Research article

On the solutions of the dual matrix equation $A^{\top} X A=B$

Min Zeng and Yongxin Yuan*
School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China

* Correspondence: Email: yuanyx_703@163.com.

Abstract: Let $\mathbb{D}^{m \times n}=\left\{A=A_{1}+\varepsilon A_{2} \mid A_{1}, A_{2} \in \mathbb{R}^{m \times n}\right\}$ be the set of all $m \times n$ real dual matrices. In this paper, the following problems are considered. Problem I: Given dual matrices $A=A_{1}+\varepsilon A_{2} \in \mathbb{D}^{m \times n}$ and $B=B_{1}+\varepsilon B_{2} \in \mathbb{D}^{n \times n}$, find $X \in S$ such that the dual matrix equation $A^{\top} X A=B$ is satisfied, where $S=\left\{X \in \mathbb{D}^{m \times m} \mid C X=D, C, D \in \mathbb{D}^{p \times m}\right\}$. Problem II: Given dual matrices $A=A_{1}+\varepsilon A_{2} \in$ $\mathbb{D}^{m \times n}, B=B_{1}+\varepsilon B_{2} \in \mathbb{D}^{n \times n}$ and $\tilde{X}=\tilde{X}_{1}+\varepsilon \tilde{X}_{2} \in \mathbb{D}^{m \times m}$, with $B_{i}=B_{i}^{\top}, i=1,2$, find $\hat{X} \in T$ such that $\|\hat{X}-\tilde{X}\|_{\mathrm{D}}=\min _{X \in T}\|X-\tilde{X}\|_{\mathrm{D}}=$ $\min _{X \in T} \sqrt{\left\|X_{1}-\tilde{X}_{1}\right\|^{2}+\left\|X_{2}-\tilde{X}_{2}\right\|^{2}}$, where $T=\left\{X=X_{1}+\varepsilon X_{2} \in \mathbb{D}^{m \times m} \mid A^{\top} X A=B\right.$ s. t. $\left.X_{i}=X_{i}^{\top}, i=1,2\right\}$. We derive the solvability conditions and the representation of the general solution of Problem I using the Moore-Penrose inverse. Also, we deduce the solvability conditions and the explicit formula of T and the unique approximation solution \hat{X} of Problem II by applying the Moore-Penrose inverse and Kronecker product of matrices. Finally, we give a numerical example to show the correctness of our result.
Keywords: dual matrix equation; optimal approximation; linear manifold; Kronecker product

1. Introduction

We will adopt the following terminology. $\mathbb{R}^{m \times n}$ denotes the set of all $m \times n$ real matrices. I_{n} denotes the identity matrix of size n. $A^{\top}, A^{\dagger}, \operatorname{tr}(A)$ and $\|A\|$ represent the transpose, the Moore-Penrose inverse, the trace and the Frobenius norm of the matrix A, respectively. Given two matrices $A=\left[a_{i j}\right] \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$, the Kronecker product of A and B is defined by $A \otimes B=\left[a_{i j} B\right] \in \mathbb{R}^{m p \times n q}$. Also, for a matrix $A=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \mathbb{R}^{m \times n}, a_{i} \in \mathbb{R}^{m}, i=$ $1,2, \cdots, n$, the stretch function $\operatorname{vec}(A)$ is defined as $\operatorname{vec}(A)=$ $\left(a_{1}^{\top}, a_{2}^{\top}, \cdots, a_{n}^{\top}\right)^{\top}$. Further, the symbols E_{A} and F_{A} stand for two orthogonal projectors $E_{A}=I_{m}-A A^{\dagger}, F_{A}=I_{n}-A^{\dagger} A$ induced by $A \in \mathbb{R}^{m \times n}$.

Many scholars considered the following matrix equation

$$
\begin{equation*}
A^{\top} X A=B \tag{1.1}
\end{equation*}
$$

in real and complex matrix spaces. For example, Dai and Lancaster [1] considered symmetric, positive semi-definite, and positive definite solutions of the matrix equation
(1.1) with the help of the singular value decomposition. Peng et al. [2] provided the necessary and sufficient conditions and the expression of the symmetric orthosymmetric solutions of the matrix equation (1.1) by applying the generalized singular value decomposition. Li [3] gave the necessary and sufficient conditions and the expressions for the D -symmetric solutions of the matrix equation (1.1) on a linear manifold using the generalized singular value decomposition.

In 1873, Clifford [4] introduced dual numbers. Subsequently, the dual algebra develops rapidly and has been widely applied to kinematic analysis [5], robotics [6], screw motion [7] and rigid body motion analysis [8, 9]. The set of the dual numbers is usually denoted by

$$
\mathbb{D}=\left\{a=a_{1}+\varepsilon a_{2} \mid a_{1}, a_{2} \in \mathbb{R}\right\} .
$$

The real unit ε is subjected to the rules: $\varepsilon \neq 0,0 \varepsilon=\varepsilon 0=$ $0,1 \varepsilon=\varepsilon 1=\varepsilon, \varepsilon^{2}=0$. For the operation rules about the dual numbers, the readers can see Ref. [5]. A matrix whose elements are dual numbers is called a dual matrix, namely, the set of all $m \times n$ real dual matrices is

$$
\mathbb{D}^{m \times n}=\left\{A=A_{1}+\varepsilon A_{2} \mid A_{1}, A_{2} \in \mathbb{R}^{m \times n}\right\} .
$$

The operational rules for dual matrices are similar to those of dual numbers. Dual matrices have important applications in kinematic analysis [5, 10], spatial kinematics [11, 12] and robotics $[6,13]$. The solutions of linear dual equations are widely used in kinematic analysis and sensor calibration problems. For instance, Angeles [10] applied the dual algebra to compute the parameters of the serew of a rigid body between two finitely-separated positions and of the instant screw. Condurache and Burlacu [14] solved the $A X=$ $X B$ sensor calibration problem by means of the orthogonal dual tensor method. Condurache and Ciureanu [15] explored the $A X=Y B$ sensor calibration problem using dual algebra.

Furthermore, many authors considered the solutions of the dual matrix equation $A x=b$. Udwadia [16] considered this equation using the dual generalized inverses. Zhong and Zhang [17] introduced the dual group-inverse solution of $A x=b$. Pennestrì and Valentini [18] proposed to solve this dual equation by applying the QR-decomposition.

We observe that the solutions of the dual matrix equation seems to be rarely considered. Therefore, in this paper, we will consider two problems of the dual matrix equation (1.1), that is :
Problem I. Given dual matrices $A=A_{1}+\varepsilon A_{2} \in \mathbb{D}^{m \times n}$ and $B=B_{1}+\varepsilon B_{2} \in \mathbb{D}^{n \times n}$, find $X \in S$ such that the dual matrix equation (1.1) is satisfied, where $S=\left\{X \in \mathbb{D}^{m \times m} \mid C X=\right.$ $\left.D, C, D \in \mathbb{D}^{p \times m}\right\}$.
Problem II. Given dual matrices $A=A_{1}+\varepsilon A_{2} \in \mathbb{D}^{m \times n}, B=$ $B_{1}+\varepsilon B_{2} \in \mathbb{D}^{n \times n}$ and $\tilde{X}=\tilde{X}_{1}+\varepsilon \tilde{X}_{2} \in \mathbb{D}^{m \times m}$, with $B_{i}=B_{i}^{\top}, i=$ 1,2 , find $\hat{X} \in T$ such that $\|\hat{X}-\tilde{X}\|_{\mathrm{D}}=\min _{X \in T}\|X-\tilde{X}\|_{\mathrm{D}}=$ $\min _{\substack{X \in T\\}} \sqrt{\left\|X_{1}-\tilde{X}_{1}\right\|^{2}+\left\|X_{2}-\tilde{X}_{2}\right\|^{2}}$, where $T=\left\{X=X_{1}+\varepsilon X_{2} \in\right.$ $\mathbb{D}^{\quad n \times m} \mid A^{\top} X A=B$ s. t. $\left.X_{i}=X_{i}^{\top}, i=1,2\right\}$.

The outline of the rest of this paper is as follows. In Section 2, we introduce some lemmas. In Section 3, the solvability conditions and the representation of the general solution of Problem I are derived by applying the MoorePenrose inverse. In Section 4, by utilizing the MoorePenrose inverse and Kronecker product of matrices, we obtain the unique approximation solution \hat{X} of Problem II. In Section 5, a numerical algorithm to solve Problem II and a numerical example are provided. Some concluding remarks are given in Section 6.

2. Preliminaries

First, we should point out that $\|P\|_{\mathrm{D}}=\sqrt{\left\|P_{1}\right\|^{2}+\left\|P_{2}\right\|^{2}}$ is indeed a matrix norm for the the dual matrix $P=P_{1}+\varepsilon P_{2}$. In fact, for all $k \in \mathbb{R}$ and for all the m-by- p dual matrices $P=P_{1}+\varepsilon P_{2}$ and $Q=Q_{1}+\varepsilon Q_{2}$, where $P_{i}, Q_{i} \in \mathbb{R}^{m \times p}(i=$ 1,2), we have - $\|P\|_{\mathrm{D}}=\sqrt{\left\|P_{1}\right\|^{2}+\left\|P_{2}\right\|^{2}} \geq 0$ and $\|P\|_{\mathrm{D}}=$ $0 \Leftrightarrow P_{1}=0, P_{2}=0 ;$

- $\|k P\|_{\mathrm{D}}=\sqrt{\left\|k P_{1}\right\|^{2}+\left\|k P_{2}\right\|^{2}}=\sqrt{k^{2}\left(\left\|P_{1}\right\|^{2}+\left\|P_{2}\right\|^{2}\right)}=$ $|k| \sqrt{\left\|P_{1}\right\|^{2}+\left\|P_{2}\right\|^{2}}=|k| \cdot\|P\|_{\mathrm{D}} ;$
- Since

$$
\begin{aligned}
\|P+Q\|_{\mathrm{D}}^{2}= & \left\|P_{1}+P_{2}\right\|^{2}+\left\|Q_{1}+Q_{2}\right\|^{2} \\
\leq & \left(\left\|P_{1}\right\|+\left\|P_{2}\right\|\right)^{2}+\left(\left\|Q_{1}\right\|+\left\|Q_{2}\right\|\right)^{2} \\
= & \left\|P_{1}\right\|^{2}+\left\|P_{2}\right\|^{2}+\left\|Q_{1}\right\|^{2}+\left\|Q_{2}\right\|^{2} \\
& +2\left(\left\|P_{1}\right\| \cdot\left\|P_{2}\right\|+\left\|Q_{1}\right\| \cdot\left\|Q_{2}\right\|\right) \\
\left(\|P\|_{\mathrm{D}}+\|Q\|_{\mathrm{D}}\right)^{2}= & \left\|P_{1}\right\|^{2}+\left\|P_{2}\right\|^{2}+\left\|Q_{1}\right\|^{2}+\left\|Q_{2}\right\|^{2} \\
& +2 \sqrt{\left\|P_{1}\right\|^{2}+\left\|P_{2}\right\|^{2}} \cdot \sqrt{\left\|Q_{1}\right\|^{2}+\left\|Q_{2}\right\|^{2}}
\end{aligned}
$$

and
$\left\|P_{1}\right\| \cdot\left\|P_{2}\right\|+\left\|Q_{1}\right\| \cdot\left\|Q_{2}\right\| \leq \sqrt{\left\|P_{1}\right\|^{2}+\left\|P_{2}\right\|^{2}} \cdot \sqrt{\left\|Q_{1}\right\|^{2}+\left\|Q_{2}\right\|^{2}}$.
Thus, the inequality $\|P+Q\|_{\mathrm{D}} \leq\|P\|_{\mathrm{D}}+\|Q\|_{\mathrm{D}}$ follows.
Next, in order to solve Problems I and II, we introduce the following lemmas.

Lemma 2.1. [19] If $A \in \mathbb{R}^{m \times p}, B \in \mathbb{R}^{q \times n}$ and $D \in \mathbb{R}^{m \times n}$. Then the matrix equation $A X B=D$ has a solution $X \in \mathbb{R}^{p \times q}$ if and only if $A A^{\dagger} D B^{\dagger} B=D$. In this case, the general solution is $X=A^{\dagger} D B^{\dagger}+F_{A} V_{1}+V_{2} E_{B}$, where V_{1}, V_{2} are arbitrary matrices.

Lemma 2.2. [20] Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{p \times q}, C \in \mathbb{R}^{m \times r}, D \in$ $\mathbb{R}^{s \times q}$ and $E \in \mathbb{R}^{m \times q}$. Then the linear matrix equation $A X B+$ $C Y D=E$ is consistent if and only if

$$
E_{G} E_{A} E=0, E_{A} E F_{D}=0, E_{C} E F_{B}=0, E F_{B} F_{H}=0
$$

where $G=E_{A} C, H=D F_{B}$. In this case, the general solution is

$$
\begin{aligned}
Y= & G^{\dagger} E_{A} E D^{\dagger}+\left(F_{G} C^{\dagger}+F_{C} G^{\dagger} E_{A}\right) E F_{B} H^{\dagger}+W \\
& -C^{\dagger} C F_{G} W H H^{\dagger}-G^{\dagger} G W D D^{\dagger}, \\
X= & A^{\dagger}(E-C Y D) B^{\dagger}+Z-A^{\dagger} A Z B B^{\dagger},
\end{aligned}
$$

where W, Z are arbitrary matrices.

Lemma 2.3. [21] If $A \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{m \times m}$. Then the matrix equation $A X A^{\top}=D$ has a symmetric solution if and only if $D=D^{\top}, E_{A} D=0$, in this case, the general symmetric solution is $X=A^{\dagger} D\left(A^{\dagger}\right)^{\top}+F_{A} V+V^{\top} F_{A}$, where V is an arbitrary matrix.

Lemma 2.4. [22] Suppose that A, B are two real matrices, and X is an unknown variable matrix. Then

$$
\begin{aligned}
& \frac{\partial \operatorname{tr}(B X)}{\partial X}=B^{\top}, \frac{\partial \operatorname{tr}\left(X^{\top} B^{\top}\right)}{\partial X}=B^{\top}, \\
& \frac{\partial \operatorname{tr}(A X B X)}{\partial X}=(B X A+A X B)^{\top}, \\
& \frac{\partial \operatorname{tr}\left(A X^{\top} B X^{\top}\right)}{\partial X}=B X^{\top} A+A X^{\top} B, \\
& \frac{\partial \operatorname{tr}\left(A X B X^{\top}\right)}{\partial X}=A X B+A^{\top} X B^{\top} .
\end{aligned}
$$

Lemma 2.5. [23] Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times l}, C \in \mathbb{R}^{l \times s}$. Then

$$
\operatorname{vec}(A B C)=\left(C^{\top} \otimes A\right) \operatorname{vec}(B)
$$

Lemma 2.6. [24] Let $V \in \mathbb{R}^{m \times n}$, then $\operatorname{vec}\left(V^{\top}\right)=T_{m n} \operatorname{vec}(V)$, where

$$
T_{m n}=\left[\begin{array}{cccc}
J_{11}^{\top} & J_{12}^{\top} & \cdots & J_{1 n}^{\top} \\
J_{21}^{\top} & J_{22}^{\top} & \cdots & J_{2 n}^{\top} \\
\vdots & \vdots & \ddots & \vdots \\
J_{m 1}^{\top} & J_{m 2}^{\top} & \cdots & J_{m n}^{\top}
\end{array}\right] \in \mathbb{R}^{m n \times m n}
$$

with $J_{i j}, i=1, \cdots, m, j=1, \cdots, n$ is an $m \times n$ matrix with the element at position (i, j) is 1 and the others are $0, T_{m n}$ can be uniquely determined by m and n.

3. Solving Problem I

Theorem 3.1. Given dual matrices $A=A_{1}+\varepsilon A_{2} \in$ $\mathbb{D}^{m \times n}, B=B_{1}+\varepsilon B_{2} \in \mathbb{D}^{n \times n}, C=C_{1}+\varepsilon C_{2} \in \mathbb{D}^{p \times m}$ and $D=D_{1}+\varepsilon D_{2} \in \mathbb{D}^{p \times m}, i=1,2$, if write

$$
\begin{aligned}
G_{1} & =E_{C_{1}} C_{2} F_{C_{1}}, G_{2}=A_{1}^{\top} F_{C_{1}} F_{G_{1}}, \\
G_{3} & =A_{2}^{\top} F_{C_{1}} F_{G_{1}} F_{G_{2}}-A_{1}^{\top} C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} F_{G_{2}}, \\
J_{1} & =C_{1}^{\dagger} D_{1}+F_{C_{1}} G_{1}^{\dagger} E_{C_{1}}\left(D_{2}-C_{2} C_{1}^{\dagger} D_{1}\right), \\
J_{2} & =\left(C_{1}^{\dagger}-C_{1}^{\dagger} C_{2} F_{C_{1}} G_{1}^{\dagger} E_{C_{1}}\right)\left(D_{2}-C_{2} C_{1}^{\dagger} D_{1}\right), \\
J_{3} & =J_{1}+F_{C_{1}} F_{G_{1}} G_{2}^{\dagger}\left(B_{1}-A_{1}^{\top} J_{1} A_{1}\right) A_{1}^{\dagger}, \\
J_{4} & =J_{2}-C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} G_{2}^{\dagger}\left(B_{1}-A_{1}^{\top} J_{1} A_{1}\right) A_{1}^{\dagger}, \\
J_{5} & =B_{2}-A_{2}^{\top} J_{3} A_{1}-A_{1}^{\top} J_{4} A_{1}-A_{1}^{\top} J_{3} A_{2},
\end{aligned}
$$

$$
\begin{aligned}
M & =\left[\begin{array}{ll}
G_{3} & A_{1}^{\top} F_{C_{1}}
\end{array}\right], M^{\dagger}=\left[\begin{array}{c}
M_{1} \\
M_{2}
\end{array}\right], \\
N & =E_{A_{1}} A_{2}, K=E_{M} G_{2}, H=N F_{A_{1}}, \\
J_{6} & =J_{3}+F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} J_{5} A_{1}^{\dagger} \\
& -F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} G_{2} K^{\dagger} E_{M} J_{5} N^{\dagger} N A_{1}^{\dagger} \\
& -F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} G_{2} F_{K} G_{2}^{\dagger} J_{5} F_{A_{1}} H^{\dagger} N A_{1}^{\dagger} \\
& +F_{C_{1}} F_{G_{1}} K^{\dagger} E_{M} J_{5} N^{\dagger} E_{A_{1}} \\
& +F_{C_{1}} F_{G_{1}}\left(F_{K} G_{2}^{\dagger}+F_{G_{2}} K^{\dagger} E_{M}\right) J_{5} F_{A_{1}} H^{\dagger} E_{A_{1}}, \\
J_{7} & =J_{4}-C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} J_{5} A_{1}^{\dagger} \\
& +C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} G_{2} K^{\dagger} E_{M} J_{5} N^{\dagger} N A_{1}^{\dagger} \\
& +C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} G_{2} F_{K} G_{2}^{\dagger} J_{5} F_{A_{1}} H^{\dagger} N A_{1}^{\dagger} \\
& -C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} K^{\dagger} E_{M} J_{5} N^{\dagger} E_{A_{1}} \\
& -C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}}\left(F_{K} G_{2}^{\dagger}+F_{G_{2}} K^{\dagger} E_{M}\right) J_{5} F_{A_{1}} H^{\dagger} E_{A_{1}} \\
& +F_{C_{1}} M_{2} J_{5} A_{1}^{\dagger}-F_{C_{1}} M_{2} G_{2} K^{\dagger} E_{M} J_{5} N^{\dagger} N A_{1}^{\dagger} \\
& -F_{C_{1}} M_{2} G_{2} F_{K} G_{2}^{\dagger} J_{5} F_{A_{1}} H^{\dagger} N A_{1}^{\dagger} .
\end{aligned}
$$

Then Problem I is solvable if and only if

$$
\begin{align*}
& E_{C_{1}} D_{1}=0, E_{G_{1}} E_{C_{1}}\left(D_{2}-C_{2} C_{1}^{\dagger} D_{1}\right)=0, \\
& G_{2} G_{2}^{\dagger} B_{1} A_{1}^{\dagger} A_{1}+E_{G_{2}} A_{1}^{\top} J_{1} A_{1}=B_{1}, \\
& E_{K} E_{M} J_{5}=0, E_{M} J_{5} F_{N}=0, E_{G_{2}} J_{5} F_{A_{1}}=0, J_{5} F_{A_{1}} F_{H}=0 . \tag{3.3}
\end{align*}
$$

In this case, the general solution of Problem I can be expressed as $X=X_{1}+\varepsilon X_{2}$, where

$$
\begin{align*}
X_{1}= & J_{6}-F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} G_{2} F_{K} W_{6} E_{H} N A_{1}^{\dagger}+F_{C_{1}} F_{G_{1}} F_{G_{2}} W_{71} \\
& -F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} G_{3} W_{71} A_{1} A_{1}^{\dagger}-F_{C_{1}} F_{G_{1}} K^{\dagger} K W_{6} N N^{\dagger} E_{A_{1}} \\
& -F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} A_{1}^{\top} F_{C_{1}} W_{72} A_{1} A_{1}^{\dagger} \\
& +F_{C_{1}} F_{G_{1}} W_{6} E_{A_{1}}-F_{C_{1}} F_{G_{1}} G_{2}^{\dagger} G_{2} F_{K} W_{6} H H^{\dagger} E_{A_{1}}, \tag{3.4}
\end{align*}
$$

$X_{2}=J_{7}+C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} G_{2} F_{K} W_{6} E_{H} N A_{1}^{\dagger}$
$-C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} F_{G_{2}} W_{71}+F_{C_{1}} W_{72}$
$+C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} G_{3} W_{71} A_{1} A_{1}^{\dagger}$
$+C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} F_{G_{2}} M_{1} A_{1}^{\top} F_{C_{1}} W_{72} A_{1} A_{1}^{\dagger}$
$-F_{C_{1}} M_{2} G_{3} W_{71} A_{1} A_{1}^{\dagger}-F_{C_{1}} M_{2} A_{1}^{\top} F_{C_{1}} W_{72} A_{1} A_{1}^{\dagger}$
$+C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} G_{2}^{\dagger} G_{2} F_{K} W_{6} H H^{\dagger} E_{A_{1}}$
$+C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} K^{\dagger} K W_{6} N N^{\dagger} E_{A_{1}}$
$-F_{C_{1}} M_{2} G_{2} F_{K} W_{6} E_{H} N A_{1}^{\dagger}-C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} W_{6} E_{A_{1}}$,
and W_{6}, W_{71}, W_{72} are arbitrary matrices.
Proof. By separating the dual matrix equations $C X=D$ and (1.1) into the real part and the dual part leads to the following four equations:

$$
\begin{align*}
C_{1} X_{1} & =D_{1}, \tag{3.6}\\
C_{2} X_{1}+C_{1} X_{2} & =D_{2}, \tag{3.7}\\
A_{1}^{\top} X_{1} A_{1} & =B_{1}, \tag{3.8}\\
A_{1}^{\top} X_{2} A_{1}+A_{2}^{\top} X_{1} A_{1}+A_{1}^{\top} X_{1} A_{2} & =B_{2}, \tag{3.9}
\end{align*}
$$

By using Lemma 2.1, Eq. (3.6) is solvable if and only if the first condition of (3.1) is satisfied, and the general solution is

$$
\begin{equation*}
X_{1}=C_{1}^{\dagger} D_{1}+F_{C_{1}} W_{1} \tag{3.10}
\end{equation*}
$$

where W_{1} is an arbitrary matrix. Plugging (3.10) into (3.7), we have

$$
\begin{equation*}
C_{1} X_{2}=D_{2}-C_{2} C_{1}^{\dagger} D_{1}-C_{2} F_{C_{1}} W_{1} \tag{3.11}
\end{equation*}
$$

By Lemma 2.1, Eq. (3.11) with respect to X_{2} is solvable if and only if

$$
\begin{equation*}
G_{1} W_{1}=E_{C_{1}}\left(D_{2}-C_{2} C_{1}^{\dagger} D_{1}\right) \tag{3.12}
\end{equation*}
$$

In this case, the general solution is

$$
\begin{equation*}
X_{2}=C_{1}^{\dagger}\left(D_{2}-C_{2} C_{1}^{\dagger} D_{1}\right)-C_{1}^{\dagger} C_{2} F_{C_{1}} W_{1}+F_{C_{1}} W_{2} \tag{3.13}
\end{equation*}
$$

where W_{2} is an arbitrary matrix. By applying Lemma 2.1, Eq. (3.12) is solvable if and only if the second condition of (3.1) is satisfied, and the general solution is

$$
\begin{equation*}
W_{1}=G_{1}^{\dagger} E_{C_{1}}\left(D_{2}-C_{2} C_{1}^{\dagger} D_{1}\right)+F_{G_{1}} W_{3} \tag{3.14}
\end{equation*}
$$

where W_{3} is an arbitrary matrix. Substituting (3.14) into (3.10) and (3.13) yields

$$
\begin{align*}
& X_{1}=J_{1}+F_{C_{1}} F_{G_{1}} W_{3}, \tag{3.15}\\
& X_{2}=J_{2}-C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} W_{3}+F_{C_{1}} W_{2} \tag{3.16}
\end{align*}
$$

Inserting (3.15) into (3.8) yields

$$
\begin{equation*}
G_{2} W_{3} A_{1}=B_{1}-A_{1}^{\top} J_{1} A_{1} \tag{3.17}
\end{equation*}
$$

Using Lemma 2.1 again, Eq. (3.17) with respect to W_{3} is solvable if and only if (3.2) is satisfied, the general solution is

$$
\begin{equation*}
W_{3}=G_{2}^{\dagger}\left(B_{1}-A_{1}^{\top} J_{1} A_{1}\right) A_{1}^{\dagger}+F_{G_{2}} W_{4}+W_{5} E_{A_{1}} \tag{3.18}
\end{equation*}
$$

where W_{4} and W_{5} are arbitrary matrices. Plugging (3.18) into (3.15) and $(3,16)$ leads to

$$
\begin{gather*}
X_{1}=J_{3}+F_{C_{1}} F_{G_{1}} F_{G_{2}} W_{4}+F_{C_{1}} F_{G_{1}} W_{5} E_{A_{1}}, \\
X_{2}=J_{4}-C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} F_{G_{2}} W_{4}-C_{1}^{\dagger} C_{2} F_{C_{1}} F_{G_{1}} W_{5} E_{A_{1}}+F_{C_{1}} W_{2} . \tag{3.20}
\end{gather*}
$$

Then, by substituting (3.19) and (3.20) into (3.9), we can get

$$
\begin{equation*}
M L A_{1}+G_{2} W_{5} N=J_{5} \tag{3.21}
\end{equation*}
$$

where $L=\left[\begin{array}{l}W_{4} \\ W_{2}\end{array}\right]$, by Lemma 2.2, Eq. (3.21) with respects to L and W_{5} is solvable if and only if the conditions of (3.3) holds, and the general solution is

$$
\begin{align*}
W_{5}= & K^{\dagger} E_{M} J_{5} N^{\dagger}+\left(F_{K} G_{2}^{\dagger}+F_{G_{2}} K^{\dagger} E_{M}\right) J_{5} F_{A_{1}} H^{\dagger}+W_{6} \\
& -G_{2}^{\dagger} G_{2} F_{K} W_{6} H H^{\dagger}-K^{\dagger} K W_{6} N N^{\dagger}, \tag{3.22}\\
L= & M^{\dagger}\left(J_{5}-G_{2} W_{5} N\right) A_{1}^{\dagger}+W_{7}-M^{\dagger} M W_{7} A_{1} A_{1}^{\dagger}, \tag{3.23}
\end{align*}
$$

where W_{6} and W_{7} are arbitrary matrices. Then

$$
\begin{align*}
W_{4}= & M_{1}\left(J_{5}-G_{2} W_{5} N\right) A_{1}^{\dagger}+W_{71}-M_{1}\left(G_{3} W_{71}\right. \\
& \left.+A_{1}^{\top} F_{C_{1}} W_{72}\right) A_{1} A_{1}^{\dagger}, \tag{3.24}\\
W_{2}= & M_{2}\left(J_{5}-G_{2} W_{5} N\right) A_{1}^{\dagger}+W_{72}-M_{2}\left(G_{3} W_{71}\right. \\
& \left.+A_{1}^{\top} F_{C_{1}} W_{72}\right) A_{1} A_{1}^{\dagger}, \tag{3.25}
\end{align*}
$$

where $W_{7}=\left[\begin{array}{l}W_{71} \\ W_{72}\end{array}\right]$ with $W_{71} \in \mathbb{R}^{m \times n}$. Inserting (3.22), (3.24) and (3.25) into (3.19) and (3.20), we can easily obtain the expressions (3.4) and (3.5).

4. Solving Problem II

Theorem 4.1. Given dual matrices $A=A_{1}+\varepsilon A_{2} \in$ $\mathbb{D}^{m \times n}, B=B_{1}+\varepsilon B_{2} \in \mathbb{D}^{n \times n}$ and $\tilde{X}=\tilde{X}_{1}+\varepsilon \tilde{X}_{2} \in \mathbb{D}^{m \times m}$ with $B_{i}=B_{i}^{\top}, i=1,2$, if write

$$
P=B_{2}-A_{2}^{\top}\left(A_{1}^{\top}\right)^{\dagger} B_{1} A_{1}^{\dagger} A_{1}-A_{1}^{\dagger} A_{1} B_{1} A_{1}^{\dagger} A_{2},
$$

$$
\begin{aligned}
Q= & F_{A_{1}} A_{2}^{\top} E_{A_{1}}, \Theta=F_{Q} E_{A_{1}} A_{2} A_{1}^{\dagger}, \\
V_{1}= & \left(A_{1}^{\top}\right)^{\dagger} B_{1} A_{1}^{\dagger}+E_{A_{1}} Q^{\dagger} F_{A_{1}} P A_{1}^{\dagger}+\left(A_{1}^{\dagger}\right)^{\top} P^{\top} F_{A_{1}}\left(Q^{\dagger}\right)^{\top} E_{A_{1}}, \\
V_{2}= & \left(A_{1}^{\top}\right)^{\dagger} P A_{1}^{\dagger}-\left(A_{1}^{\dagger}\right)^{\top} A_{2}^{\top} E_{A_{1}} Q^{\dagger} F_{A_{1}} P A_{1}^{\dagger} \\
& -\left(A_{1}^{\dagger}\right)^{\top} P^{\top} F_{A_{1}}\left(Q^{\dagger}\right)^{\top} E_{A_{1}} A_{2} A_{1}^{\dagger}, \\
R_{1}= & \frac{1}{2} E_{A_{1}}\left(\left(\tilde{X}_{2}+\tilde{X}_{2}^{\top}\right)-\left(V_{2}^{\top}+V_{2}\right)\right), \\
R_{2}= & \frac{1}{2} F_{Q} E_{A_{1}}\left(\left(\tilde{X}_{1}+\tilde{X}_{1}^{\top}\right)-\left(V_{1}^{\top}+V_{1}\right)\right) \\
& -\frac{1}{2} \Theta\left(\left(\tilde{X}_{2}+\tilde{X}_{2}^{\top}\right)-\left(V_{2}^{\top}+V_{2}\right)\right) A_{1} A_{1}^{\dagger}, \\
R_{3}= & \frac{1}{2} E_{A_{1}}\left(\left(\tilde{X}_{1}+\tilde{X}_{1}^{\top}\right)-\left(V_{1}^{\top}+V_{1}\right)\right) E_{A_{1}} .
\end{aligned}
$$

Then dual matrix equation (1.1) has a symmetric solution if and only if

$$
\begin{equation*}
F_{A_{1}} B_{1}=0, Q Q^{\dagger} F_{A_{1}} P A_{1}^{\dagger} A_{1}=F_{A_{1}} P . \tag{4.1}
\end{equation*}
$$

and the general symmetric solution set of dual matrix equation (1.1) can be expressed as

$$
\begin{equation*}
T=\left\{X=X_{1}+\varepsilon X_{2} \in \mathbb{D}^{m \times m} \mid A^{\top} X A=B, X_{i}=X_{i}^{\top}, i=1,2\right\}, \tag{4.2}
\end{equation*}
$$

where

$$
\begin{align*}
& X_{1}=V_{1}+E_{A_{1}}\left(F_{Q} U_{3}+U_{4} E_{A_{1}}\right)+\left(F_{Q} U_{3}+U_{4} E_{A_{1}}\right)^{\top} E_{A_{1}}, \tag{4.3}\\
& X_{2}=V_{2}-\Theta^{\top} U_{3} A_{1} A_{1}^{\dagger}-A_{1} A_{1}^{\dagger} U_{3}^{\top} \Theta+E_{A_{1}} U_{2}+U_{2}^{\top} E_{A_{1}}, \tag{4.4}
\end{align*}
$$

with U_{2}, U_{3}, U_{4} are arbitrary matrices. In this case, Problem II has the unique solution \hat{X}, and \hat{X} admits the following representation:

$$
\begin{equation*}
\hat{X}=\hat{X}_{1}+\varepsilon \hat{X}_{2} \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{X}_{1}=V_{1}+E_{A_{1}}\left(F_{Q} U_{3}+U_{4} E_{A_{1}}\right)+\left(F_{Q} U_{3}+U_{4} E_{A_{1}}\right)^{\top} E_{A_{1}} \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
\hat{X}_{2}=V_{2}-\Theta^{\top} U_{3} A_{1} A_{1}^{\dagger}-A_{1} A_{1}^{\dagger} U_{3}^{\top} \Theta+E_{A_{1}} U_{2}+U_{2}^{\top} E_{A_{1}} \tag{4.7}
\end{equation*}
$$

and U_{2}, U_{3} and U_{4} are determined by solving the unique solution of the equation

$$
\Delta\left[\begin{array}{c}
\operatorname{vec}\left(U_{2}\right) \\
\operatorname{vec}\left(U_{3}\right) \\
\operatorname{vec}\left(U_{4}\right)
\end{array}\right]=R
$$

with Δ and R being defined as in (4.25).

Proof. In the first step, we need to find the general symmetric solution of the dual matrix equation (1.1).
The dual matrix equation (1.1) is equivalent to Equations (3.8)-(3.9). Using Lemma 2.3, Eq. (3.8) has a symmetric solution if and only if the first condition of (4.1) is satisfied, and the general symmetric solution is

$$
\begin{equation*}
X_{1}=\left(A_{1}^{\top}\right)^{\dagger} B_{1} A_{1}^{\dagger}+E_{A_{1}} U_{1}+U_{1}^{\top} E_{A_{1}} \tag{4.9}
\end{equation*}
$$

where U_{1} is an arbitrary matrix. Inserting (4.9) into (3.9) yields

$$
\begin{equation*}
A_{1}^{\top} X_{2} A_{1}=P-A_{2}^{\top} F_{A_{1}} U_{1}^{\top} A_{1}-A_{1}^{\top} U_{1} F_{A_{1}} A_{2} \tag{4.10}
\end{equation*}
$$

Using Lemma 2.3 again, Eq. (4.10) has a symmetric solution if and only if

$$
\begin{equation*}
Q U_{1} A_{1}=F_{A_{1}} P \tag{4.11}
\end{equation*}
$$

the general symmetric solution is

$$
\begin{align*}
X_{2}= & \left(A_{1}^{\top}\right)^{\dagger} P A_{1}^{\dagger}-\left(A_{1}^{\top}\right)^{\dagger} A_{2}^{\top} E_{A_{1}} U_{1} A_{1} A_{1}^{\dagger}-A_{1} A_{1}^{\dagger} U_{1}^{\top} E_{A_{1}} A_{2} A_{1}^{\dagger} \\
& +E_{A_{1}} U_{2}^{\top}+U_{2} E_{A_{1}}, \tag{4.12}
\end{align*}
$$

where U_{2} is an arbitrary matrix. By Lemma 2.1, Eq. (4.11) with unknown matrix U_{1} has a solution if and only if the second condition of (4.1) is satisfied, the general solution is

$$
\begin{equation*}
U_{1}=Q^{\dagger} F_{A_{1}} P A_{1}^{\dagger}+F_{Q} U_{3}+U_{4} E_{A_{1}} \tag{4.13}
\end{equation*}
$$

where U_{3}, U_{4} are arbitrary matrices. By substituting (4.13) into (4.9) and (4.12), we can get (4.3) and (4.4).
In the second step, we need to solve the minimization problem. For the given dual matrix $\tilde{X} \in \mathbb{D}^{m \times m}$ and any matrix $X \in T$ in (4.2), we have

$$
\begin{aligned}
& f\left(U_{2}, U_{3}, U_{4}\right) \\
= & \|X-\tilde{X}\|_{\mathrm{D}}^{2} \\
= & \left\|X_{1}-\tilde{X}_{1}\right\|^{2}+\left\|X_{2}-\tilde{X}_{2}\right\|^{2} \\
= & \left\|V_{1}+E_{A_{1}}\left(F_{Q} U_{3}+U_{4} E_{A_{1}}\right)+\left(F_{Q} U_{3}+U_{4} E_{A_{1}}\right)^{\top} E_{A_{1}}-\tilde{X}_{1}\right\| \\
& +\left\|V_{2}-\Theta^{\top} U_{3} A_{1} A_{1}^{\dagger}-A_{1} A_{1}^{\dagger} U_{3}^{\top} \Theta+E_{A_{1}} U_{2}+U_{2}^{\top} E_{A_{1}}-\tilde{X}_{2}\right\| \\
= & \operatorname{tr}\left(V_{1}^{\top} V_{1}+U_{3}^{\top} F_{Q} E_{A_{1}} F_{Q} U_{3}+E_{A_{1}} U_{4}^{\top} E_{A_{1}} U_{4} E_{A_{1}}\right. \\
& +E_{A_{1}} F_{Q} U_{3} U_{3}^{\top} F_{Q} E_{A_{1}}+E_{A_{1}} U_{4} E_{A_{1}} U_{4}^{\top} E_{A_{1}}+\tilde{X}_{1}^{\top} \tilde{X}_{1}+V_{2}^{\top} V_{2} \\
& +A_{1} A_{1}^{\dagger} U_{3}^{\top} \Theta \Theta^{\top} U_{3} A_{1} A_{1}^{\dagger}+\Theta^{\top} U_{3} A_{1} A_{1}^{\dagger} U_{3}^{\top} \Theta+U_{2}^{\top} E_{A_{1}} U_{2}
\end{aligned}
$$

$$
\begin{aligned}
& +E_{A_{1}} U_{2} U_{2}^{\top} E_{A_{1}}+\tilde{X}_{2}^{\top} \tilde{X}_{2}+2 V_{1}^{\top} E_{A_{1}} F_{Q} U_{3}+2 V_{1}^{\top} E_{A_{1}} U_{4} E_{A_{1}} \\
& +2 V_{1}^{\top} U_{3}^{\top} F_{Q} E_{A_{1}}+2 V_{1}^{\top} E_{A_{1}} U_{4}^{\top} E_{A_{1}}-2 V_{1}^{\top} \tilde{X}_{1} \\
& +2 U_{3}^{\top} F_{Q} E_{A_{1}} U_{4} E_{A_{1}}+2 U_{3}^{\top} F_{Q} E_{A_{1}} U_{3}^{\top} F_{Q} E_{A_{1}} \\
& +2 U_{3}^{\top} F_{Q} E_{A_{1}} U_{4}^{\top} E_{A_{1}}-2 U_{3}^{\top} F_{Q} E_{A_{1}} \tilde{X}_{1}+2 U_{2}^{\top} E_{A_{1}} U_{2}^{\top} E_{A_{1}} \\
& +2 E_{A_{1}} U_{4}^{\top} E_{A_{1}} U_{3}^{\top} F_{Q} E_{A_{1}}+2 E_{A_{1}} U_{4}^{\top} E_{A_{1}} U_{4}^{\top} E_{A_{1}} \\
& -2 E_{A_{1}} U_{4}^{\top} E_{A_{1}} \tilde{X}_{1}+2 E_{A_{1}} F_{Q} U_{3} E_{A_{1}} U_{4}^{\top} E_{A_{1}}-2 E_{A_{1}} F_{Q} U_{3} \tilde{X}_{1} \\
& -2 E_{A_{1}} U_{4} E_{A_{1}} \tilde{X}_{1}-2 V_{2}^{\top} \Theta^{\top} U_{3} A_{1} A_{1}^{\dagger}-2 V_{2}^{\top} A_{1} A_{1}^{\dagger} U_{3}^{\top} \Theta \\
& +2 V_{2}^{\top} E_{A_{1}} U_{2}+2 V_{2}^{\top} U_{2}^{\top} E_{A_{1}}-2 U_{2}^{\top} E_{A_{1}} \tilde{X}_{2} \\
& +2 U_{3}^{\top} \Theta U_{3}^{\top} \Theta-2 V_{2}^{\top} \tilde{X}_{2}-2 E_{A_{1}} U_{2} \tilde{X}_{2}+2 \Theta^{\top} U_{3} A_{1} A_{1}^{\dagger} \tilde{X}_{2} \\
& \left.+2 A_{1} A_{1}^{\dagger} U_{3}^{\top} \Theta \tilde{X}_{2}\right) .
\end{aligned}
$$

Therefore, $f\left(U_{2}, U_{3}, U_{4}\right)$ is minimized if and only if $\frac{\partial f\left(U_{2}, U_{3}, U_{4}\right)}{\partial U_{2}}=0, \frac{\partial f\left(U_{2}, U_{3}, U_{4}\right)}{\partial U_{3}}=0, \frac{\partial f\left(U_{2}, U_{3}, U_{4}\right)}{\partial U_{4}}=0$, which implies that
$E_{A_{1}} U_{2}+E_{A_{1}} U_{2}^{\top} E_{A_{1}}=R_{1}$,
$F_{Q} E_{A_{1}} F_{Q} U_{3}+F_{Q} E_{A_{1}} U_{3}^{\top} F_{Q} E_{A_{1}}+\Theta \Theta^{\top} U_{3} A_{1} A_{1}^{\dagger}+\Theta U_{3}^{\top} \Theta$
$+F_{Q} E_{A_{1}} U_{4} E_{A_{1}}+F_{Q} E_{A_{1}} U_{4}^{\top} E_{A_{1}}=R_{2}$,
$E_{A_{1}} F_{Q} U_{3} E_{A_{1}}+E_{A_{1}} U_{3}^{\top} F_{Q} E_{A_{1}}+E_{A_{1}} U_{4} E_{A_{1}}+E_{A_{1}} U_{4}^{\top} E_{A_{1}}=R_{3}$.

By applying the Kronecker product and stretching function, (4.14)-(4.16) can be equivalently written as

$$
\begin{align*}
& \Delta_{11} \operatorname{vec}\left(U_{2}\right)=\operatorname{vec}\left(R_{1}\right), \tag{4.17}\\
& \Delta_{22} \operatorname{vec}\left(U_{3}\right)+\Delta_{23} \operatorname{vec}\left(U_{4}\right)=\operatorname{vec}\left(R_{2}\right), \tag{4.18}\\
& \Delta_{32} \operatorname{vec}\left(U_{3}\right)+\Delta_{33} \operatorname{vec}\left(U_{4}\right)=\operatorname{vec}\left(R_{3}\right), \tag{4.19}
\end{align*}
$$

where

$$
\begin{align*}
& \Delta_{11}=I_{m} \otimes E_{A_{1}}+T_{m^{2}}\left(E_{A_{1}} \otimes E_{A_{1}}\right), \tag{4.20}\\
& \Delta_{22}=I_{m} \otimes\left(F_{Q} E_{A_{1}} F_{Q}\right)+\left(A_{1} A_{1}^{\dagger}\right) \otimes\left(\Theta \Theta^{\top}\right)+T_{m^{2}}\left(\Theta \otimes \Theta^{\top}\right. \\
&\left.+\left(F_{Q} E_{A_{1}}\right) \otimes\left(E_{A_{1}} F_{Q}\right)\right), \tag{4.21}\\
& \Delta_{23}=E_{A_{1}} \otimes\left(F_{Q} E_{A_{1}}\right)+T_{m^{2}}\left(\left(F_{Q} E_{A_{1}}\right) \otimes E_{A_{1}}\right), \tag{4.22}\\
& \Delta_{32}=E_{A_{1}} \otimes\left(E_{A_{1}} F_{Q}\right)+T_{m^{2}}\left(E_{A_{1}} \otimes\left(E_{A_{1}} F_{Q}\right)\right), \tag{4.23}\\
& \Delta_{33}=E_{A_{1}} \otimes E_{A_{1}}+T_{m^{2}}\left(E_{A_{1}} \otimes E_{A_{1}}\right), \tag{4.24}
\end{align*}
$$

with $T_{m^{2}}$ is the $m^{2} \times m^{2}$ commutation matrix which is defined by Lemma 2.6. Let

$$
\Delta=\left[\begin{array}{ccc}
\Delta_{11} & 0 & 0 \tag{4.25}\\
0 & \Delta_{22} & \Delta_{23} \\
0 & \Delta_{32} & \Delta_{33}
\end{array}\right], R=\left[\begin{array}{c}
R_{1} \\
R_{2} \\
R_{3}
\end{array}\right]
$$

Then, (4.17)-(4.19) can be expressed as the equation of (4.8). The proof is complete.

5. Numerical algorithm and numerical example

Based on Theorem 4.1, we can formulate the following algorithm to solve Problem II.

Algorithm 1

1) Input matrices A_{i}, B_{i} and $\tilde{X}_{i}, i=1,2$.
2) Calculate $P, Q, \Theta, V_{1}, V_{2}, R_{1}, R_{2}$ and R_{3} according to Theorem 4.1.
3) If the conditions (4.1) are satisfied, then continue, otherwise, Problem II has no solution, and stop.
4) Compute the matrices $\Delta_{11}, \Delta_{22}, \Delta_{23}, \Delta_{32}$ and Δ_{33} by (4.20)-(4.24).
5) Compute the matrices Δ and R by (4.25).
6) Solving Eq. (4.8), we obtain $U_{2}=\operatorname{reshape}\left(\operatorname{vec}\left(U_{2}\right)\right)$, $U_{3}=\operatorname{reshape}\left(\operatorname{vec}\left(U_{3}\right)\right)$ and $U_{4}=\operatorname{reshape}\left(\operatorname{vec}\left(U_{4}\right)\right)$.
7) Compute the matrices \hat{X}_{1}, \hat{X}_{2} on the basis of (4.6)-(4.7).
8) Calculate the unique approximation solution $\hat{X}=\hat{X}_{1}+$ $\varepsilon \hat{X}_{2}$.
Example 5.1. Let $m=6, n=6$, and the matrices A_{1}, A_{2}, B_{1}, $B_{2}, \tilde{X}_{1}, \tilde{X}_{2}$ be given by

A_{1}	$=\left[\begin{array}{llllll}1.5712 & 0.5686 & 1.5930 & 1.2840 & 0.9838 & 0.6992 \\ 0.8688 & 0.5996 & 0.9163 & 0.7342 & 0.7349 & 0.6207 \\ 1.0319 & 0.1179 & 1.0144 & 0.8216 & 0.4750 & 0.2494 \\ 1.6420 & 0.6331 & 1.6696 & 1.3452 & 1.0542 & 0.7626 \\ 0.9667 & 0.4320 & 0.9903 & 0.7970 & 0.6603 & 0.4976 \\ 0.8451 & 0.0925 & 0.8303 & 0.6726 & 0.3863 & 0.2009\end{array}\right]$,
A_{2}	$=\left[\begin{array}{llllll}0.2920 & 0.3395 & 0.4177 & 0.1280 & 0.4607 & 0.1206 \\ 0.4317 & 0.9516 & 0.9831 & 0.9991 & 0.9816 & 0.5895 \\ 0.0155 & 0.9203 & 0.3015 & 0.1711 & 0.1564 & 0.2262 \\ 0.9841 & 0.0527 & 0.7011 & 0.0326 & 0.8555 & 0.3846 \\ 0.1672 & 0.7379 & 0.6663 & 0.5612 & 0.6448 & 0.5830 \\ 0.1062 & 0.2691 & 0.5391 & 0.8819 & 0.3763 & 0.2518\end{array}\right]$,

B_{1}	$=\left[\begin{array}{rrrrrrr}53.5564 & 18.5678 & 54.1964 & 43.6984 & 32.9892 & 23.1646 \\ 18.5678 & 6.5279 & 18.8010 & 15.1578 & 11.4979 & 8.1054 \\ 54.1964 & 18.8010 & 54.8454 & 44.2215 & 33.3910 & 23.4507 \\ 43.6984 & 15.1578 & 44.2215 & 35.6556 & 26.9221 & 18.9071 \\ 32.9892 & 11.4979 & 33.3910 & 26.9221 & 20.3610 & 14.3185 \\ 23.1646 & 8.1054 & 23.4507 & 18.9071 & 14.3185 & 10.0803\end{array}\right]$,
B_{2}	$=\left[\begin{array}{rrrrrrr}82.7260 & 46.3330 & 94.2048 & 73.4880 & 66.5812 & 44.0999 \\ 46.3330 & 22.3895 & 50.6798 & 40.1518 & 34.1939 & 23.0895 \\ 94.2048 & 50.6798 & 105.9817 & 82.9702 & 73.9555 & 49.2920 \\ 73.4880 & 40.1518 & 82.9702 & 64.8924 & 58.2046 & 38.7950 \\ 66.5812 & 34.1939 & 73.9555 & 58.2046 & 50.8615 & 34.1143 \\ 44.0999 & 23.0895 & 49.2920 & 38.7950 & 34.1143 & 22.8048\end{array}\right]$,
\tilde{X}_{1}	$=\left[\begin{array}{lllllll}0.4243 & 0.4735 & 0.7655 & 0.6476 & 0.4501 & 0.2564 \\ 0.4609 & 0.1527 & 0.1887 & 0.6790 & 0.4587 & 0.6135 \\ 0.7702 & 0.3411 & 0.2875 & 0.6358 & 0.6619 & 0.5822 \\ 0.3225 & 0.6074 & 0.0911 & 0.9452 & 0.7703 & 0.5407 \\ 0.7847 & 0.1917 & 0.5762 & 0.2089 & 0.3502 & 0.8699 \\ 0.4714 & 0.7384 & 0.6834 & 0.7093 & 0.6620 & 0.2648\end{array}\right]$,

$\tilde{X}_{2}=\left[\begin{array}{llllll}0.6074 & 0.0911 & 0.9452 & 0.7703 & 0.5407 & 0.5447 \\ 0.1917 & 0.5762 & 0.2089 & 0.3502 & 0.8699 & 0.6473 \\ 0.7384 & 0.6834 & 0.7093 & 0.6620 & 0.2648 & 0.5439 \\ 0.2428 & 0.5466 & 0.2362 & 0.4162 & 0.3181 & 0.7210 \\ 0.9174 & 0.4257 & 0.1194 & 0.8419 & 0.1192 & 0.5225 \\ 0.2691 & 0.6444 & 0.6073 & 0.8329 & 0.9398 & 0.9937\end{array}\right]$

It is easy to verity that the conditions (4.1) hold:

$$
\begin{aligned}
& \left\|F_{A_{1}} B_{1}\right\|=2.2693 \times 10^{-14}, \\
& \left\|Q Q^{\dagger} F_{A_{1}} P A_{1}^{\dagger} A_{1}-F_{A_{1}} P\right\|=2.6989 \times 10^{-14}
\end{aligned}
$$

By using Algorithm 1, we can obtain the unique approximation solution $\hat{X}=\hat{X}_{1}+\varepsilon \hat{X}_{2}$ of Problem II as follows:

\hat{X}_{1}	$=\left[\begin{array}{llllll}1.4250 & 1.2127 & 1.4706 & 1.2908 & 1.2738 & 0.7912 \\ 1.2127 & 1.1359 & 0.3465 & 0.8545 & 0.8276 & 0.8239 \\ 1.4706 & 0.3465 & 1.1821 & 1.3277 & 1.0543 & 1.1221 \\ 1.2908 & 0.8545 & 1.3277 & 1.4092 & 0.8873 & 1.2891 \\ 1.2738 & 0.8276 & 1.0543 & 0.8873 & 0.7528 & 1.0798 \\ 0.7912 & 0.8239 & 1.1221 & 1.2891 & 1.0798 & 0.4615\end{array}\right]$,
\hat{X}_{2}	$=\left[\begin{array}{llllll}1.7453 & 0.5624 & 1.3277 & 1.7978 & 1.0231 & 0.9802 \\ 0.5624 & 0.4391 & 0.5530 & 0.6539 & 0.6188 & 0.3080 \\ 1.3277 & 0.5530 & 1.1629 & 1.0739 & 0.9511 & 1.1491 \\ 1.7978 & 0.6539 & 1.0739 & 2.1033 & 0.5943 & 1.2673 \\ 1.0231 & 0.6188 & 0.9511 & 0.5943 & 0.7730 & 0.6016 \\ 0.9802 & 0.3080 & 1.1491 & 1.2673 & 0.6016 & 0.5225\end{array}\right]$.

The absolute errors are estimated by

$$
\begin{aligned}
& \left\|A_{1}^{\top} X_{1} A_{1}-B_{1}\right\|=2.9543 \times 10^{-12} \\
& \left\|A_{1}^{\top} X_{2} A_{1}+A_{2}^{\top} X_{1} A_{1}+A_{1}^{\top} X_{1} A_{2}-B_{2}\right\|=1.2922 \times 10^{-12}
\end{aligned}
$$

which implies that \hat{X} is the unique approximation solution of Problem II.

6. Conclusions

Solving dual matrix equations is often required in kinematic analysis and sensor calibration. In this paper, the solvability conditions and explicit solutions of Problem I are obtained using the Moore-Penrose inverse (see Theorem 3.1). Further, by applying the Moore-Penrose inverse and Kronecker product of matrices, we obtain the unique approximation solution of Problem II (see Theorem 4.1).

Conflict of interest

All authors declare that they have no conflicts of interest.

References

1. H. Dai, P. Lancaster, Linear matrix equations from an inverse problem of vibration theory, Linear Algebra Appl., 246 (1996), 31-47. https://doi.org/10.1016/0024-3795(94)00311-4
2. Y. X. Peng, X. Y. Hu, L. Zhang, The symmetric orthosymmetric solution of linear matrix euqation $A^{\top} X A=B$ and its optimal approximation, Numerical Mathematics a Journal of Chinese Univers, 25 (2003), 372-377. (In Chinese)
3. $\mathrm{Z} . \mathrm{Z}$. Li, The D-symmetric solutions of matrix equation $A^{\top} X A=B$ on the linear manifold, Journal of Guangxi Academy of Sciences, 24 (2008), 174-176. (In Chinese)
4. M. A. Clifford, Preliminary sketch of bi-quaternions, Proceedings of the London Mathematical Society, 4 (1873), 381-395. https://doi.org/10.1112/plms/s14.1.381
5. J. Angeles, The dual generalized inverses and their applications in kinematic synthesis, Dordrecht: Springer, 2012. https://doi.org/10.1007/978-94-007-4620-6_1
6. Y. Gu, J. Y. S. Luh, Dual-number transformations and its applications to robotics, IEEE Journal on Robotics and Automation, 3 (1987), 615-623. https://doi.org/10.1109/JRA.1987.1087138
7. M. L. Keler, Kinematics and statics including friction in single-loop mechanisms by screw calculus and dual vectors, ASME Journal of Engineering for Industry, 95 (1973), 471-480. https://doi.org/10.1115/1.3438179
8. E. Pennestrì, P. P. Valentini, Linear dual algebra algorithms and their application to kinematics, Dordrecht: Springer, 2009. https://doi.org/10.1007/978-1-4020-8829-2_11
9. A. T. Yang, F. Freudenstein, Application of dual number quaternions algebra to the analysis of spatial mechanisms, ASME Journal of Applied Mechanics, 86 (1964), 300-308. https://doi.org/10.1115/1.3629601
10. J. Angeles, The application of dual algebra to kinematic analysis, New York: Springer, 1998. https://doi.org/10.1007/978-3-662-03729-4_1
11. D. De Falco, E. Pennestrì, F. E. Udwadia, On generalized inverses of dual matrices,

Mech. Mach. Theory, 123 (2018), 89-106 https://doi.org/10.1016/j.mechmachtheory.2017.11.020
12. G. R. Veldkamp, On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics, Mech. Mach. Theory, 11 (1976), 141-156. https://doi.org/10.1016/0094-114x(76)90006-9
13. G. R. Pennock, A. T. Yang, Application of dual-number matrices to the inverse kinematics problem of robot manipulators, Journal of Mechanisms, Transmissions, and Automation in Design, 107 (1985), 201-208. https://doi.org/10.1115/1.3258709
14. D. Condurache, A. Burlacu, Orthogonal dual tensor method for solving the $A X=X B$ sensor calibration problem, Mech. Mach. Theory, 104 (2016), 328-404. https://doi.org/10.1016/j.mechmachtheory.2016.06.002
15. D. Condurache, I.-A. Ciureanu, A novel solution for $A X=Y B$ sensor calibration problem using dual Lie algebra, 6th International Conference on Control, Decision and Information Technologies, (2019), 302307. https://doi.org/10.1109/CoDIT.2019.8820336
16. F. E. Udwadia, Dual generalized inverse and their use in solving systems of linear dual equations, Mech. Mach. Theory, 156 (2021), 104158. https://doi.org/10.1016/j.mechmachtheory.2020.104158
17. J. Zhong, Y. Zhang, Dual group inverses of dual matrices and their applications in solving systems of linear dual equations, AIMS Math., 5 (2022), 7606-7624. https://doi.org/10.3934/math. 2022427
18. E. Pennestrì, P. P. Valentini, Linear dual algebra algorithms and their application to kinematics, Multibody Dynamics, 12 (2009), 207-209. https://doi.org/10.1007/978-1-4020-8829-2_11
19. Y. G. Tian, H. X. Wang, Relations between least-squares and least-rank solutions of the matrix equation $A X B=$ C, Appl. Math. Comput., 21 (2013), 10293-10301. https://doi.org/10.1016/j.amc.2013.03.137
20. J. K. Baksalary, R. Kala, The matrix equation AXB $+C Y D=E$, Linear Algebra and its Applications, 30 (1980), 141-147. https://doi.org/10.1016/0024-3795(80)90189-5
21. Y. H. Liu, Y. G. Tian, Y. Takane, Ranks of Hermitian and skew-Hermitian solutions to the matrix equation $A X A^{*}=$ B, Linear Algebra Appl., 431 (2009), 23592372. https://doi.org/10.1016/j.laa.2009.03.011
22. G. S. Rogers, Matrix derivatives, Lecture notes in statistics, 1980.
23. P. Lancaster, M. Tismenetsky, The theroy of matrices, New York: Academic Press, 1985.
24. J. L. Chen, X. H. Chen, Special matrices, BeiJing: Tsinghua University Press, 2002. (In Chinese)

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

