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Abstract: Anthrax is a bacterial infection caused by Bacillus anthracis, primarily affecting animals and occasionally affecting humans.
This paper presents two compartmental deterministic models of anthrax transmission having vaccination compartments. In both
models, a nonlinear ratio-dependent disease transmission function is employed, and the latter model distinguishes itself by incorporating
fractional order derivatives, which adds a novel aspect to the study. The basic reproduction number R0 of the epidemic is determined,
below which the disease is eradicated. It is observed that among the various parameters, the contact rate, disease-induced mortality rate,
and rate of animal recovery have the potential to influence this basic reproduction number. The endemic equilibrium becomes disease-
free via transcritical bifurcations for different threshold parameters of animal recovery rate, disease-induced mortality rate and disease
transmission rate, which is validated by utilizing Sotomayor’s theorem. Numerical simulations have revealed that a higher vaccination
rate contributes to eradicating the disease within the ecosystem. This can be achieved by effectively controlling the disease-induced
death rate and promoting animal recovery. The extended fractional model is analyzed numerically using the Adams-Bashforth-Moulton
type predictor-corrector scheme. Finally, it is observed that an increase in the fractional order parameter has the potential to reduce the
time duration required to eradicate the disease from the ecosystem.
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1. Introduction

Anthrax is a highly lethal infectious disease caused by
Bacillus anthracis, a Gram-positive, rod-shaped bacterium
capable of forming spores [1]. It can lead to the sudden and
unforeseen death of infected animals, including livestock,
and occasionally poses a fatal threat to humans. Generally,
there are two ways in which anthrax can be transmitted
to animals: by ingesting a sufficient number of spores in
soil (or on plants) and via stable flies, Stomoxys calcitrans,
that feed on infected blood bleeding out of the carcasses
of animals that died of anthrax infection [2, 3]. Utilizing
pre-exposure vaccinations 2–4 weeks before the expected
endemic season, anthrax can be controlled, and, is the
only effective measure [2]. Anthrax spores’ exceptional
resistance to pH extremes, heat and cold, desiccation, and

a variety of chemical agents contributes to their long-term
viability of up to two centuries [4]. Moreover, the anthrax
infection often becomes more lethal with no symptoms in
cattle [2]. In such a case, the period (from incubation to
death) may be crucial for preventing anthrax epidemics.

Anthrax poses a threat not only to herbivorous animals
but also to carnivores that consume the contaminated
remains of anthrax-infected prey. However, the infection
and mortality rates among carnivores are generally lower
compared to herbivores. The World Anthrax Data Site,
as reported by the World Health Organization (WHO), has
documented anthrax outbreaks in animals across nearly 200
countries, particularly in regions with high animal and
human populations. For instance, in Etosha National
Park, a range of herbivores, from elephants to ostriches,
succumbed to anthrax, and the precise cause remained
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unknown (see [5, 6]). In November 2004, the deaths of
three captive cheetahs (Acinonyx jubatus) were recorded
in Jwana Game Reserve in Jwanen and Botswana [5, 6];
they had been fed meat from anthrax-infected dead red
hartebeest (Alcelaphus buselaphus) (revealed later). The
sporadic outbreaks and epizootics of anthrax infection
among livestock and wild animals are comparatively high
in Africa, the Middle East, and Asia [7]. In Bangladesh
and India, two countries in southern Asia, anthrax is
extremely common, and both human and animal infections
and outbreaks are frequently documented [8, 9]. The most
common cutaneous form of anthrax infection can have a
mortality rate of up to 20% if no treatment measures are
applied; it may reduce to < 1% with proper treatment
measures [10]. According to the emergency prevention
system (EMPRES-i) data from the food and agriculture
organisation of the UN, seventeen anthrax outbreaks were
reported during 2009–2019 only in India and Bangladesh
(see Figure 1). During the period 2009–2023, several
anthrax outbreaks were reported globally (see Figure 2).

The mathematical study of the prey-predator ecosystem
was first introduced by Lotka and Volterra [11,12] (working
separately), well known as the Lotka-Volterra model. After
the popularity of the Lotka-Volterra model, Kermack and
Kendrick [13] first introduced the term epidemiology in
mathematical modelling and explored a SEIRS compartment
model.

Following [13], researchers have drawn much attention to
this domain in recent decades [14–18]. In [14], Asamoah
et al. presented transmission dynamics of Q fever in cattle
herds, a bacterial infection caused by Coxiella burnetii.
They have investigated the model for optimal disease control
by introducing time-dependent vaccination, environmental
hygiene and culling. Extending the model proposed in [14]
by incorporating direct transmission by both asymptomatic
and symptomatic cattle, different shedding rates, treatment
class, the rate of relapse and seasonal fluctuations, Asamoah
et al. [15] determined the reproduction number of Q fever
under different scenarios. They have also investigated the
model for optimal control strategies under time-dependent
treatment, disinfectant and separate facilities for animal
birthing. Over the last few years, Dengue, a viral disease
carried by mosquitoes and triggered by the dengue virus,

(a)

(b)

Figure 1. Anthrax outbreaks in India and
Bangladesh as per EPRES-i data, (a) population
density of cattles, (b) population density of
buffaloes.

Figure 2. Anthrax outbreaks reported globally
during 2009–2023.
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has become a notable global health issue, especially in
tropical and subtropical regions. A mathematical model on
the transmission dynamics of dengue fever was presented
in [16]. The parametric expressions associated with the
spread of the disease were determined, and the transmission
dynamics were explored under different time-dependent
control variables.

In another study [17], it has been reported that the
combination of human prevention strategies and vector
control measures in control interventions can potentially
lower the prevalence of Dengue within a community.
In [18], Asamoah et al. presented another dengue
transmission model with four time-dependent control
measures: treated bednets, treatment (prophylactics),
insecticides, and vaccination. Their findings highlighted
that vaccination and treatment had the lowest additional
cost compared to the benefits they provided. Mathematical
modelling is of two types: deterministic and stochastic.
In the first type, the output is fully estimated by the
parameter values and the initial conditions. In contrast, the
second type involves randomness, and variable states are
not described by unique values but rather by probability
distributions. Deterministic models are generally studied
using the theories of dynamical systems. Non-linearity plays
a significant role in complex natural systems, which can be
studied using the theories of dynamical systems. Due to the
non-linearities, researchers pay much interest in exploring
the inner dynamics of the models from the dynamical system
approach.

Due to the long-time survivability of anthrax spores in
the soil, no country can claim to be completely free of the
disease. However, anthrax outbreaks are more common in
underdeveloped countries. From a mathematical modelling
perspective, the pioneering work of anthrax modelling
was carried out by Furniss and Hahn, who investigated
an anthrax epizootic in the Kruger National Park, South
Africa [19]. In 1983, the same authors proposed another
deterministic model with some threshold results [20].
Friedman and Yakubu modified the model proposed by Hahn
and Furniss [20], including factors viz. migration, growth
and the natural mortality of the host [21]. Following the
model by Hahn and Furniss [20], Mushayabasa proposed
a new model by incorporating a fixed time delay. Their

model also includes the role of human effort (as a control
measure) in decontaminating infected carcases, including
the soil or area from the environment [22]. Mushayabasa
et al. presented two different models exploring transmission
and control of anthrax infection in two frameworks. In
the first framework, they explored the impact of the
incubation period and carcass disposal. In the second
framework, they investigated the effect of vector population
on the spread and control of anthrax [23]. Kimathi and
Wainaina [24] investigated the transmission dynamics of
anthrax in animal populations with vaccination as a control
measure. Osman et al. [25] explored the co-dynamics of
Anthrax and Listeriosis infections and studied the qualitative
and quantitative relationship between them under prevention
and treatment measures. Their study revealed that Anthrax
infection could contribute to an increased risk of Listeriosis,
but Listeriosis infection is not associated with the risk of
anthrax. According to their findings, anthrax infection
is related to a higher chance of Listeriosis infection,
while Listeriosis infection is not related to an increased
risk of anthrax. Motivated by the work of Kimathi and
Wainaina [24], Rezapour et al. proposed a new fractional
ordered model in the sense of the Caputo-Fabrizio fractional
derivative [26]. Determining the basic reproduction number
R0 of the fractional system, they analyzed the asymptotic
stability of the disease-free and endemic equilibrium states.

In recent years, there has been a heightened interest
among researchers in disease modelling, including the
modelling of conditions such as cancer and HIV. The
COVID-19 pandemic, caused by the SARS-CoV-2 virus, has
recently attracted significant attention, with over 21 million
confirmed cases and 758,000 deaths reported. Mathematical
models have played a crucial role in forecasting various
waves during the COVID-19 pandemic, and this continues
to be an active area of research [27]. A comparative analysis
of the mathematical models of COVID-19 pandemic can be
found in [28]. Our literature review reveals that, in contrast
to diseases like HIV or cancer, researchers have given
relatively minimal attention to modelling anthrax disease. In
underdeveloped regions, anthrax remains a persistent threat,
which serves as a compelling motivation for us to delve
into the mathematical modelling of anthrax. Our goal is
to construct a comprehensive model that incorporates all
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potential biotic and abiotic factors. One prominent strategy
for controlling anthrax involves implementing a vaccination
policy. However, there can be delays in this process due
to factors such as asymptomatic carriers among animals or
limitations in the effectiveness of manpower in vaccination
efforts. Such scenarios further motivate our mathematical
exploration of the disease’s underlying dynamics.

In this research, we propose an SIR model with an
additional compartment V for the vaccinated population.
The anthrax models discussed above involve bilinear disease
transmission rates. However, data and evidence observed
for many diseases show that disease transmission dynamics
are not always as simple as presented in such models.
In reality, transmission often saturates at high levels of
either susceptible or infectious individuals. In the initial
stages of an outbreak, when a substantial portion of the
population is vulnerable, the disease can increase swiftly
due to the abundance of potential hosts for the pathogen.
Nevertheless, as more individuals contract the disease
and develop immunity, the reservoir of susceptible hosts
diminishes, making it increasingly challenging for the
pathogen to identify new hosts. Consequently, this leads to
a decrease in the transmission rate. Nonlinear transmission
functions, such as the Holling type-II and Michaelis-Menten
type functions, offer a way to illustrate the saturation effect.
These functions allow the transmission rate to increase at
low levels of susceptibles or infectious individuals but level
off or decrease as those levels become high.

In recent years, researchers proposed many nonlinear
incidence rates [29–33], and these models have attracted
a considerable readership. Based on our literature review,
no anthrax transmission model has been proposed with
a saturation effect. Our proposed model is novel, and
it is an extension of the model proposed by Kimathi
and Wainaina [24], in terms of a nonlinear transmission
rate with saturation. In Section 2, we formulate the
model with a nonlinear ratio-dependent disease transmission
function. In Section 3, we investigate the non-negativity and
boundedness of the solutions of the system. In Section 4,
we list the possible equilibria, and the basic reproduction
number of the epidemic is determined therein. Sections 5
and 6 deal with the stability analysis of the equilibria
and analysis of transcritical bifurcations. In Section 7, we

extend our model into a fractional-order model. In Section 8,
we conduct numerical simulations using different plausible
parameter sets to validate the analytical results. At the end
of the paper, in Section 9, we conclude our study with a brief
discussion of the biological implications of the mathematical
results. Finally, the essential findings of this work and future
scopes of the model are given in Section 10.

2. Construction of the model

In this section, we propose an extended version of an
anthrax transmission model initially presented by Kimathi
and Wainaina [24]. In their model [24], the total population
is broken down into four compartments, viz., susceptible,
infective, recovered and vaccinated. The total animal
population is given by

N(t) = S (t) + I(t) + R(t) + V(t),

where S (t) denotes the sub-population vulnerable to the
infection, I(t) denotes the sub-population with anthrax
symptoms, R(t) denotes the subpopulation that has
developed temporary immunity after recovering from
anthrax infection, and V(t) represents the subpopulation
vaccinated against anthrax infection. With these four
compartments, the SIRV model of anthrax transmission
in animals, explored by Kimathi and Wainaina [24], is
represented by the following system:

Ṡ = λ − βS I − (µ + γ)S + σR + τV,

İ = βS I − (µ + θ + α)I,

Ṙ = αI − (µ + σ)R,

V̇ = γS − (µ + τ)V.

(2.1)

The following presumptions constitute the basis of
Model (2.1):

(1) It is assumed that the animals are recruited at a constant
rate λ > 0 and are susceptible to anthrax infection. The
natural mortality rate of animals in each compartment
is assumed to be µ > 0.

(2) The disease transmission is considered to be bilinear
with a transmission rate β > 0. Due to high mortality
rates associated with the disease, the disease-induced
mortality rate is assumed to be θ > 0.
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(3) Susceptible animals are vaccinated at the rate γ > 0,
and animal recovery rate is assumed to be α > 0.

(4) σ > 0 and τ > 0 denote the waning recovery rate and
waning immunity of vaccinated animals, respectively.

Note: Even if there is very little human involvement in
the animal-to-animal transmission of anthrax sickness,
discussing the disease transmission among animals
primarily becomes crucial.

We consider a nonlinear ratio-dependent disease
transmission function βS I

m1S+m2I , where β is the disease
transmission rate, and m1, m2 are the half saturation
constants. With this assumption, the following system
of ordinary differential equations (ODEs) describes the
transmission dynamics of Anthrax (transmission flowchart
is in Figure 3).

Ṡ (t) = λ − βS I
m1S+m2I − (µ + γ)S + σR + τV,

İ(t) = βS I
m1S+m2I − (µ + θ + α)I,

Ṙ(t) = αI − (µ + σ)R,

V̇(t) = γS − (µ + τ)V,

(2.2)

with initial conditions S (0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, and
V(0) ≥ 0.

Figure 3. SIR flow chart with vaccination
compartment.

3. Mathematical analysis

This section consists of the fundamental results, viz., non-
negativity and boundedness of the solutions, to establish the

physiological validity of the model.

3.1. Non-negativity

Theorem 3.1. The system (2.2) is positively invariant.

Proof. Let (S (t), I(t),R(t),V(t)) be the solutions of
the system (2.2) with positive initial conditions
(S (0), I(0),R(0),V(0)). Integrating both sides of the
susceptible prey isocline in (2.2) from 0 to t, gives,

dS
dt
= λ −

βS I
m1S + m2I

− (µ + γ)S + σR + τV

≥ −

[
βS I

m1S + m2I
+ (µ + γ)S

]
,

=⇒

∫ t

0

dS
S
≥

∫ t

0
−

[
βI

m1S + m2I
+ (µ + γ)

]
dt,

S (t) = S (0) exp
{
−

[
βI

m1S + m2I
+ (µ + γ)

]}
,

=⇒ S (t) > S (0).

Similarly, one can easily verify that I(t) > 0, R(t) > 0 and
V(t) > 0.

Thus, any solution starting with positive initial conditions
(S (0), I(0),R(0),V(0)) in the interior of R+4 remains there for
all future time. □

Remark 3.1. From an ecological standpoint, a system with

non-negative solutions signifies the persistence or survival

of species within specific ecosystems. In such systems,

species populations remain at levels greater than zero,

indicating that these species continue to exist and contribute

to the ecological balance of their respective environments.

3.2. Boundedness

Theorem 3.2. The orbits of system (2.2) are uniformly

bounded, i.e., there exists a bounded setB such that for every

orbit (S (t), I(t),R(t),V(t)) of (2.2) there is a time t0 such that

(S (t), I(t),R(t),V(t)) ∈ B for all t ≥ t0.

Proof. Let us define a function X(t) = S (t)+I(t)+R(t)+V(t).
Then,

dX
dt
=Ṡ (t) + İ(t) + Ṙ(t) + V̇(t)

=λ −
βS I

m1S + m2I
− (µ + γ)S + σR + τV +

βS I
m1S + m2I

− (µ + θ + α)I − (µ + σ)R + αI + γS − (µ + τ)V

=λ − µS − (µ + θ)I − µR − µV.
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Now choose any m with 0 < m < min {µ, (µ + θ)}. Then,

dX
dt
+ mX

= λ − µS − (µ + θ)I − µR − µV + m(S + I + R + V)

= λ + (m − µ)S + (m − (µ + θ))I + (m − µ)R + (m − µ)V

≤ λ.

The differential inequality mentioned above can be
expressed in the following way

d
dt

(
U −

λ

m

)
≤ −m

(
U −

λ

m

)
.

Now, by applying Lemma 2 on page 27 in Birkhoff and
Rota [34], we obtain

0 ≤ U(t) ≤
λ

m

(
1 − e−mt

)
+ U(0)e−mt.

For any ϵ > 0 define

B =

{
(S , I,R,V) : S ≥ 0, I ≥ 0,R ≥ 0,V ≥ 0,

S + I + R + V ≤
λ

m
+ ϵ
}
.

Then, for every orbit of (2.2), there is a time t0 such that
(S (t), I(t),R(t),V(t)) ∈ B for all t ≥ t0. □

Remark 3.2. In ecology, the concept of bounded solutions

is crucial for understanding the dynamics of ecosystems.

Bounded solutions signify that within an ecosystem,

the populations of different species are restrained and

do not spiral into infinite growth. This ecological

phenomenon results from various interconnected factors

that collaborate harmoniously to maintain population sizes

within reasonable limits, thereby mitigating the risk of

overpopulation scenarios that could ultimately result in the

collapse of the ecosystem.

4. Equilibrium points and basic reproduction number

This section presents the existence conditions for the
possible equilibria and their stability analysis. The basic
reproduction number of the epidemic is determined, and
with its help, the stability of the disease-free and endemic
equilibrium is discussed. The number of secondary
infections that are anticipated to be caused by an index case

in a community that is entirely susceptible is known as the
basic reproduction number (R0) and is a measure of the
potential for infection spread within a population [35–37].
If R0 < 1, a few infected individuals entering an entirely
susceptible population will fail to replace themselves, and
the disease will not spread; otherwise, R0 > 1. R0 may
no longer be a reliable indicator of disease transmission
after the disease has started to spread within a susceptible
population, as factors favoring transmission will change.
In this study, we utilize the next-generation matrix method
in the determination of the basic reproduction number.
The ODE system (2.2) has the two following biologically
feasible equilibrium points.

(a) Disease-free equilibrium and basic reproduction
number R0

At the disease-free equilibrium, there are no infections,
and no recoveries, that is, I = R = 0, which is given by
E0(S 0, I0 = 0,R0 = 0,V0), where

S 0 =
λ(µ + τ)
µ(γ + µ + τ)

, V0 =
γλ

µ(γ + µ + τ)
.

To determine the basic reproduction number of the
epidemic, we utilize the approach of the next-
generation matrix method [38]. The next generation

matrix is given by K = −TΣ−1, where the matrix T

contains the transmission terms, and Σ contains the
transition terms. For our model (2.2),

T =
βm2S 2

(m1I + m2S ) 2 ,

Σ = −α − θ − µ.

Thus, the next generation matrix is calculated as,

K = −TΣ−1

=
βm2S 2

(α + θ + µ) (m1I + m2S ) 2 .

We obtain the basic reproduction number as

R0 = ρ(K) =
βm2S 2

(α + θ + µ) (m1I + m2S ) 2 ,

where ρ is the spectral radius. When there are no
infections, I = 0 and

S =
λ(µ + τ)
µ(γ + µ + τ)

.
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This implies

R0 =
β

m2(α + θ + µ)
.

(b) The endemic equilibrium
The endemic equilibrium state is where the anthrax
disease persists and cannot be eradicated from the
animal population: E∗(S ∗, I∗,R∗,V∗) where

S ∗ = −λm1(µ+σ)(µ+τ)(α+θ+µ)
Λ

,

I∗ = λ(µ+σ)(µ+τ)(m2(α+θ+µ)−β)
Λ

,

R∗ = αλ(µ+τ)(m2(α+θ+µ)−β)
Λ

,

V∗ = −γλm1(µ+σ)(α+θ+µ)
Λ

,

Λ = (µ + τ)(αµ + (θ + µ)(µ + σ)) (m2(α + θ + µ) − β)

−µm1(µ + σ)(α + θ + µ)(γ + µ + τ).

The endemic equilibrium E∗ exists under the sufficient
condition

m2(α + θ + µ) − β < 0, Λ < 0.

Equivalently, condition (c) implies R0 > 1 and Λ < 0, which
is the existence condition for the endemic equilibrium state.

5. Stability analysis of the equilibrium points

In this section, we investigate the stability of the system
at the equilibrium points. For local stability analysis, we
utilize the linearization technique around each equilibrium
point, giving a small perturbation. We investigate whether
the model systems return to their original equilibrium point
or converge to another equilibrium point or attractor.

5.1. Stability at E0

The characteristic equation of the Jacobian matrix at the
equilibrium point E0 has the roots

Ψ1 = −µ, Ψ2 = −µ − σ, Ψ3 = −(γ + µ + τ),

Ψ4 =
β − m2(α + θ + µ)

m2
.

The disease-free equilibrium is locally asymptotically stable
if Ψ4 < 0, which implies

β − m2(α + θ + µ) < 0 =⇒ β < m2(α + θ + µ),

equivalently R0 < 1. Hence, the disease-free equilibrium
state is locally asymptotically stable if and only if R0 < 1.
Hence, we get the following theorem.

Theorem 5.1. The disease-free equilibrium state is locally

asymptotically stable if R0 < 1 and is unstable if R0 > 1.

5.2. Stability at E∗

The stability of the coexistence equilibrium point is one
of the most important parts of mathematical modelling.
A stable coexistence equilibrium indicates that infection
is there in the ecosystem. Such an equilibrium point is
necessary for the study of the dynamics of ecosystems.
By varying different factors associated with the coexistence
equilibrium point, one can estimate the threshold parameters
for an infection-free equilibrium state. In this section, we
analyze the local stability of the coexistence equilibrium
by utilizing the Routh-Hurwitz theorem. The characteristic
equation of the Jacobian matrix at E∗ has the form

ϱ4 + A1ϱ
3 + A2ϱ

2 + A3ϱ + A4 = 0. (5.1)

According to the Routh-Hurwitz theorem, E∗ is locally
assymptotically stable if A1, A2, A3, A4 > 0,

∆1 = A1A2 − A3 > 0,
and

∆2 = A1A2A3 − A2
3 − A2

1A4 > 0.

6. Transcritical bifurcation

Analysis of local bifurcations, e.g., transcritical and
Hopf bifurcations, is a necessary part of the dynamical
analysis of nonlinear systems. Using the theories of local
and global bifurcations, one can estimate the threshold
parameters associated with a system above or below which
the system is stable or unstable. Transcritical bifurcation
analysis is a valuable tool for understanding the dynamics
of disease eradication. It aids in establishing the crucial
eradication thresholds, designing efficient strategies for
control, optimizing resource allocation, and keeping a
vigilant eye on the advancement toward the goals of disease
elimination. In this section, we investigate the threshold
parameters analytically for which the system undergoes
a transcritical bifurcation. Transcritical bifurcation is a
local bifurcation where one equilibrium point interchanges
its stability with another equilibrium point. This type of
bifurcation has a significant role in ecological systems, e.g.,
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an interior equilibrium point interchanges its stability with a
disease-free when a particular feasible parameter is varied.
At the equilibrium E1, the Jacobian of the system (2.2) has
eigenvalues

λ1 = −µ, λ2 = −µ − σ, λ3 = −(γ + µ + τ)

and

λ4 =
β − m2(α + θ + µ)

m2
.

This equilibrium will be non-hyperbolic if one of the
eigenvalues becomes zero. λ4 = 0 implies

βBP = β = m2(α + θ + µ)

or

αBP =
β − (θ + µ)m2

m2

or

θBP =
β − (α + µ)m2

m2
,

which are the points of transcritical bifurcation. At the
point βBP, the endemic equilibrium E∗ collides with disease-
free equilibrium E0, resulting in the emergence of a stable
disease-free equilibrium as well as an unstable disease-free
equilibrium.

Theorem 6.1. At the critical parameter

βBP = m2(α + θ + µ),

the system (2.2) around the disease-free equilibrium E0

undergoes a transcritical bifurcation.

Proof. The Jacobian of the system (2.2) at the disease-free
equilibrium state E0 has an eigenvalue equal to zero at the
critical parameter

βBP = m2(α + θ + µ).

Due to the zero eigenvalue, the eigen analysis technique fails
to predict the nature of the equilibrium state at the critical
value βBP. Therefore we use Sotomayor’s theorem [39]
to investigate the nature of the equilibrium E0 at the βTC .
Rewrite the system (2.2) as

dX
dt
= h(X, q) = [h1(X, β), h2(X, β), h3(X, β), h4(X, β)]T ,

where

X =


S

I

R

V

 ,

h1(X, β) =
dS
dt
, h2(X, β) =

dI
dt
, h3(X, β) =

dR
dt

and

h4(X, β) =
dV
dt
.

Let

V = [v1, v2, v3, v4]T

and

W = [w1,w2,w3,w4]T

be, respectively, the eigenvectors of JE0 and [JE0 ]T

corresponding to the zero eigenvalue at β = βTC , where J

represents the Jacobian matrix of the system (2.2).
Here,

v1 = −
(µ + τ)(αµ + (θ + µ)(µ + σ))
µ(µ + σ)(γ + µ + τ)

, v2 =
α

µ + σ
,

v3 = −
γ(αµ + (θ + µ)(µ + σ))
µ(µ + σ)(γ + µ + τ)

, v4 = 1,

w1 = 0, w2 = 0, w3 = 0, w4 = 1.

Then, we have,

WT hβ(X, βBP)E0 = 0,

WT Dhβ(X, βBP)(V)E0 =
α

m2(µ + σ)
, 0,

WT D2h(X, βBP)(V,V)E0 = −
2α2µm1(α + θ + µ)(γ + µ + τ)

m2(µ + σ)2(λµ + λτ)

, 0.

Thus, the system satisfies all the conditions of
Sotomayor’s theorem for transcritical bifurcation.
Therefore, the disease-free equilibrium E0 of the
system (2.2) undergoes a transcritical bifurcation at
the parameter β = βBP. □

Theorem 6.2. At the critical parameter

θBP =
β − (α + µ)m2

m2
,

the system (2.2) around the disease-free equilibrium E0

undergoes a transcritical bifurcation.
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Proof. Similar to Theorem 6.1. □

Theorem 6.3. At the critical parameter

αBP =
β − (θ + µ)m2

m2
,

the system (2.2) around the disease-free equilibrium E0

undergoes a transcritical bifurcation.

Proof. Similar to Theorem 6.1. □

7. Fractional-order model

In recent decades, mathematical modelling incorporating
fractional-order differential equations (FDEs) received much
attention compared to integer-order differential equations.
The main reason behind the popularity of fractional-order
differential equations is their memory effect or non-local
effects.

The subsequent state of any function depends on both
its current state and all earlier states in FDEs [40, 41].
Biological systems that exhibit the realistic biphasic decline
behavior of infection or diseases are related to the memory
effect, which can be explored using FDEs. It can
be used to simulate a variety of universal phenomena
more accurately [42, 43]. According to research by
Heymans et al., initial conditions described in terms of
Riemann-Liouville fractional derivatives can have physical
significance [42]. Moreover, conventional differential
equations cannot estimate data between two different integer
values. Several forms of fractional-order operators were
employed in the recent literature to circumvent these
limitations [44, 45].

Definition 7.1. [43] Let g be any function such that g ∈

Cn([t0,+∞),R). Then, the Caputo fractional derivative of g

having order ϵ is defined by

c
t0 Dϵt g(t) =

1
Γ(n − ϵ)

∫ t

t0

g(n)(s)
(t − s)ϵ−n+1 ds,

where Γ(·) is the Gamma function, n is a non-negative
integer such that n − 1 < ϵ < n, and t ≥ t0. In particular,
when 0 < ϵ < 1,

c
t0 Dϵt g(t) =

1
Γ(1 − ϵ)

∫ t

t0

g′(s)
(t − s)ϵ

ds.

In model (2.2), as the internal memory effects of the
biological system of the anthrax infection are not included,
we extend the proposed model (2.2) into a fractional order
model utilizing Caputo fractional derivatives. To modify
the existing model (2.2), we convert the first-order ordinary
derivative into the Caputo derivative of fractional order ϵ ∈
(0, 1] as follows:

C Dϵ0S (t) = λ − βS I
m1S+m2I − (µ + γ)S + σR + τV,

C Dϵ0I(t) = βS I
m1S+m2I − (µ + θ + α)I,

C Dϵ0R(t) = αI − (µ + σ)R,
C Dϵ0V(t) = γS − (µ + τ)V.

(7.1)

The fractional order system (7.1) has similar equilibrium
points as the ODE system (2.2). A sufficient condition for
the local asymptotic stability of the equilibrium point E0 is

| arg(Ψ1,2,3,4)| >
ϵπ

2

(see [46,47]). Similarly, the sufficient condition for the local
asymptotic stability of the equilibrium point E∗ is

| arg(ϱ1,2,3,4)| >
ϵπ

2

(see [46, 47]), where ϱ are the roots of the polynomial (5.1).

8. Computational results

8.1. Computational results for the ODE system (2.2)

In this section, we conduct numerical simulations to
compare the analytical findings using Matlab and MatCont
in [48]. Matlab’s inbuilt “ODE45” function is utilized
to simulate the solutions of the system. For an initial
population (204, 189, 130, 340) and parameters provided
in Table 1, the proposed system (2.2) has an endemic
equilibrium

E∗ = (2282.72, 4239.09, 1413.04, 5706.43)

(see Figure 4). Considering R0 as a function of β, α and
θ, we plotted a 3D parametric region for which R0 < 1
(see Figure 5). For the parameters within this region and
other parameters as mentioned in Table 1, the proposed
system (2.2) always has a disease-free equilibrium.
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Table 1. Variable and parameter values of Anthrax
model.

Parameter Values References

λ 200 [24]
β 0.1 estimated
µ 0.01 estimated
γ 0.1 [24]
σ 0.02 [24]
τ 0.03 estimated
θ 0.015 estimated
α 0.01 [24]
m1 1 estimated
m2 1 estimated

Figure 4. Time series of model (2.2) for t = 500
(Parameters are taken from Table 1).

Figure 5. Basic reproduction number R0 as a
function of α, β and θ where R0 < 1.

8.1.1. Effect of contact rate β

Initiating from the endemic equilibrium point E∗ with
varying parameter β, we observe that E∗ undergoes a
transcritical bifurcation at β = βBP ≈ 0.035. To visualize
the transcritical bifurcation, we utilize the Matlab based
continuation software MatCont 7.3. Figure 6 illustrates the
transcritical bifurcation where the endemic equilibrium E∗

exchanges its stability with a disease-free equilibrium E0.

Figure 6. Transcritical bifurcation in the model
(2.2) at β = βBP ≈ 0.035 (other parameters are
taken from Table 1).

8.1.2. Effect of disease-induced death rate θ

Initiating from the endemic equilibrium point E∗ with
varying parameter θ, we observe that E∗ undergoes a
transcritical bifurcation at θ = θBP ≈ 0.08. To visualize
the transcritical bifurcation, we utilize the Matlab based
continuation software MatCont 7.3. Figure 7 illustrates the
transcritical bifurcation where the endemic equilibrium E∗

exchanges its stability with a disease-free equilibrium E0.

8.1.3. Effect of animal recovery rate α

Initiating from the endemic equilibrium point E∗ with
varying parameter α, we observe that E∗ undergoes a
transcritical bifurcation at α = αBP ≈ 0.075. To visualize
the transcritical bifurcation, we utilize the Matlab based
continuation software MatCont 7.3. Figure 8 illustrates the
transcritical bifurcation where the endemic equilibrium E∗

exchanges its stability with a disease-free equilibrium E0.
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Figure 7. Transcritical bifurcation in the model
(2.2) at θ = θBP ≈ 0.08 (other parameters are taken
from Table 1).

Figure 8. Transcritical bifurcation in the model
(2.2) at α = αBP ≈ 0.075 (other parameters are
taken from Table 1).

(a)

(b)

(c)

(d)

Figure 9. Simulation of the Caputo fractional
model (7.1) for different values of ϵ.
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8.2. Computational results for the FDE system (7.1)

Throughout this section, we compare the analytical
findings using a biologically plausible parameter set.
Approximate solutions for our fractional-order system
are determined using the generalized Adams-Bashforth-
Moulton type predictor-corrector scheme [49]. For
the same initial population (204, 189, 130, 340) and
parameters provided in Table 1 and for ϵ = 0.9 the
proposed system (7.1) has an endemic equilibrium
E∗ = (2265.22, 4154.55, 1370.13, 5628.09). With different
values of ϵ, time series solutions of the system (7.1) are
drawn with the same parameters provided in Table 1 (see
Figure 9).

On increasing the order ϵ, initially the recovered
population decreases and then increases after certain time
(Figure 10). For β = 0.035, other parameters mentioned in
Table 1 and ϵ = 0.9, for the system (7.1), at the endemic
equilibrium E∗,

| arg(ϱ1,2,3)| = π >
ϵπ

2
and | arg(ϱ4)| = 0.

Therefore, in the fractional case 0 < α < 1, the endemic
equilibrium point is locally asymptotically unstable. This
means that the endemic equilibrium undergoes a transcritical
bifurcation at β = 0.035. For β = 0.005 with other
parameters as mentioned in Table 1, time series solutions of
the system (7.1) are drawn in Figure 11. It is observed that
the fractional order ϵ has a significant role in the infection-
free state. An increase in the order ϵ leads to an anthrax
infection free ecosystem.

Figure 10. Time series of recovered population
for t = 50 (Parameters are taken from Table 1).

Figure 11. Time series of infected population for
β = 0.005 and t = 1000 (Parameters are taken
from Table 1).

9. Discussion

In this work, we have extended the anthrax transmission
model proposed by Kimathi and Wainaina [24], by
incorporating a nonlinear ratio-dependent type incidence
function. Our study aims to study mathematical models
of transmission dynamics of anthrax disease in the sense
of ordinary differential equations and fractional order
differential equations in the Caputo derivative sense.
Positiveness and boundedness of the solutions of the system
are discussed. The biologically feasible equilibrium points
of the systems are determined, and their existence criteria
are determined. The stability of the disease-free equilibrium
point is analysed using basic reproduction number R0.

It is obtained that when R0 < 1, the disease-
free equilibrium E0 is locally asymptotically stable, and,
unstable when R0 > 1. The stability of the endemic
equilibrium is explored using the Routh-Hurwitz criterion.
Transcritical bifurcations experienced by the endemic
equilibrium of the ODE system are discussed using
Sotomayor’s theorem (Theorems 6.1–6.3). Again, we
extended the proposed model (2.2) using Caputo fractional
order derivatives in model (7.1). Both the models have the
same equilibrium points, so we only discussed the stability
criteria of the equilibrium points for the model (7.1).
Using some biologically feasible parameter values, we
conducted numerical simulations in Matlab software. For
the menitioned parameter values the ODE system (2.2) has
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an endemic equilibrium point

E∗ = (2282.72, 4239.09, 1413.04, 5706.43).

Considering R0 as a function of contact rate (β), animal
recovery rate (α) and disease induced death rate (θ), a 3D
region is plotted for which R0 < 1 (Figure 5). From
Figures 6–8, it is observed that with a decrease in the contact
rate β, the endemic equilibrium E∗ undergoes transcritical
bifurcations at

β = βBP ≈ 0.035, θ = θBP ≈ 0.08 and α = αBP ≈ 0.075,

respectively. In an epidemiological sense, below the
threshold contact rate (βBP), i.e., when β < βBP, the
system will have a stable disease-free equilibrium state. To
eliminate anthrax from the ecosystem, farmers, ecologists,
and policymakers must work towards reducing the contact
rate to a level below this crucial threshold βBP. Also, above
the threshold value αBP, i.e., α > αBP, the system becomes
anthrax infection free. To ensure an anthrax-free ecosystem,
it is imperative for these stakeholders to attain a recovery
rate that surpasses this minimum threshold αBP.

This can be achieved either by adopting a proper
vaccination policy or by increasing awareness among the
farmers. Policymakers need to formulate a well-structured
strategy to accomplish this. Moreover, by achieving a
minimum threshold disease-induced death rate θBP, i.e., θ >
θBP, a stable anthrax infection-free state can be obtained.
Thus, the disease-induced death rate θ has a positive impact
on the ecosystem. The higher the rate θ is the lower the
infection will be. The extended fractional order model, (7.1),
is studied for different values of the fractional order ϵ (see
Figure 9). Figure 11 shows the impact of the fractional
order ϵ on the recovered population. Figure 11 revealed that
an increase in the order ϵ leads to an anthrax infection-free
ecosystem.

10. Conclusions and future scopes

The present investigation shows that the implementation
of a proper vaccination policy can effectively control anthrax
transmission in the animal population. We determined the
expression for the basic reproduction number R0 of the
infection and obtained that the disease is eradicated from

the system when R0 < 1. We also determined additional
threshold values for contact rates, disease-induced mortality
rates, and rates of animal recovery, which could influence
the feasibility of disease eradication. It has been observed
that higher vaccination rates can boost the rate of animal
recovery and effectively manage disease-induced mortality,
potentially leading to the elimination of the disease from the
ecosystem.

In the work of Kimathi et al. [24], they employed
a bilinear function for disease transmission, although a
more realistic scenario would benefit from a nonlinear
transmission function. Their observations indicated that
maintaining a vaccination rate below a critical threshold
allows the anthrax disease to persist. Among the
various parameters, recruitment and contact rates were
found to be the most influential in determining the basic
reproductive number. Rezapour et al. [26] expanded upon
the model presented in [24] by incorporating Caputo-
Fabrizio fractional derivatives but maintained the same
bilinear transmission function. They have obtained the basic
reproduction number to be dependent on several parameters,
such as recruitment, recovery, disease-induced death rate,
waning immunity rate of vaccinated animals and vaccination
rate.

In contrast, in the present model, the basic reproduction
number is dependent on contact rate, disease-induced
mortality rate, and rate of animal recovery. Additionally,
several anthrax transmission models have been introduced in
various studies [19–23, 25, 50, 51], predominantly centered
on the assumption of bilinear disease transmission. Our
proposed model differs from the others in terms of a
nonlinear ratio-dependent disease transmission function,
and we extended its feasibility by introducing Caputo
fractional derivatives. The dynamical behavior of the
model is studied for different values of the fractional order.
Computational results illustrated that for an increase in the
fractional order ϵ, the period required for disease eradication
in the ecosystem decreases.

The conclusions drawn from the proposed model are
completely based on theoretical analysis. Experimental
validation will help identify any necessary adjustments to
the foundational assumptions. The work in this paper
can be extended to study the transmission dynamics under
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various nonlinear transmission functions with saturation
effect. The extensions can be made using both ordinary and
fractional-ordered differential equations. Fractional-order
systems provide a more accurate and versatile framework for
modelling and simulating real-world phenomena compared
to traditional integer-order systems. For example, there
are the Caputo-Fabrizio fractional derivatives [26] and the
most recent Atangana-Baleanu-Caputo derivatives [44]. The
proposed model also can be analyzed under time-delay.
Time delay in vaccination modelling accounts for the period
between vaccine eligibility and actual vaccination, which
can vary due to logistical, behavioral, and immune response
factors.

Researchers interested in this area can expand upon our
model to investigate how delays in vaccination rates impact
the outcomes. Moreover, with more accurate real-world
data on anthrax transmission, all the available mathematical
models can be explored.
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