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Abstract: This paper was concerned with the problem of filter design for the continuous-discrete system in the Takagi-Sugeno (T-S)
fuzzy model. In a known finite frequency (FF) domain, an FF H∞ performance was defined for the nonlinear continuous-discrete system.
With the designed filter, sufficient conditions were then established for the filtering error system to be asymptotically stable and having
a prescribed FF H∞ performance. After that, a systematic method for the filter design was proposed. Finally, an example was provided
to check effectiveness of the derived results.
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1. Introduction

In the last few decades, many researchers have
investigated two-dimensional (2-D) systems including
continuous-continuous, discrete-discrete and continuous-
discrete settings, as these systems have great applications
in engineering fields such as process control, multi-
dimensional digital filtering and image processing; see,
for instance, [1] and reference therein. Recently, due
to the continuous-discrete systems having an advantage
of describing vehicle platoon model [2], linear repetitive
processes [3], iterative learning control systems [4] and
others, the study of continuous-discrete systems has been
a major topic. Now, the main research is about stability
problem [5] and feedback control [6].

In practice, many systems have complex characteristics
and nonlinearities, which can not be fully described by the
linear system models [7–9]. Utilizing the Takagi-Sugeno (T-
S) fuzzy model [10] to approximate the nonlinear systems
via fuzzy sets and fuzzy reasoning is an efficient approach.

It is well known that the T-S fuzzy model has the favourable
ability to approximate any nonlinear system [11], which
provides sufficient tools and techniques for researchers
to design complex nonlinear systems [12]. To this day,
some designers have tried to investigate the continuous-
discrete nonlinear systems via using fuzzy-model-based
control methods [13]. Now, the T-S fuzzy model has been
an efficient tool to solve nonlinear problems by adopting the
mature linear system theories.

On the other hand, the practical systems are often
disturbed by the noise signals; therefore, the filtering issues
for nonlinear systems have been studied extensively by the
T-S fuzzy model approach [14]. In order to describe systems
more accurately, filtering problem is considered to estimate
the system state by using the known information under the
noisy disturbance. One commonly studied scheme for 2-D
systems is H∞ filtering [15, 16].

Among most of the existing research results on the
filtering problem, frequency of the disturbances is usually
assumed to occupy the entire frequency domain, which
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actually brings over-design compared to the finite frequency
(FF) case since the useful information of the FF range
of disturbances are not fully utilized. In some practical
engineering applications, the disturbance signals are
intrinsically dominated within FF ranges, which could be
known in advance [17]. It is more reasonable and useful
to design controllers or filters according to the frequency
characteristics of disturbances. The generalized Kalman-
Yakubovich-Popov lemma proposed in [18] presented an
efficient way in inspecting the FF specifications of the
controlled system, which can be directly utilized to derive
certain linear matrix inequality (LMI) conditions so as to
design appropriate filters. The 2-D generalized Kalman-
Yakubovich-Popov lemmas proposed in [19, 20] are useful
tools when dealing with the problems of H∞ control,
H∞ filtering and fault detection observer/filter design for
linear 2-D systems in FF domains, which have been studied
in [21, 22].

It should be noted that the system properties formalized as
frequency domain inequalities are inapplicable to nonlinear
systems. Due to this reason, it cannot describe the system
representations accurately through the method of frequency-
domain analysis. Stimulated by the concept of time domain
interpretations of the frequency domain inequalities [23], the
authors of [24] dealt with the problem of filtering design for
nonlinear systems in the T-S fuzzy model by introducing
the FF H∞ index. Based on the above theories, the filter
design method and FF static output feedback H∞ controller
design method have been proposed for Roesser-type 2-
D discrete systems in the T-S fuzzy model in [25, 26],
respectively. The most striking characteristic of continuous-
discrete systems lies in that there are a differential equation
and a difference equation with respect to the continuous
and discrete variables, respectively [27]. Therefore, the
results proposed for discrete and continuous 2-D systems are
unable to be used for the addressed systems directly in this
paper. To the authors’ best knowledge, there has been no
results on FF H∞ filtering for nonlinear continuous-discrete
systems. Thus, it is necessary to develop the FF filtering
theory specially for continuous-discrete T-S fuzzy systems.
Inspired by these works, the authors aim to design the H∞
filter for continuous-discrete T-S fuzzy systems in this paper.

This paper aims to design a filter for the continuous-

discrete system in the T-S fuzzy model with FF disturbances.
The main contributions of this work are summarized as
follows:

1) Motivated by the time-domain interpretations of the
frequency domain inequalities [23], definition of the FF H∞
performance for continuous-discrete systems is proposed,
which contains the frequency information of the disturbance
input and generalizes the standard H∞ performance.

2) Based on the Parseval’s theorem for continuous-discrete
systems, the FF H∞ performance analysis results have been
obtained, which generalizes the FF bounded real lemma for
linear systems [20].

3) Sufficient conditions for the existence of the desired filter
and a systematic method for the filter design are developed
to ensure the asymptotic stability and FF H∞ performance
of the filtering error system. By setting the matrix and
decision variables dependent of the membership function,
the proposed results are applicable to linear systems, which
means that the prosed results are very general.

The paper proceeds as follows. The preliminaries and
problem formulation are presented in Section 2. Main
results, including FF H∞ performance analysis and filter
design are given in Section 3. An illustrative example
demonstrates the theoretical results potency in Section 4.
Finally, some conclusions are summarized in Section 5.

2. Preliminaries and problem formulation

Notations: R, C and Hn stand for the sets of all real
numbers, complex numbers and Hermitian n×n dimensional
matrices, respectively. A−1, AT and A∗ denote the inverse,
the transpose and the complex conjugate transpose of matrix
A, respectively.

He(A) := (A + A∗)/2

and tr(A) stand for the Hermitian and the trace of square
matrix A, respectively. The notation A > 0 (A ≥ 0) means
that A is positive definite (positive semi-definite). NA

denotes a matrix whose columns form a basis of the null-
space of matrix A. The symbol “⋆” represents the term
originated by conjugate symmetry in a matrix. The L2 norm
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of a 2-D signal w(t, k) is given by

∥w∥22 =
∞∑

k=0

∫ ∞
t=0

wT (t, k)w(t, k)dt.

w(t, k) is said to belong to L2{[0,∞), ⌊0,∞)} if ∥w∥2 < ∞,
where ⌊0,∞) := {0, 1, 2, · · · }.

2.1. System description

Consider the continuous-discrete T-S fuzzy system with
its i-th rule as follows:
Rule i: IF θ1(t, k) is Mi1, · · · , and θL(t, k) is MiL, THEN

x̃(t, k) = Aix(t, k) + Biw(t, k),

y(t, k) = Cix(t, k) + Diw(t, k),

z(t, k) = Lix(t, k) + Eiw(t, k) (2.1)

with

x̃(t, k) =

 ∂xh(t,k)
∂t

xv(t, k + 1)

 , x(t, k) =

 xh(t, k)
xv(t, k)

 ,
where i ∈ N = {1, 2, · · · ,N}, t ∈ [0,∞) and k ∈ ⌊0,∞);
xh(·, ·) ∈ Rnh and xv(·, ·) ∈ Rnv are state vectors that vary in
the horizontal and the vertical directions, respectively; x(·, ·)
denotes the whole state in Rn with n = nh + nv; w(·, ·) ∈ Rnw ,
y(·, ·) ∈ Rny and z(·, ·) ∈ Rnz are the disturbance input, the
measured output and the signal to be estimated, respectively.
θp(t, k), p = 1, 2, .., L, are the premise variables; Mip is
the fuzzy set; L is the number of premise variables; N is
the number of IF-THEN rules; Ai, Bi, Ci, Di, Li and Ei

are known matrices of appropriate dimensions. The energy
of the disturbance w(t, k) is assumed to be dominated in a
known rectangular FF region introduced later.

Via using the inference product, the singleton fuzzifer and
the center-average defuzzifer, (2.1) can be described by

x̃(t, k) = A(µ)x(t, k) + B(µ)w(t, k),

y(t, k) = C(µ)x(t, k) + D(µ)w(t, k),

z(t, k) = L(µ)x(t, k) + E(µ)w(t, k) (2.2)

with
A(µ) B(µ)
C(µ) D(µ)
L(µ) E(µ)

 =
N∑

i=1

µi(t, k)


Ai Bi

Ci Di

Li Ei

 ,
µi(t, k) =

βi(t, k)
N∑

i=1
βi(t, k)

, βi(t, k) =
L
Π

p=1
Mip(θp(t, k)), (2.3)

where Mip(θp(t, k)) is the degree of the membership function
of θp(t, k) in Mip. Assume that Mip(θp(t, k)) ≥ 0 for all i ∈ N

and p ∈ L = {1, 2, · · · , L}, then for all t ⩾ 0 and k ∈ ⌊0,∞),
the normalized membership function µi(t, k) satisfies

µi(t, k) ≥ 0 and
N∑

i=1

µi(t, k) = 1.

The boundary conditions (BCs) associated with (2.1) are

xh(t, k) =
{ h0, t = 0, 0 ≤ k ≤ z2,

0, t = 0, ∀k > z2,

xv(t, k) =
{ v0, k = 0, 0 ≤ t ≤ z1,

0, k = 0, ∀t > z1,

where h0 ∈ R
nh and v0 ∈ R

nv are given vectors, z1 is a
positive scalar and z2 is a positive integer.

2.2. Fuzzy filter

In order to estimate the signal z(t, k), a fuzzy Roesser-type
filter is designed as follows:
Filter rule i: IF θ1(t, k) is Mi1, · · · , and θL(t, k) is MiL,THEN

x̃F(t, k) = AF,ixF(t, k) + BF,iy(t, k),

zF(t, k) = CF,ixF(t, k) + DF,iy(t, k) (2.4)

with xh
F(0, k) = 0, xv

F(t, 0) = 0 for t ≥ 0 and k ∈ ⌊0,∞),

x̃F(t, k) =
[ ∂xh

F (t,k)
∂t

xv
F(t, k + 1)

]
, xF(t, k) =

[ xh
F(t, k)

xv
F(t, k)

]
,

where xh
F(·, ·) ∈ Rnh and xv

F(·, ·) ∈ Rnv are the horizontal
and the vertical filter states, respectively; zF(·, ·) ∈ Rnz is
an estimation of z(·, ·); AF,i, BF,i, CF,i and DF,i (i ∈ N) are
appropriately dimensioned filter matrices to be determined.

The defuzzified output of system (2.4) is obtained as

x̃F(t, k) = AF(µ)xF(t, k) + BF(µ)y(t, k),

zF(t, k) = CF(µ)xF(t, k) + DF(µ)y(t, k), (2.5)

where AF(µ) BF(µ)
CF(µ) DF(µ)

]
=

N∑
i=1

µi(t, k)
[ AF,i BF,i

CF,i DF,i

 . (2.6)

Defining
ẑ(t, k) = z(t, k) − zF(t, k),
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x̂h(t, k) =

 xh(t, k)
xh

F(t, k)

 , x̂v(t, k) =

 xv(t, k)
xv

F(t, k)


and augmenting the filter states with system (2.2), the
following filtering error system (FES) can then be obtained

˜̂x(t, k) = Â(µ)x̂(t, k) + B̂(µ)w(t, k),

ẑ(t, k) = Ĉ(µ)x̂(t, k) + D̂(µ)w(t, k), (2.7)

where

D̂(µ) = E(µ) − DF(µ)D(µ),

˜̂x =
[ ∂x̂h(t,k)

∂t

x̂v(t, k + 1)

]
, x̂(t, k) =

[ x̂h(t, k)
x̂v(t, k)

]
,

Â(µ) = Π
[ A(µ) 0

BF(µ)C(µ) AF(µ)

]
ΠT ,

Ĉ(µ) =
[

L(µ) − DF(µ)C(µ) −CF(µ)
]
ΠT ,

B̂(µ) = Π
[ B(µ)

BF(µ)D(µ)

]
,

Π =


Inh 0 0 0
0 0 Inh 0
0 Inv 0 0
0 0 0 Inv

 .

2.3. Problem statement

In practice, effects of the noises are usually dominated
in FF ranges. Based on the practical situation, denoting
the Fourier transform of w(t, k) as W(jwh, ejwv ) with j being
the imaginary unit, a rectangular FF domain R for the noise
signal w(t, k) is given as follows:

R = {(wh,wv) : wh1 ≤ wh ≤ wh2,wv1 ≤ wv ≤ wv2}, (2.8)

where wh1, wh2 ∈ R and wv1, wv2 ∈ (−π, π] are the lower and
upper bounds of frequency variables wh and wv respectively.

Definition 2.1. For the FF domain R and a given positive

scalar γ, the FES (2.7) is said to have an FF H∞ index γ if

the following two conditions are satisfied:

(i) When w(t, k) ≡ 0, the FES (2.7) is AS;

(ii) Under the zero BCs, the inequality

∥ẑ∥22 < γ
2∥w∥22 (2.9)

holds for all solutions of (2.7) with

w(·, ·) ∈ L2{[0,∞), ⌊0,∞)}\{0}

such that
∞∑

k=0

∫ ∞
0

(
wh1 x̂h(t, k) + j

∂x̂h(t, k)
∂t

)
×
(
wh2 x̂h(t, k) + j

∂x̂h(t, k)
∂t

)∗
dt < 0, (2.10)

ej(wa
v )
∫ ∞

0

[ ∞∑
k=0

(
x̂v(t, k + 1) − ejwv1 x̂v(t, k)

)
×
(
x̂v(t, k + 1) − ejwv2 x̂v(t, k)

)∗]
dt < 0, (2.11)

where

wa
v = (wv2 − wv1)/2.

The FF filtering problem to be addressed in this paper is
to design a fuzzy filter in the form of (2.4), such that the
FES (2.7) is AS and has an FF H∞ performance level γ. To
get the main results, we still need the following lemma.

Lemma 2.1. ([28]) If the 2-D complex vector functions
x(t, k) and y(t, k) belong to L2{[0,∞), ⌊0,∞)}, then the
corresponding Laplace-Z transforms X(s, z) and Y(s, z) exist
and the following relation holds, provided that x(t, k) and
y(t, k) have the same dimensions

∞∑
k=0

∫ ∞
0

tr
(
x(t, k)y∗(t, k)

)
dt

=
1

(2π)2

∫ π
−π

∫ ∞
−∞

tr
(
X(jwh, ejwv )Y∗(jwh, ejwv )

)
dwhdwv.

3. Main results

3.1. FF performance analysis

In the following, one sufficient condition is presented for
the FES (2.7) having an FF H∞ performance.

Theorem 3.1. Assume that the FES (2.7) is asymptotically

stable (AS). For the FF domain R and the scalar γ > 0,

the FES (2.7) has an FF H∞ performance γ if there exist

symmetric matrices

P̂ = diag{P̂h, P̂v} ∈ R2n×2n

and

Q̂ = diag{Q̂h, Q̂v} ∈ R2n×2n,
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such that P̂h > 0, Q̂v > 0 and

 Â(µ) B̂(µ)
I 0

T  −P̂ −Λ̂∗P̂Ŵ + Λ̂∗Q̂

−Ŵ∗P̂Λ̂ + Q̂Λ̂ L̂hP̂ − Ŵ∗P̂Ŵ − L̂vQ̂


×

 Â(µ) B̂(µ)
I 0

 +  ĈT (µ)Ĉ(µ) ĈT (µ)D̂(µ)
D̂T (µ)Ĉ(µ) −γ2I + D̂T (µ)D̂(µ)


< 0 (3.1)

with

Λ̂ = diag{I2nh , e
−j(wc

v)I2nv }, Ŵ = diag{−j(wc
h)I2nh , 02nv },

L̂v = diag{0, 2 cos (wa
v)I2nv }, L̂h = diag{(wa

h)2I2nh , I2nv },

wc
h = (wh1+wh2)/2, wa

h = (wh2−wh1)/2, wc
v = (wv1+wv2)/2.

Proof. Multiplying the inequality (3.1) by [x̂T (t, k) wT (t, k)]
from the left and by its transpose from the right with

w(·, ·) ∈ L2{[0,∞), ⌊0,∞)}\{0},

we have ˜̂x(t, k)
x̂(t, k)

T  −P̂ −Λ̂∗P̂Ŵ + Λ̂∗Q̂

−Ŵ∗P̂Λ̂ + Q̂Λ̂ L̂hP̂ − Ŵ∗P̂Ŵ − L̂vQ̂


×

 ˜̂x(t, k)
x̂(t, k)

 + Φ(t, k)

= (
∂x̂h(t, k)
∂t

)T Q̂h x̂h(t, k) + (x̂h(t, k))
T

Q̂h ∂x̂
h(t, k)
∂t

− (x̂v(t, k + 1))T P̂v x̂v(t, k + 1) + (x̂v(t, k))T P̂v x̂v(t, k)

+ Φ(t, k) − tr
(
Q̂v[−e−j(wc

v) x̂v(t, k + 1)(x̂v(t, k))T

− ej(wc
v) x̂v(t, k)(x̂v(t, k + 1))T

+ 2x̂v(t, k) cos(wa
v)

× (x̂v(t, k))T ]
)
− tr
(
P̂hHe((wh1 x̂h(t, k) + j

∂x̂h(t, k)
∂t

)

× (wh2 x̂h(t, k) + j
∂x̂h(t, k)
∂t

)∗)
)

< 0 (3.2)

with

Φ(t, k) =

 x̂(t, k)
w(t, k)

T  ĈT (µ)Ĉ(µ) ĈT (µ)D̂(µ)
D̂T (µ)Ĉ(µ) −γ2I + D̂T (µ)D̂(µ)


×

 x̂(t, k)
w(t, k)

 .

Taking integration for t from zero to∞ and summation for
integer k from zero to∞, in view of the zero BCs, we have

∞∑
k=0

∫ ∞
0
Φ(t, k)dt − tr(He(P̂hS h)) − tr(Q̂vS v) < 0, (3.3)

where

S h :=
∞∑

k=0

∫ ∞
0

(
wh1 x̂h(t, k) + j

∂x̂h(t, k)
∂t

)
×
(
wh2 x̂h(t, k) + j

∂x̂h(t, k)
∂t

)∗dt,

S v :=
∫ ∞

0

∞∑
k=0

{
− e−j(wc

v) x̂v(t, k + 1)(x̂v(t, k))T
− ej(wc

v) x̂v(t, k)

× (x̂v(t, k + 1))T
+ x̂v(t, k)2 cos(wa

v)(x̂v(t, k))T
}
dt.

Clearly, S v is Hermitian, and it follows from condition (2.10)
that S h < 0. Due to the zero BCs, it is true that

S v =ej(wa
v )
∫ ∞

0

∞∑
k=0

[(
x̂v(t, k + 1) − ejwv1 x̂v(t, k)

)
×
(
x̂v(t, k + 1) − ejwv2 x̂v(t, k)

)∗]
dt,

and combining with constraint (2.11) infers that S v < 0.
Applying Lemma 2.1 to S h, we have

S h =
1

(2π)2

∫ π
−π

∫ ∞
−∞

(wh1 − wh)(wh2 − wh)X̂h(jwh, ejwv )

× (X̂h(jwh, ejwv ))
∗
dwhdwv,

which directly guarantees that S h is also Hermitian, where
X̂h(jwh, ejwv ) denotes the 2-D Laplace-Z transform of x̂h(t, k).
Additionally, since P̂h > 0 and Q̂v > 0, −tr(He(P̂hS h)) −
tr(Q̂vS v) is also positive, then it follows from (3.3) that

∞∑
k=0

∫ ∞
0
Φ(t, k)dt < 0,

which means that FES (2.7) has an FF H∞ performance γ
according to Definition 2.1. This completes the proof. □

To further achieve the main result, the following lemma is
needed to guarantee the asymptotic stability of FES (2.7).

Lemma 3.1. [28] The FES (2.7) with zero input is AS if

positive definite matrices P̄h ∈ R2nh×2nh and P̄v ∈ R2nv×2nv

exist such that Â(µ)
I

T  Q̄11 Q̄12

Q̄12 Q̄22

  Â(µ)
I

 < 0 (3.4)
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holds, where

Q̄11 = diag{0, P̄v}, Q̄12 = diag{P̄h, 0}

and

Q̄22 = diag{0,−P̄v}.

Lemma 3.1 gives a sufficient condition ensuring the
considered system to be AS. To facilitate the filter design,
it is necessary to decouple the product terms between
the matrix variables P̂, Q̂ and the system matrices Â(µ),
B̂(µ) in (3.1). Thus, we need to present an alternative of
Theorem 3.1.

Theorem 3.2. For the FF domain R and the scalar γ > 0,

the FES (2.7) has an FF H∞ performance γ if there exist

matrices Ĝ(µ), F̂(µ), Ḡ(µ), F̄(µ) ∈ R2n×2n and Ĥ(µ) ∈
Rnw×2n, symmetric matrices

P̂ = diag{P̂h, P̂v} ∈ R2n×2n, P̄h ∈ R2nh×2nh , P̄v ∈ R2nv×2nv

and

Q̂ = diag{Q̂h, Q̂v} ∈ R2n×2n,

such that P̂h > 0, Q̂v > 0, P̄h > 0, P̄v > 0 and
Φ11(µ) Φ12(µ) Φ13(µ) 0
⋆ Φ22(µ) Φ23(µ) ĈT (µ)
⋆ ⋆ Φ33(µ) D̂T (µ)
⋆ ⋆ ⋆ −Inz

 < 0, (3.5)

 Q̄11 − 2He(ḠT (µ)) Q̄12 + Ḡ(µ)Â(µ) − F̄T (µ)
⋆ Q̄22 + 2He(ÂT (µ)F̄T (µ))

 < 0,

(3.6)

where

Φ11(µ) = −P̂ − Ĝ(µ) − ĜT (µ),

Φ12(µ) = −Λ̂∗P̂Ŵ + Λ̂∗Q̂ + Ĝ(µ)Â(µ) − F̂T (µ),

Φ13(µ) = Ĝ(µ)B̂(µ) − ĤT (µ),

Φ22(µ) = L̂hP̂ − L̂vQ̂ − Ŵ∗P̂Ŵ + 2He(F̂(µ)Â(µ)),

Φ23(µ) = F̂(µ)B̂(µ) + ÂT (µ)ĤT (µ)

Φ33(µ) = −γ2I + 2He(Ĥ(µ)B̂(µ)),

and the other notations are the same as defined in

Theorem 3.1 and Lemma 3.1.

Proof. Define

Γ(µ) =


−P̂ −Λ̂∗P̂Ŵ + Λ̂∗Q̂ 0

−Ŵ∗P̂Λ̂ + Q̂Λ̂ Γ22(µ) ĈT (µ)D̂(µ)
0 D̂T (µ)Ĉ(µ) Γ33(µ)

 ,
U(µ) =

[
−I2n Â(µ) B̂(µ)

]
,

Y(µ) =
[

ĜT (µ) F̂T (µ) ĤT (µ)
]T
,

where

Γ22(µ) = L̂hP̂ − L̂vQ̂ − Ŵ∗P̂Ŵ + ĈT (µ)Ĉ(µ)

and
Γ33(µ) = −γ2I + D̂T (µ)D̂(µ).

Then, we have

Ψ(µ) := Y(µ)U(µ) + UT (µ)YT (µ) + Γ(µ)

=


Ψ11(µ) Ψ12(µ) Ψ13(µ)
⋆ Ψ22(µ) Ψ23(µ)
⋆ ⋆ Ψ33(µ)

 (3.7)

with

Ψ11(µ) = −P̂ − Ĝ(µ) − ĜT (µ),

Ψ12(µ) = −Λ̂∗P̂Ŵ + Λ̂∗Q̂ + Ĝ(µ)Â(µ) − F̂T (µ),

Ψ22(µ) = L̂hP̂ − L̂vQ̂ − Ŵ∗P̂Ŵ + ĈT (µ)Ĉ(µ) + 2He(F̂(µ)Â(µ)),

Ψ13(µ) = Ĝ(µ)B̂(µ) − ĤT (µ),

Ψ23(µ) = ĈT (µ)D̂(µ) + F̂(µ)B̂(µ) + ÂT (µ)ĤT (µ)

Ψ33(µ) = −γ2I + D̂T (µ)D̂(µ) + 2He(Ĥ(µ)B̂(µ)).

By Schur complement lemma, Ψ(µ) < 0 is equivalent to
inequality (3.5), then by taking

NU(µ) =


Â(µ) B̂(µ)
I2n 0
0 Inw

 ,
pre- and post-multiplying both sides of Ψ(µ) < 0 by NT

U(µ)

and NU(µ), respectively, and noting that NU(µ) is column full
rank, it is known that inequality (3.1) does hold.

In addition, we set

Γ̄(µ) =

 Q̄11 Q̄12

Q̄12 Q̄22

 , Ȳ(µ) =

 Ḡ(µ)
F̄(µ)

 ,
Ū(µ) =

[
−I2n Â(µ)

]
,
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where Q̄11, Q̄12 and Q̄22 are defined in Lemma 3.1. The
constraint condition (3.6) is exactly

Ψ̄(µ) := Ȳ(µ)Ū(µ) + ŪT (µ)ȲT (µ) + Γ̄(µ) < 0.

Similarly, taking

N̄U(µ) = [ÂT (µ)I2n]T ,

pre- and post-multiplying both sides of Ψ̄(µ) < 0 by NT
Ū(µ)

and NŪ(µ), respectively, and noting that NŪ(µ) is column full
rank, it follows that Â(µ)

I2n

T  Q̄11 Q̄12

Q̄12 Q̄22

  Â(µ)
I2n

 < 0.

From Lemma 3.1, we know that the FES (2.7) with
w(·, ·) ≡ 0 is AS. The proof is completed by resorting to
Theorem 3.1 and Definition 2.1. □

Remark 3.1. The slack matrices Ĝ(µ), F̂(µ), Ḡ(µ), F̄(µ) and

Ĥ(µ) are introduced to decouple the products between the

Lyapunov matrices P̂, P̄h, P̄v, Q̂ and the system matrices,

which aids in the filter design while also bringing certain

conservatism.

3.2. Fuzzy filter design

The following result can be derived via specifying the
structure of the slack matrices in Theorem 3.2 and coverting
the filter design problem to a group of LMI constraints,
which are numerically tractable.

Theorem 3.3. For the FF domain R and the scalar γ > 0,

the FES (2.7) has an FF H∞ performance γ if there exist

matrices

VAF,i ∈ R
n×n, VBF,i ∈ R

n×ny , CF,i ∈ R
nz×n, DF,i ∈ R

nz×ny ,

H1,i ∈ R
nw×n, P2 = diag{Ph

2, P
v
2} ∈ R

n×n,

Q2 = diag{Qh
2,Q

v
2} ∈ R

n×n,

Gl,i, Fl,i, Ḡl,i, F̄l,i ∈ R
n×n, (l = 1, 2),V ∈ Rn×n

and symmetric matrices

P f = diag{Ph
f , P

v
f } ∈ R

n×n,

Q f = diag{Qh
f ,Q

v
f } ∈ R

n×n, ( f = 1, 3),

Ph
s ∈ R

nh×nh , P̄v
s ∈ R

nv×nv , (s = 1, 2, 3),

such that  diag{P̄h
1, P̄

v
1} diag{P̄h

2, P̄
v
2}

⋆ diag{P̄h
3, P̄

v
3}

 > 0, (3.8) Ph
1 Ph

2

⋆ Ph
3

 > 0,

 Qv
1 Qv

2

⋆ Qv
3

 > 0, (3.9)
T11,ii T12,i j T13,i j 0
⋆ T22,i j T23,i j C̃T

i, j

⋆ ⋆ T33,i j D̂T
i, j

⋆ ⋆ ⋆ −Inz

 < 0, (3.10)

 L11,ii L12,i j

⋆ L22,i j

 < 0 (3.11)

hold for all i, j ∈ N, where

T11,ii =

 −P1 −G1,i −GT
1,i −P2 − V −GT

2,i

⋆ −P3 − V − VT

 ,
T13,i j =

 G1,iB j + VBF,iD j − HT
1,i

G2,iB j + VBF,iD j

 ,
T12,i j =

 −Λ∗P1W + Λ∗Q1 +G1,iA j + VBF,iC j − FT
1,i

−Λ∗PT
2 W + Λ∗QT

2 +G2,iA j + VBF,iC j

−Λ∗P2W + Λ∗Q2 + VAF,i − FT
2,i

−Λ∗P3W + Λ∗Q3 + VAF,i

 ,
T22,i j =

 LhP1 − LvQ1 −W∗P1W + 2He(F1,iA j)
⋆

LhP2 − LvQ2 −W∗P2W + AT
j FT

2,i

LhP3 −W∗P3W − LvQ3

 ,
T23,i j =

 F1,iB j + AT
j HT

1,i

F2,iB j

 ,
T33,i j = − γ

2Inw + 2He(H1,iB j),

C̃i j =
[

L j − DF,iC j −CF,i

]
,

D̂i j =E j − DF,iD j,

L11,ii =

 diag{0, P̄v
1} − Ḡ1,i − ḠT

1,i

⋆

diag{0, P̄v
2} − V − ḠT

2,i

diag{0, P̄v
3} − V − VT

 ,
L12,i j =

 diag{P̄h
1, 0} + Ḡ1,iA j + VBF,iC j − F̄T

1,i

diag{ P̄h
2, 0} + Ḡ2,iA j + VBF,iC j − VT

diag{ P̄h
2, 0} + VAF,i − F̄T

2,i

diag{P̄h
3, 0} + VAF,i − VT

 ,
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L22,i j =

 −diag{0, P̄v
1} + 2He(F̄1,iA j + VBF,iC j)

⋆

−diag{0, P̄v
2} + VAF,i + AT

j F̄T
2,i +CT

j VT
BF,i

−diag{0, P̄v
3} + 2He(VAF,i)

 .
Moreover, the coefficients of filter (2.4) are designed as

AF,i = V−1VAF,i, BF,i = V−1VBF,i. (3.12)

Proof. Parameterize the slack matrices Ĝ(µ), F̂(µ), Ḡ(µ),
F̄(µ) and Ĥ(µ) as

Ĝ(µ) = Π

 G1(µ) V

G2(µ) V

ΠT , F̂(µ) = Π

 F1(µ) 0
F2(µ) 0

ΠT ,

Ḡ(µ) = Π

 Ḡ1(µ) V

Ḡ2(µ) V

ΠT , F̄(µ) = Π

 F̄1(µ) V

F̄2(µ) V

ΠT ,

Ĥ(µ) =
[

H1(µ) 0
]
ΠT (3.13)

with Π given in (2.7). Define matrix variables P̂, P̄h, P̄v and
Q̂ as follows:

P̂ = Π

 P1 P2

⋆ P3

ΠT , Q̂ = Π

 Q1 Q2

⋆ Q3

ΠT ,

Q̄12 = Π

 diag{P̄h
1, 0} diag{P̄h

2, 0}
⋆ diag{P̄h

3, 0}

ΠT ,

Q̄11 = −Q̄22 = Π

 diag{0, P̄v
1} diag{0, P̄v

2}

⋆ diag{0, P̄v
3}

ΠT , (3.14)

i.e.,

P̄v =

 P̄v
1 P̄v

2

⋆ P̄v
3

 , P̄h =

 P̄h
1 P̄h

2

⋆ P̄h
3

 .
In addition, we can obtain the following equalities

Λ̂ = Π

 Λ 0
0 Λ

ΠT , L̂v = Π

 Lv 0
0 Lv

ΠT ,

L̂h = Π

 Lh 0
0 Lh

ΠT , Ŵ = Π

 W 0
0 W

ΠT . (3.15)

Due to ΠTΠ = I, taking

VAF(µ) = VAF(µ), VBF(µ) = VBF(µ)

and putting (3.8), (3.9), (3.13)–(3.15) into (3.5) and (3.6),
respectively, we have

Φ11(µ) Φ12(µ) Φ13(µ) 0
⋆ Φ22(µ) Φ23(µ) ĈT (µ)
⋆ ⋆ Φ33(µ) D̂T (µ)
⋆ ⋆ ⋆ −Inz

 < 0, (3.16)

 ∆11(µ) ∆12(µ)
⋆ ∆22(µ)

 < 0 (3.17)

with

Φ11(µ) = ΠΞ11(µ)ΠT , Φ12(µ) = ΠΞ12(µ)ΠT ,

Φ13(µ) = ΠΞ13(µ), Φ22(µ) = ΠΞ22(µ)ΠT ,

Φ23(µ) = ΠΞ23(µ), Φ33(µ) = Ξ33(µ),

Ĉ(µ) = C̃(µ)ΠT , ∆11(µ) = ΠL11(µ)ΠT

∆12(µ) = ΠL12(µ)ΠT , ∆22(µ) = ΠL22(µ)ΠT .

Define

VAF(µ) =
N∑

i=1

µi(t, k)VAF,i, VBF(µ) =
N∑

i=1

µi(t, k)VBF,i,

H1(µ) =
N∑

i=1

µi(t, k)H1,i, Gl(µ) =
N∑

i=1

µi(t, k)Gl,i,

Fl(µ) =
N∑

i=1

µi(t, k)Fl,i, Ḡl(µ) =
N∑

i=1

µi(t, k)Ḡl,i,

F̄l(µ) =
N∑

i=1

µi(t, k)F̄l,i

with l = 1, 2. Pre- and post-multiplying both sides of (3.16)
by diag{ΠT ,ΠT , I, I} and diag{Π,Π, I, I}, respectively, (3.16)
is equivalent to condition (3.10). Similarly, pre- and
post-multiplying both sides of (3.17) by diag{ΠT ,ΠT }

and diag{Π,Π}, respectively, (3.17) is equivalent to
condition (3.11). It is noted that (3.11) guarantees −V −

VT < 0, which means that V is nonsingular and the filter
coefficients could be calculated by (3.12). This concludes
the proof. □

From the above result, it is known that by solving the
convex optimization problem,

min γ2 s.t. LMIs (3.8) − (3.11), (3.18)

a sub-optimal filter with filter gains designed in (3.12) could
be achieved with FF H∞ performance γ∗∗, which is the
minimum value of γ.
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Remark 3.2. The conditions P̄h > 0, P̄v > 0, P̂h >

0 and Q̂v > 0 in Theorem 3.2 are implied by (3.8)

and (3.9) in Theorem 3.3, utilizing the equivalent variable

transformation.

4. Simulation example

The filter design method will be applied to a practical
process of gas absorption, which is represented by the
following nonlinear differential equation

∂2φ(p, q)
∂p∂q

=a1
∂φ(p, q)
∂q

+ a2
∂φ(p, q)
∂p

+ bw(p, q)

+ a0(1 − 0.25sin2(φ(p, q)))φ(p, q), (4.1)

where φ(p, q) is the variable function; a0, a1, a2 and b are
real coefficients; w(p, q) is the disturbance input; the BCs
are

φ(p, 0) = φ1(p) and φ(0, q) = φ2(q).

Define

ς(p, q) =
∂φ(p, q)
∂q

− a2φ(p, q), xh(t, k) = ς(t, k) := ς(t, kT ),

xv(t, k) = φ(t, k) := φ(t, kT ),
∂xv(t, k)
∂k

�
xv(t, k + 1) − xv(t, k)

T
,

where T is the difference step. Next, the following
continuous-discrete model can be obtained ∂xh(t,k)

∂t

xv(t, k + 1)

 =  a1 a1a2 + a0 − 0.25a0sin2(xv(t, k)))
T 1 + Ta2


×

 xh(t, k)
xv(t, k)

 +  b

0

w(t, k) (4.2)

with BCs

xh(0, k) = φ(0, k + 1)/T − (1/T + a2)φ(0, k)

and
xv(t, 0) = φ(t, 0).

Take the membership functions

µ1(t, k) = 1 − sin2(xv(t, k)) and µ2(t, k) = sin2(xv(t, k))

in consideration of two IF-THEN rules. System (4.2)
could be further approximated by the following continuous-
discrete T-S fuzzy system

IF sin2(xv(t, k)) is about zero, THEN

 ∂xh(t,k)
∂t

xv(t, k + 1)

 = A1

 xh(t, k)
xv(t, k)

 + B1w(t, k). (4.3)

IF sin2(xv(t, k)) is about one, THEN

 ∂xh(t,k)
∂t

xv(t, k + 1)

 = A2

 xh(t, k)
xv(t, k)

 + B2w(t, k), (4.4)

where

A1 =

 a1 a1a2 + a0

T 1 + a2T

 , B1 = B2 =

 b

0

 ,
A2 =

 a1 a1a2 + 0.75a0

T 1 + a2T

 .
Letting a0 = −2.4, a1 = −0.4, a2 = −5.5, b = −0.1

and T = 0.2, the other matrix parameters are also taken as
follows for the purpose of discussion: E1 = 1.5, E2 = 1,

A1 =
[ −0.4 −0.2

0.2 −0.1

]
, B1 = B2 =

[ −0.1
0

]
,

D1 = 0.1, C1 =
[ −1

1

]T
,

A2 =
[ −0.4 0.4

0.2 −0.1

]
, C2 =

[ 0.3
0.3

]T
,

L1 = [ 1 −1 ], D2 = 0.7, L2 = [ −1.2 1 ].

The aim is to design a fuzzy continuous-discrete filter
in the form of (2.5) to guarantee the asymptotic stability
and an FF H∞ performance of the FES (2.7). The
FF domain of the disturbance input signal is taken from
interval [0.5, 13.06] × [0, 1.57]. Via solving the sub-optimal
problem (3.18), the sub-optimal FF H∞ performance level
γ∗∗ = 1.9112 is obtained and the corresponding solution to
the LMIs is available, which is partially presented for space
consideration

VAF,1 =

 −1.5152 0.0243
0.0213 −0.2846

 , VBF,1 =

 0.0694
0.1927

 ,
VAF,2 =

 −1.5209 0.0243
0.0235 −0.2846

 , VBF,2 =

 0.0458
0.2574

 .
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By (3.12), the obtained matrix parameters of the FF H∞ filter
are designed as follows: DF,1 = −0.1157, DF,2 = 1.0978,

AF,1 =

 −0.5950 0.0078
0.0203 −0.1779

 , BF,1 =

 0.0249
0.1201

 ,
AF,2 =

 −0.0214 0.0003
0.0003 −0.0040

 , BF,2 =

 0.0006
0.0036

 ,
CF,1 =

[
0.1303 0.0021

]
, CF,2 =

[
0.0620 0.0258

]
.

In the following, simulation results are provided. First,
Figures 1–5 show the trajectories of x̂h

1(t, k), x̂h
2(t, k), x̂v

1(t, k),
x̂v

2(t, k) and ẑ(t, k) of the FES without disturbance input,
respectively, where the BCs are

x̂h(t, k) =

 [ 0.2 0 ]T , t = 0, 0 ≤ k ≤ 20,

[ 0 0 ]T , t = 0, k > 20,

x̂v(t, k) =

 [ 0.2 0 ]T , 0 ≤ t ≤ 4, k = 0,

[ 0 0 ]T , t > 4, k = 0.

Figures 1–4 further show that the FES is AS. Next, take
the disturbance input as follows:

w(t, k) =0.8 cos (6.78(t − 0.5))

× [u(t) − u(t − 1)]
sin (1.57k)
πk

, (4.5)

where u(t) is the unit step function. Applying the Fourier
transformation, the FF domain of the disturbance input
signal (4.5) is [0.5, 13.06] × [0, 1.57]. Under the zero
BCs, it can be calculated that ∥ẑ∥2/∥w∥2 � 1.5338 with
the disturbance input (4.5). Thus, the constraint (2.9) is
satisfied, which means that the FES satisfies a prescribed FF
H∞ performance γ∗∗ = 1.9112.
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Figure 1. The trajectory of x̂h
1(t, k).
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Figure 2. The trajectory of x̂h
2(t, k).
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Figure 3. The trajectory of x̂v
1(t, k).
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Figure 4. The trajectory of x̂v
2(t, k).

Finally, to investigate the relationship between the size
of the FF domain and the conservativeness of the proposed
result, the obtained sub-optimal values of γ based on
Theorem 3.3 for different FF sets of disturbances are
displayed in Table 1. From Table 1, we find that, for a
fixed continuous component interval, γ∗∗ becomes larger as
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Figure 5. The trajectory of ẑ(t, k) with w(·, ·) ≡ 0.

the discrete one becomes wider; while for a fixed discrete
component interval, if the continuous part is wider, then the
obtained γ∗∗ is larger. That is, a larger FF domain leads to a
more conservative filtering performance.

Table 1. The value of γ∗∗ and feasibility of the
LMIs with different FF domains.

Frequency domain γ∗∗ Feasibility
[5.2, 8.7] × [0, 1.57] 1.4013 ✓
[0.5, 13.06] × [0, 1.57] 1.9112 ✓
[0.5, 13.06] × [0.5, 1.2] 1.3135 ✓
[0, 130.6] × [−2, 3] Null ×

[0, 1.3 × 108] × [−π, π] Null ×

5. Conclusions

The filter design problem has been concerned for the
continuous-discrete T-S fuzzy systems in the Roesser model
with FF disturbances. The systematic method has been
proposed for the filter design, with which the FES was AS
and had an FF H∞ performance. A simulation case further
showed validity of the results discussed above. Applying
the similar techniques to FF fault detection problems and
extending the proposed technique to the 2-D T-S fuzzy
systems with delays are important and challenging research
topics that deserve more future efforts.
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