + 1,

(3.4)

system (3.3) becomes

du
dt
=
√

3wu +
√

3wv +
1
5

vu +
27
20

v2

+
1
10

u2 −
15
4

w2,

dv
dt
=

1
2

v +

√
3

2
w +

1
2

v2 −

√
3

2
wv

+
1
2

uv −

√
3

2
uw,

dw
dt
= −

√
3

2
v +

1
2

w −

√
3

6
v2 +

1
2

wv

−

√
3

6
uv +

1
2

uw.

(3.5)

For later convenience, let (U,V,W) represent the vector field
associated to system (3.5).

Suppose that the unstable manifold of system (3.5) is
parametrised by

u = h(v,w) = a1v2 + a2vw + a3w2 + · · · , (3.6)

then,

∂h
∂v

V(h, v,w) +
∂h
∂w

W(h, v,w) = U(h, v,w), (3.7)

where h = h(v,w).
Equating terms of like powers in v,w up to the second

order, we find a solution of (a1, a2, a3), which yields

h(v,w) = −
3v2

16
−

41
√

3wv
40

−
177w2

80
+ · · · . (3.8)

Going back to the original coordinates, the unstable
manifold of system (3.3) is approximately

z = 1 − y + x +
1

10
y2 −

11
10

xy −
39
20

x2 + · · · . (3.9)

This completes the proof. □

When b ∈ (0.2, 1], the characteristic polynomials of the
Jacobian matrix of the system at P1,2 are given by

g1,2(λ) = λ3 + p1,2λ
2 + q1,2λ + r1,2, (3.10)

respectively, where

p1,2 = −
(
5b ± 6

√
b2 − 25−1

)
, (3.11)

q1,2 = 0.8 + 5b2 ± b
√

25b2 − 1, (3.12)

r1,2 = ∓
√

b2 − 25−1. (3.13)

Since Routh-Hurwitz criteria are not met, we can
determine that both the equilibria are unstable. For the first
equilibrium P1, we have r1 < 0, thus this equilibrium is
unstable. For the second equilibrium P2, we have p2q2−r2 <

0, thus this equilibrium is unstable.

3.3.2. Bifurcation analysis

Figure 12 shows the bifurcation diagram of x for the
system, showing the different types of dynamics exhibited
by the system depending on the value of b. A reverse period-
doubling route to chaos can be observed, which can help
understand the hidden chaotic behavior at b = 0.195 in
subsection 2.3. On the far left of the parameter range [0, 1],
the system exhibits a period-3 attractor.

Figure 12. Bifurcation diagram of x for system
(2.1) versus the parameter b ∈ [0, 1] with µ(z) =
0.1−bz+0.1z2 and initial conditions x(0) = z(0) =
0, y(0) = 1.

From the Figure 12 and the previous equilibrium analysis,
we have the following results. For 0 ≤ b < 0.2, the system
exhibits a hidden attractor without equilibrium. At b = 0.2,
the system exhibits a self-excited chaotic attractor with a
nonhyperbolic, unstable equilibrium, see Figure 13.
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Figure 13. Projection of a self-excited chaotic
attractor onto y-z plane for system (2.1) with
µ(z) = 0.1 − 0.2z + 0.1z2 and initial conditions
x(0) = z(0) = 0, y(0) = 1. Red star: unstable
equilibrium at (0, 0, 1).

For 0.2 < b ≤ 1, the system exhibits a self-excited
attractor with two unstable equilibria. The parameter value
b = 0.2 is the threshold between hidden chaos and self-
excited chaos.

The Lyapunov exponent spectrum of the system with
respect to the parameter b is displayed in Figure 14, which is
consistent with the bifurcation diagram shown in Figure 12.

4. Subcritical Hopf bifurcation of system (2.1) with
µ(z) = a − z

Consider system (2.1) with the function

µ(z) = a − z.

The parameter a is used as the bifurcation parameter. In
this scenario, the system exhibits a unique equilibrium point
located at P : (0, 0, a).

Theorem 4.1. Consider system (2.1) with the function

µ(z) = a − z.

If a < 0, the equilibrium point P (0, 0, a) is locally

asymptotically stable. When −2 < a < 0, the equilibrium

is a stable node-focus. Furthermore, for a ≤ −2, the

equilibrium is a stable node.

(a) The first two Lyapunov exponents L1,2.

(b) The third Lyapunov exponent L3.

Figure 14. Lyapunov exponent spectrum of
system (2.1) versus the parameter b ∈ [0, 1] with
µ(z) = 0.1 − bz + 0.1z2 and initial conditions
x(0) = z(0) = 0, y(0) = 1.
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Proof. The Jacobian matrix of the system at the equilibrium
P is

A =


0 1 0
−1 a 0
a 0 −1

 , (4.1)

for which the characteristic equation is

g(λ) = λ3 + (1 − a) λ2 + (1 − a) λ + 1 = 0. (4.2)

Let us introduce some notation

p = 1
2 g′′(0),

q = g′(0),

r = g(0),

δ = p q − r,

∆ = −p2 q2 + 4 p3 r + 4 q3 − 18 p q r + 27 r2.

(4.3)

According to Routh-Hurwitz criterion, the equilibrium is
locally asymptotically stable if p, q, r > 0 and δ > 0, i.e.,
a < 0. The following assertions are based on [42]. For
−2 < a < 0, we have δ > 0, r > 0, q > 0 and ∆ > 0, thus
the equilibrium is a stable node-focus; for a ≤ −2, we have
δ > 0, r > 0, q > 0 and ∆ ≤ 0, thus the equilibrium is a
stable node. □

Theorem 4.2. Consider system (2.1) with the function

µ(z) = a − z. In this scenario, as the parameter a passes

through zero, a subcritical Hopf bifurcation occurs at the

equilibrium P (0, 0, a), which gives rise to an unstable limit

cycle for a < 0. At a = 0, the equilibrium located at the

origin is unstable.

Proof. When a = 0, the characteristic equation (4.2) has a
pair of purely imaginary roots λ1,2 = ±i and λ3 = −1. Based
on (4.2) and the implicit function theorem, we have

dλ
da

∣∣∣∣∣
a=0,λ=i

=
1
2
, (4.4)

so the transversality condition for the Hopf bifurcation at
a = 0 is certainly satisfied. According to [43], a Hopf
bifurcation occurs at the equilibrium P when the parameter
a passes through a = 0.

Setting µ(z) = −z, system (2.1) becomes

dx
dt
= y,

dy
dt
= −x + y z,

dz
dt
= −z − 5 x y + x z.

(4.5)

By introducing the transformation
x = (−u + v) i,

y = u + v,

z = w,

(4.6)

system (4.5) becomes

du
dt
= u i + 1

2 (u + v) w,

dv
dt
= −v i + 1

2 (u + v) w,

dw
dt
= −w + (5 u + 5 v − w)(u − v) i.

(4.7)

For later convenience, let (U,V,W) represent the vector field
associated to system (4.7).

According to [44], we can determine a formal series

F(u, v,w) = uv +
∞∑

p1+p2+q=3
p1,p2,q≥0

Cp1,p2,q up1 vp2 wq, (4.8)

such that

dF
dt

∣∣∣∣
(4.7)
=
∂F
∂u

U +
∂F
∂v

V +
∂F
∂w

W =
∞∑

n=1

Wn(uv)n+1, (4.9)

where Wn are called the n-th focus quantities of system (4.7).
Here, we only need to compute the first focus quantity.

Let

F(u, v,w) = uv +
(

1
20
+

i
20

)
u3w −

5v3u
2
+

(
1

20
−

i
20

)
v3w

+

(
7
20
−

11 i
20

)
u2vw −

5v u3

2
+

(
1

10
+

i
5

)
u2w

+
3w2vu

5
+

(
−

1
8
+

i
4

)
v4 +

(
1

10
−

i
5

)
v2w2

+wvu +
(

1
10
−

i
5

)
v2w +

(
1

10
+

i
5

)
u2w2

−

(
1
8
+

i
4

)
u4 +

(
7

20
+

11 i
20

)
u v2w + · · · , (4.10)

we find that
dF
dt

∣∣∣∣
(4.7)
= 2 (uv)2 + · · · , (4.11)

and thus
W1 = 2. (4.12)

Based on the signs of (4.4) and (4.12), we can conclude
that the Hopf bifurcation in the system is subcritical,
resulting in the emergence of a single unstable limit cycle
for a < 0; at a = 0, the equilibrium located at the origin is
unstable. □
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5. Electronic circuit design and simulation with
Multisim

Chaos circuits play a crucial role across diverse
application domains, notably in ensuring secure
communication and image encryption [45, 46]. The
design and simulation of chaotic circuits are crucial in
validating chaotic systems. Multisim is a simulation tool
designed specifically to help create and test analog and
digital circuits on circuit boards.

In order to validate the dynamics of the hidden chaotic
system

dx
dτ
= y,

dy
dτ
= −x + y z,

dz
dτ
= 0.1 − 0.195 z + 0.1 z2 − 5 x y + x z,

(5.1)

with the initial conditions x(0) = z(0) = 0 and y(0) = 1, a
circuit realization of the system is designed and simulated in
the Multisim 14.

The electronic circuit, designed for the implementation of
the system (5.1), is shown in Figure 15. The setup of this
circuit is accomplished using Multisim. It consists of four
operational amplifiers Ui (i = 1, 2, 3, 4, using AD711JN)
powered at ± 15 V, three capacitors Ci (i = 1, 2, 3) of 100nF,
and ten resistors Ri (i = 1, 2, · · · , 10) with

R1 = R2 = R3 = R5 = R6 = R8 = R9 = R10 = 10kΩ,

R4 = 2kΩ, R7 = 51.282kΩ.

By applying Kirchhoff’s circuit laws to the circuit shown
in Figure 15, we get the following circuital system

RC
dx
dt
=

R
R1

y,

RC
dy
dt
= −

R
R2

x +
R
R3

y z,

RC
dz
dt
=

R
R6

V0 −
R
R7

z +
0.1 R

R8
z2

−
R
R4

x y +
R
R5

x z.

(5.2)

Here

dt = RC dτ, R = 10kΩ, C = 10nF, V0 = 0.1V.

The variables x, y, z denote the output voltages of capacitors
C1,C2 and C3, respectively. The initial conditions are

x(0) = z(0) = 0V, y(0) = 1V.

Figure 15. Schematic diagram of the electronic
circuit of the hidden chaotic system (5.2).

Using Multisim simulation, three 2D projections of the
hidden chaotic attractor of system (5.2) observed from the
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oscilloscope are shown in Figure 16. The outcomes of the
circuit modeling align well with Figure 5, demonstrating the
soundness and feasibility of the proposed system (5.1).

(a) x-y plane

(b) y-z plane

(c) x-z plane

Figure 16. Different 2D projections of the hidden
chaotic attractor (without equilibrium) of system
(5.2) for the initial conditions x(0) = z(0) = 0V
and y(0) = 1V.

6. Conclusions

In this work, we have proposed a quadratic family
of chameleon chaotic systems with a function µ(z).
The dynamics exhibited by the system are significantly

influenced by the form of the function µ(z). Different forms
of µ(z), including linear, quadratic, and affine expressions,
are explored. If µ(z) assumes a linear form, the system can
exhibit a self-excited attractor, coexisting with an unstable
nonhyperbolic equilibrium point. When µ(z) is in an
affine form, the system can demonstrate a hidden chaotic
attractor, coexisting with a stable hyperbolic equilibrium
point. When µ(z) is in a quadratic form, the system can
display a hidden chaotic attractor without any equilibrium
points or a self-excited chaotic attractor with two unstable
equilibrium points. By varying the linear coefficient in
µ(z), we investigate the creation of self-excited and hidden
attractors. This lets us understand how attractors change.
We use Hopf bifurcation analysis and numerical tools like
bifurcation diagrams, phase portraits, Lyapunov exponents,
and basins of attraction.

Finally, an electronic circuit is designed and simulated
using Multisim to realize a hidden chaotic system with
no equilibrium points. The simulations exhibit favorable
agreement with the theoretical model, thereby offering
an experimental validation of the hidden chaotic system.
In conclusion, this paper affirms that quadratic systems
can generate different types of chaos through period-
doubling routes. In the future, we will develop
some chameleon systems that incorporate piecewise,
trigonometric, hyperbolic, or absolute value functions.
These systems may exhibit various routes to chaos, such as
period-doubling route, intermittent route, and quasi-periodic
route. We hope this will enhance our comprehension of the
relation between self-excited and hidden attractors.
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