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Abstract: Let D"™" = {A = A + €A,]|A;, Ay € R™"} be the set of all m X n real dual matrices. In this paper, the following problems
are considered. Problem I: Given dual matrices A = A| + €A, € D™ and B = B + &B, € D™, find X € S such that the dual matrix
equation A" XA = B is satisfied, where S = {X € D"™"|CX = D,C,D € D""}. Problem II: Given dual matrices A = A| + €A, €
D™ B = By + &B, € D* and X = X, + &X, € D™, with B; = B],i = 1,2, find X € T such that [|X - X|p = min IX — Xljp =

I)I(li}l VIX; = X IP + X, — Xa|P, where T = {X = X, + &X, € D™"ATXA = B s.t. X; = X,i = 1,2}. We derive the solvability
€

conditions and the representation of the general solution of Problem I using the Moore-Penrose inverse. Also, we deduce the solvability
conditions and the explicit formula of T and the unique approximation solution X of Problem II by applying the Moore-Penrose inverse

and Kronecker product of matrices. Finally, we give a numerical example to show the correctness of our result.
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1. Introduction

We will adopt the following terminology. R denotes
the set of all m X n real matrices. I, denotes the identity
AT, AT tr(A) and ||A|| represent the
transpose, the Moore-Penrose inverse, the trace and the

matrix of size n.

Frobenius norm of the matrix A, respectively. Given two
matrices A = [a;;] € R"™" and B € R”*, the Kronecker
product of A and B is defined by A ® B = [a;;B] € R"P*™.,
-,a,) € R™M q, e R", [ =
1,2, .-, n, the stretch function vec(A) is defined as vec(A) =
(af,ay,--- ,a,;)". Further, the symbols E, and F4 stand for
two orthogonal projectors E4 = I, — AAT, Fy = I, — ATA
induced by A € R™",

Many scholars considered the following matrix equation

Also, for a matrix A = (ay,as, - -

ATXA =B (1.1)
in real and complex matrix spaces. For example, Dai and
Lancaster [1] considered symmetric, positive semi-definite,
and positive definite solutions of the matrix equation

(1.1) with the help of the singular value decomposition.
Peng et al. [2] provided the necessary and sufficient
conditions and the expression of the symmetric ortho-
symmetric solutions of the matrix equation (1.1) by applying
the generalized singular value decomposition. Li [3] gave
the necessary and sufficient conditions and the expressions
for the D-symmetric solutions of the matrix equation (1.1)
on a linear manifold using the generalized singular value
decomposition.
In 1873,

Subsequently,

Clifford [4]
the dual algebra develops rapidly and

introduced dual numbers.
has been widely applied to kinematic analysis [5], robotics
[6], screw motion [7] and rigid body motion analysis [8, 9].

The set of the dual numbers is usually denoted by
D ={a = a; + eas|a,a> € R}.

The real unit € is subjected to the rules: € # 0, Og = €0 =
0, le = ¢l = &, & = 0. For the operation rules about the
dual numbers, the readers can see Ref. [5]. A matrix whose
elements are dual numbers is called a dual matrix, namely,

the set of all m X n real dual matrices is
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D™ = {A = A] + 8A2|A1,A2 S Rmxn}'

The operational rules for dual matrices are similar to those
of dual numbers. Dual matrices have important applications
in kinematic analysis [5, 10], spatial kinematics [11, 12]
and robotics [6, 13]. The solutions of linear dual equations
are widely used in kinematic analysis and sensor calibration
problems. For instance, Angeles [10] applied the dual
algebra to compute the parameters of the serew of a rigid
body between two finitely-separated positions and of the
instant screw. Condurache and Burlacu [14] solved the AX =
XB sensor calibration problem by means of the orthogonal
dual tensor method. Condurache and Ciureanu [15] explored
the AX = Y B sensor calibration problem using dual algebra.

Furthermore, many authors considered the solutions of the
dual matrix equation Ax = b. Udwadia [16] considered
this equation using the dual generalized inverses. Zhong
and Zhang [17] introduced the dual group-inverse solution
of Ax = b. Pennestri and Valentini [18] proposed to solve
this dual equation by applying the QR-decomposition.

We observe that the solutions of the dual matrix equation
seems to be rarely considered. Therefore, in this paper, we
will consider two problems of the dual matrix equation (1.1),
that is :

Problem I. Given dual matrices A = A + g4, € D™ and
B = B; + B, € D™, find X € S such that the dual matrix
equation (1.1) is satisfied, where § = {X € D™"|CX =
D,C,D € D"y,

Problem II. Given dual matrices A = A; + €A, €e D™, B =
Bi+&B; e D™ and X = X, +&X, € D™, with B; = B/ ,i
1,2, find X € T such that ||X - X|lp =

min|IX - X|Ip
XeT

min VIX: = X112 + 1X> — X%, where T = {X = X; +€X5 €
D"™MATXA =B s.t. X; = X[,i=1,2}.

The outline of the rest of this paper is as follows. In
Section 2, we introduce some lemmas. In Section 3, the
solvability conditions and the representation of the general
solution of Problem I are derived by applying the Moore-
Penrose inverse. In Section 4, by utilizing the Moore-
Penrose inverse and Kronecker product of matrices, we
obtain the unique approximation solution X of Problem II. In
Section 5, a numerical algorithm to solve Problem II and a
numerical example are provided. Some concluding remarks

are given in Section 6.
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2. Preliminaries

IP1II* + 1P s

indeed a matrix norm for the the dual matrix P = P; + &P>.

First, we should point out that ||P||p =

In fact, for all k¥ € R and for all the m-by-p dual matrices
P= P] +8P2 andQ: Q] +8Q2,WherePi, Q,‘ € R™P (l

VIP1? +[IP2|* > 0 and [|Pllp

1,2), we have o ||P||p =
0P =0,P,=0;
o [kPlp = IkPIP* + [IkPa|? =

kI VIPAIP + [1P>]1* = [kl - 1IPlI;

e Since

VIZ(IP IR + [1P]P)

IP + OlIf, =IIPy + Pal* + 1101 + Qo
<Pl +11P2ID* + (1Q1ll + Q21D
=PI + 1P + 104 1P + 1021
+2(1PyIl - 1P2Ml + 10411 - 11021,
(IPllp + 11QlIp)* =IIP1I* + IP2IP + 11011 + 1021
+ 2VIIP1I2 + 1P2IP - VIQ1IP + 11021,

and

IPIPAI+IQuI-NQ2Nl < VIPLIR + 1P2IP- VI I + 1QaP-

Thus, the inequality ||P + Qllp < ||Pllp + [|Qllp follows.
Next, in order to solve Problems I and II, we introduce the

following lemmas.

Lemma 2.1. [19] IfA € R™",B € R?" and D € R™",
Then the matrix equation AXB = D has a solution X € RP*4
if and only if AA'DB'B = D. In this case, the general
solution is X = ATDB' + F,V| + V,Eg, where V|, V, are

arbitrary matrices.

Lemma 2.2. [20] Let A € R™" B € R, C € R™" D €
R4 and E € R™4. Then the linear matrix equation AXB +
CYD = E is consistent if and only if

E(;EAE = 0, EAEFD = 0, EcEFB = 0, EFBFH = 0,

where G = Eo,C, H = DFg. In this case, the general solution
is
Y =G 'EAED" + (FgC" + FcG'E\)EFgH™ + W
- C'CFGWHH' - G'"GWDD",
X =A"(E - CYD)B' +Z - ATAZBB"',

where W, Z are arbitrary matrices.
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Lemma 2.3. [21]If A € R™", D € R™™, Then the matrix
equation AXA" = D has a symmetric solution if and only
if D = DT,E,D = 0, in this case, the general symmetric
solution is X = ATD(ANYT + FAV + VTF,, where V is an

arbitrary matrix.

Lemma 2.4. [22] Suppose that A, B are two real matrices,

and X is an unknown variable matrix. Then

Iu(BX) _ oo O (XTBT)

BT
oxX T ox :
AXBX
OwAXBX) _ pxA + AXB)T,
X
otr (AXTBX™
O (AXTBXT) _ pyTA L AXTB,
ox
otr (AXBX™
% — AXB+ATXB".

Lemma 2.5. [23] Let A € R™", B e R™ C e R™. Then
vec(ABC) = (CT ® A) vec(B).

Lemma 2.6. [24] Let V € R™" then vec(V") = T, vec(V),

where

T T T

Iy I Iin

JIJL JT

T 21 2 2n  Rmmxmn
mn —

T T T

Jml ‘,m2 T ‘,mn
with Jij,i = 1,--- ,m,j = 1,--- ,nis an m X n matrix with

the element at position (i, j) is 1 and the others are 0, T,,,

can be uniquely determined by m and n.
3. Solving Problem I

Theorem 3.1. Given dual matrices A = A; + €A, €
D"™" B = By + &B, € D™, C = C; + &C, € D™ and
D =D +¢eD, e D" i = 1,2, if write

Gi = Ec,CyF¢,, Gy = A[F¢ Fg,,

Gs = AJF¢,Fg,Fg, — A]CICoF ¢, F, F,,
Ji = CIDy + Fe,G Ec (D> - C,CIDy),

J» = (C] = C{CyF ¢, G Ec,)(Dy = C,C|Dy),
Js = Ji + Fe,Fg,GL(B1 — ATJ1ADA],
Ji=Jo = CICyF ¢, Fg,Gy(By — A] J1ADAL,
Js = By — AJJ3A; — AT J4A; — AT J3As,
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M,
M,

)

M =[Gs ATF¢,], M =[

N = E; Ay, K = EyG,, H=NF,,,
Jo = J3 + Fe,F6,Fg,MJsA]
— F¢,F6,F6,M\GoK EpJsN'NAT
— Fe,F6,F6,M\G2FxGlJsF s H NAT
+ Fe,Fg, K EyJsNTEy,
+ F¢,Fg,(FkGl + Fo,K"Ey)JsFa H'Ey,,
J7 = Js = ClCyF ¢, Fg,Fg, M JsA]
+ClCaF ¢, FG,F6,MG2K EyJsN'NAT
+ClCyF ¢, FG,F6,MGyFxGlJsFa H' NA
~ ClCyF ¢, F, K" EyJsN'Ey,
~ ClCyFc,F,(FxG) + F6,K'Ey)JsFa H'Ey,
+ Fe,MaJsAT — Fe,M>G2K EpJsNTNA]
— Fe,M2G2FxGLJsF 4 H'NAT.

Then Problem I is solvable if and only if

Ec,Dy =0, Eg Ec,(D; — C,C{Dy) =0, 3.1)
G2GiB1AJA| + EG,ATJ\A; = By, (3.2)
ExEnJs =0, EyJsFy =0, Eg,JsF, =0, JsFa,Fy = 0.

(3.3)

In this case, the general solution of Problem I can be

expressed as X = X + X, where

Xi =Js — Fe,F6,F6,MiG2FxWeEyNAT + F¢, Fg, Fg, Wi
— F¢,F6,Fg,M\G3Wy A AT — Fe,Fo, K'KWsNN'Ey,
— Fe,F,Fo,MiA] Fc, WA A}
+ Fe,F,WeEa, — Fc,F,GiG2FxWsHH E,,
(3.4)
X, =J7 + CICoF ¢, F,F,M G2 Fx WeEyNA]
~ CCyF ¢, FG,F, W1 + Fe,Wn
+ClCyFc, Fg,F6,MiG3 W7 AA]
+ClCyF ¢, F6,Fg,M A] Fc, WA Al
— Fe,MaG3 Wi AiA] = Fo, MoAT Fe, WiA Al
+ClCoF ¢, F6,GLGoFxWeHH Ey,
+C]CaF e, F, K" KWsNN'E,

— Fe,MaGaFxWeEyNA] — CTCoF ¢, Fg, WeEa,
(3.5)
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and W, W71, Wy, are arbitrary matrices.

Proof. By separating the dual matrix equations CX = D and
(1.1) into the real part and the dual part leads to the following

four equations:

CiX, =Dy, (3.6)

CoX) + C1 X, =D, (3.7)

ATX\A, =B, (3.8)

ATX2A; + ATX\A, + AT XAy =B,. (3.9)

By using Lemma 2.1, Eq. (3.6) is solvable if and only if the
first condition of (3.1) is satisfied, and the general solution
is

Xi = CIDy + Fe,Wy, (3.10)

where W, is an arbitrary matrix. Plugging (3.10) into (3.7),
we have

CiX2 = Dy = C,C[ Dy = CoF ¢, Wi 3.11)

By Lemma 2.1, Eq. (3.11) with respect to X, is solvable if
and only if

G Wi = E¢,(D, - C,CIDy), (3.12)

In this case, the general solution is
X, = C{(Dy - C:C[Dy) = C[C2F e, Wy + Fe,Wa,  (3.13)

where W, is an arbitrary matrix. By applying Lemma 2.1,
Eq. (3.12) is solvable if and only if the second condition of

(3.1) is satisfied, and the general solution is
Wi = Gl Ec,(D, — C:C[ D)) + Fg, W, (3.14)

where W3 is an arbitrary matrix. Substituting (3.14) into
(3.10) and (3.13) yields

XIZJI+FC1F01W3’ (315)

X, = J, = C{CoF ¢, Fg, W3 + Fc, W (3.16)
Inserting (3.15) into (3.8) yields

GaW3A; = B; — A] J1A,. (3.17)
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Using Lemma 2.1 again, Eq. (3.17) with respect to W3 is
solvable if and only if (3.2) is satisfied, the general solution
is

Ws = Gi(Bi — ATJIADAT + F6,Wa + WsE4,,  (3.18)

where W, and W;s are arbitrary matrices. Plugging (3.18)
into (3.15) and (3,16) leads to

X =J3 +FC|FG|FGQW4+FC1F01W5EA13 3.19)

X =J4 — C1.C2FCIFGIFG2W4 - C-II-CQFCl FGl WSEA] + FCl Ws.
(3.20)
Then, by substituting (3.19) and (3.20) into (3.9), we can get

MLA] + GQWSN = J5, (321)

Wy
where L =

], by Lemma 2.2, Eq. (3.21) with respects
2

to L and W5 is solvable if and only if the conditions of (3.3)
holds, and the general solution is

Ws =K'EyJsN' + (FxkG) + F6,K"Ey)JsFa H' + W
-GGy FxkWsHH™ — KTKWgNN', (3.22)
L=M'(Js - GaWsN)A] + W7 — M'MW,A,A], (3.23)

where Wy and W5 are arbitrary matrices. Then

Wy =M(Js - G2W5N)AI + Wi = Mi(G3Wn

+ A Fe,Wi)A AL, (3.24)
Wy =Mr(Js — G2W5N)A1— + Wi = Ma(G3 Wi
+ Al Fe,Win)A A, (3.25)
W7I 1 mxn 1
where W; = with W;; € R™". Inserting (3.22),
72
(3.24) and (3.25) into (3.19) and (3.20), we can easily obtain
the expressions (3.4) and (3.5). ]

4. Solving Problem II

Theorem 4.1. Given dual matrices A = A + €A, €
D™ B = B +&B, € D and X = X, + X, € D™
with B; = Bl ,i = 1,2, if write

P =B, - AJ(A))'BiATA| - A]A|BiATA,,
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Q =F1,AJEA,,© = FoEx AA],
Vi =(A)'BIA] + E4, Q"F 5, PA] + (A)) PTFA(Q")En,,
Vo =(A])'PA] — (A))TA] E4, Q" Fa, PA]

— (AD)TPTF4,(Q")TEx A2A],

1 - -
Ry =5 Ea (%2 +X7) = (V] + V),

Ry :%FQEA] (X + X)) = (V] + W)
- %@(()?2 +X7) = (V] + V) AA],
Ry :%EAI (X +X]) = (V] + V1)) Eq,.
Then dual matrix equation (1.1) has a symmetric solution if
and only if

Fa,Bi =0,00"Fy, PATA| = Fy,P. 4.1)

and the general symmetric solution set of dual matrix

equation (1.1) can be expressed as

T={X=X +&X, e D"™ATXA =B, X; = X,i =12},
4.2)

where

Xl = V] + EAI(FQUB + U4EA1) + (FQU3 + U4EA])TEA],
4.3)

Xo =V, - @"UsA Al - AJATU] @ + E5 Uy + Uj Ea,,
4.4)

with U,, Us, Uy are arbitrary matrices. In this case,
Problem II has the unique solution X, and X admits the

following representation:

X =X +Xy, 4.5)

where
X1 = V) + Ex,(FoUs + UsEy,) + (FoUs + UsEa, ) Ea,
4.6)
)A(Q = V2 - @TU:;A]A-I —AlAlU;—(’D + EAl Uz + U;EAI,
4.7

and U,,Us and Uy are determined by solving the unique

solution of the equation
vec(U,)
Al vec(U;3) | =R,
vec(Uy)

(4.8)

with A and R being defined as in (4.25).

Mathematical Modelling and Control

Proof. In the first step, we need to find the general
symmetric solution of the dual matrix equation (1.1).

The dual matrix equation (1.1) is equivalent to Equations
(3.8)~(3.9). Using Lemma 2.3, Eq. (3.8) has a symmetric
solution if and only if the first condition of (4.1) is satisfied,

and the general symmetric solution is

Xi = (AD)'BIA] + Eq, Uy + U Ey4,, (4.9)

where U; is an arbitrary matrix. Inserting (4.9) into (3.9)

yields

ATXoA| = P—AJF4 UTA —ATU Fa Ay (4.10)

Using Lemma 2.3 again, Eq. (4.10) has a symmetric solution

if and only if

QU A = Fy,P, 4.11)

the general symmetric solution is

Xo =(A]) PA] — (A1) A] Es, UiA1A] — A|ATUT Ea, A2A]
+Ex Uy + UsEy,, (4.12)

where U, is an arbitrary matrix. By Lemma 2.1, Eq. (4.11)
with unknown matrix U; has a solution if and only if the

second condition of (4.1) is satisfied, the general solution is

Ui = Q"Fa,PA] + FoUs + UsEy,, (4.13)

where Us, U, are arbitrary matrices. By substituting (4.13)
into (4.9) and (4.12), we can get (4.3) and (4.4).

In the second step, we need to solve the minimization
problem. For the given dual matrix X € D™ and any
matrix X € T in (4.2), we have

f(U2, U3, Uy)
=[IX - XIIf
=1X1 = X1 + 1X2 - Xl
=||Vy + Ex,(FoUs + UsE4,) + (FoUs + UsEa,)"E4, — X1l
+IV2 = OTUA AT = AJATUT © + E4 Uy + US Ea, - Xl
=te(V] V) + U FoEs FoUs + Ea, U] E4, U4Ey,
+ Ez, FoUsUJ FoEa, + Ea, UsEa, U] Ex, + X[ X1 + V3V,
+A1ATUT 00T UsA AT + ©TU3A1ATUS © + US EA Uy
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+ Ep,UsUy Ea, + X3 X5 + 2V Eg FoUs + 2V E4 UsEx,
+2V[ Uy FoEa, +2V] Es U] E4, — 2V X;

+2U; FoEa, UsEa, +2U; FoEa, U; FoEy,

+2U3 FoEs U] Ex, —2U; FoE X1 + 2UJ E4, U, Ey,
+2E5, U] Es,U; FoEa, +2E4 U] Es, U] Ex,

—2E5 U] Ep X1 +2E5, FoUsEA U] Ea, — 2E5 FoUsX,
—2E4 UsEq, X| -2V, @TU3A AT - 2V] A1ATUT @
+2V) Eq Uy + 2V, UJ Ex, — 2U, En X>

+2U5@U; 0 - 2V, X, — 2E4, UsX> + 207 UsA AT X,
+241A] U5 ©X,).

Therefore, f(U,,Us,Uy) is minimized if and only if

0f(Us,Us,Us)  _ Of(Us,Us,Us)  _ of(Us,U3,Us)  _ :
T = 0,57 = 0,5 = 0, which

implies that

EA]U2+EA]U;EA] =Ry, “4.14)

FoEa FoUs + FoEs U] FoEa, + ®@@TUsA1A] + OUS ©

+ FQEA] U4EA] + FQEAI UIEAI =R, (415)

EA]FQU3EA] +EA1U;FQEA1 +EA]U4EA] +EA1UIEA1 = R3.

(4.16)

By applying the Kronecker product and stretching function,
(4.14)—(4.16) can be equivalently written as

Aj1vec(U,) = vec(Ry), “4.17)
Axvec(Us) + Arzvec(Uy) = vec(R), 4.18)
Azyvec(Us) + Aszvec(Uy) = vec(R3), 4.19)

where
A =1,Q9E4 +T,2(Ea, ® Ey,), (4.20)

Mgy = 1, ® (FoEy, Fg) + (A1A)) ® (007) + T,,2 (0 07

+ (FoEa) ® (Ex, Fo)), (4.21)
Az = Ep, ® (FoE4) + T,2(FoE4,) ® Ey,), 4.22)
A3y = Ep, ® (Ep, Fg) + T2 (Ep, ® (Ep Fp)), (4.23)
Asz = Ep @ Eg, + T,2(Ep, ® Ey), (4.24)

with T, is the m? xm? commutation matrix which is defined
by Lemma 2.6. Let

Ay 0 0 R,
A= O Azg A23 5 R = Rz (425)
0 A Az R3

Then, (4.17)—(4.19) can be expressed as the equation of
(4.8). The proof is complete. O
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5. Numerical algorithm and numerical example

Based on Theorem 4.1, we can formulate the following
algorithm to solve Problem II.
Algorithm 1

1) Input matrices A;, B; and X.,i=1,2.

2) Calculate P,Q,0,V,,V,,R|,R, and R; according to
Theorem 4.1.

3) If the conditions (4.1) are satisfied, then continue,

otherwise, Problem II has no solution, and stop.

4) Compute the matrices Ajj, Az, Az, Az and Aszz by
(4.20)—(4.24).

5) Compute the matrices A and R by (4.25).

6) Solving Eq. (4.8), we obtain U, = reshape(vec(U,)),
U; = reshape(vec(Us)) and Uy = reshape(vec(Uy)).

7) Compute the matrices X1, X, on the basis of (4.6)—(4.7).
8) Calculate the unique approximation solution X = X; +
8)?2.

Exaznpl~e 5.1. Let m = 6,n = 6, and the matrices A, A, By,
B>, X1, X, be given by

1.5712 05686 1.5930 1.2840 0.9838  0.6992
0.8688 0.5996 09163 0.7342 0.7349  0.6207

A = 1.0319 0.1179 1.0144 0.8216 04750 0.2494
1.6420 0.6331 1.6696 1.3452 1.0542 0.7626 |’
0.9667 0.4320 0.9903 0.7970  0.6603  0.4976
0.8451 0.0925 0.8303 0.6726 0.3863  0.2009
0.2920 0.3395 0.4177 0.1280 0.4607  0.1206
0.4317 09516 0.9831 0.9991 0.9816 0.5895

A, = 0.0155 0.9203 0.3015 0.1711 0.1564  0.2262
0.9841 0.0527 0.7011 0.0326  0.8555 0.3846
0.1672  0.7379 0.6663 0.5612 0.6448 0.5830
0.1062  0.2691 0.5391 0.8819 0.3763 0.2518
53.5564 18.5678 54.1964 43.6984 329892  23.1646
18.5678 6.5279 18.8010 15.1578 11.4979 8.1054

B = 54.1964 18.8010 54.8454 44.2215 333910 23.4507
43.6984 15.1578 442215 35.6556 26.9221 18.9071 |’
329892  11.4979 333910 26.9221 20.3610 14.3185
23.1646 8.1054  23.4507 189071 14.3185 10.0803
82.7260  46.3330 942048  73.4880 66.5812  44.0999
46.3330  22.3895 50.6798  40.1518  34.1939  23.0895

B = 942048 50.6798 105.9817 82.9702 73.9555 49.2920
73.4880 40.1518 82.9702 64.8924 582046  38.7950
66.5812  34.1939 73.9555 58.2046 50.8615 34.1143
44.0999  23.0895 49.2920 38.7950 34.1143  22.8048
0.4243 04735 0.7655 0.6476  0.4501 0.2564
0.4609 0.1527 0.1887 0.6790 0.4587 0.6135

% = 0.7702  0.3411 0.2875 0.6358 0.6619  0.5822
0.3225 0.6074 0.0911 0.9452 0.7703 0.5407 |’
0.7847 0.1917 0.5762 0.2089  0.3502  0.8699
0.4714 0.7384 0.6834 0.7093 0.6620 0.2648
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0.6074

0.1917
o | 07384
0.2428
09174
0.2691

0.0911
0.5762
0.6834
0.5466
0.4257
0.6444

0.9452
0.2089
0.7093
0.2362
0.1194
0.6073

0.7703
0.3502
0.6620
0.4162
0.8419
0.8329

0.5407
0.8699
0.2648
0.3181
0.1192
0.9398

0.5447
0.6473
0.5439
0.7210
0.5225
0.9937

It is easy to verity that the conditions (4.1) hold:
|IFa,Bill = 22693 x 10714,
IQQ!Fa, PATA, — Fy, Pl = 2.6989 x 10714,

By using Algorithm 1,
approximation solution X =

we can obtain the unique
X, + &X, of Problem II as

follows:

[ 14250 1.2127 14706 1.2908 1.2738 0.7912 ]

1.2127 1.1359 0.3465 0.8545 0.8276 0.8239

%, = 1.4706 0.3465 1.1821 1.3277 1.0543 1.1221
! 1.2908 0.8545 1.3277 1.4092 0.8873 1.2891 |’

1.2738 0.8276 1.0543 0.8873 0.7528 1.0798
| 0.7912 0.8239 1.1221 1.2891 1.0798 0.4615 |

[ 1.7453 0.5624 1.3277 1.7978 1.0231 0.9802

0.5624 0.4391 0.5530 0.6539 0.6188 0.3080

% = 1.3277 0.5530 1.1629 1.0739 09511 1.1491

1.7978 0.6539 1.0739 2.1033 0.5943 1.2673

1.0231 0.6188 0.9511 0.5943 0.7730 0.6016

| 0.9802 0.3080 1.1491 1.2673 0.6016 0.5225

The absolute errors are estimated by

AT X1A; — Byl = 2.9543 x 10712,
AT X2A, + AJ X A) + AT XAy — Byl = 1.2922 x 10712,

which implies that X is the unique approximation solution
of Problem II.

6. Conclusions

Solving dual matrix equations is often required in
kinematic analysis and sensor calibration. In this paper,
the solvability conditions and explicit solutions of Problem I
are obtained using the Moore-Penrose inverse (see Theorem
3.1).

and Kronecker product of matrices, we obtain the unique

Further, by applying the Moore-Penrose inverse

approximation solution of Problem II (see Theorem 4.1).
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