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Abstract: In this paper, semi-tensor product of real matrices is extended to reduced biquaternion matrices, and then some new
conclusions of the reduced biquaternion matrices under the vector operator are proposed using semi-tensor product of reduced

biquaternion matrices, so that the reduced biquaternion matrix equation
l∑

p=1
ApXBp = C can be transformed into a reduced biquaternion

linear equations, then the expression of the least squares solution of the equation is obtained using the LC-representation and Moore-
Penrose inverse. The necessary and sufficient conditions for the compatibility and the expression of general solutions of the equation
are obtained, and the minimal norm solutions are also given. Finally, our proposed method of solving the reduced biquaternion matrix
equation is applied to color image restoration.
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1. Introduction

In 1843, Irish mathematician Hamilton proposed the
concept of quaternion, which is one of his greatest
contributions to mathematical science. This discovery
expanded the complex number field to higher dimensional
space. Quaternion has been widely used in many fields, such
as color image processing, modern physics, geostatics and
so on [1–4]. However, processing some complex discrete-
time signals requires some complex number systems of
higher order. As a generalization of complex numbers,
quaternion is easy to be thought of. Because of its non-
commutative structure, quaternion is not suitable for digital
signal processing. To solve this problem, Schütte and
Wenzel introduced the reduced biquaternion and proposed
their applications for the implementation of a digital filter in

1990 [5]. Reduced biquaternion is a kind of commutative
quaternion. Using commutativity, reduced biquaternion
and reduced biquaternion matrix have great achievements
in many practical problems. For example, [6] applied
reduced biquaternion in digital signal and image processing;
[7] investigated two types of multistate Hopfield neural
networks based on reduced biquaternion; [8] defined the
reduced biquaternion canonical transform that can be used
in color image processing; [9] proposed an algorithm
for computing eigenvalues, eigenvectors, and singular
value decomposition of reduced biquaternion matrices, and
applied it in color image processing.

Matrix equation is an important branch of matrix theory,
and many engineering application problems are modeled as
matrix equation problems [10]. A linear matrix equation
plays an important role in stability analysis of linear
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dynamic systems and theoretical development of nonlinear
systems. For example, the Sylvester matrix equation is
widely used in control theory [11, 12], model reduction
[13], image processing [14] and so on. The Lyapunov
matrix equation is closely related to the H2 norm of discrete-
time linear systems [15], and plays an important role in
studying the stability and accurate observability of the
systems [16]. With the applications of reduced biquaternion
and reduced biquaternion matrix becoming more and more
extensive, many scholars are more and more interested in
solving reduced biquaternion matrix equations. [17] studied
the minimal norm least squares solution of the reduced
biquaternion matrix equation AX = B using e1 − e2

representation, and applied it to color image restoration; [18]
studied Hermitian solution of reduced biquaternion matrix
equation (AXB,CXD) = (E,G) by complex representation;
[19] proposed the real vector representation method of
reduced biquaternion using the semi-tensor product of real
matrices to solve the least squares (anti)-Hermitian solution

of reduced biquaternion matrix equation
k∑

i=1
AiXBi = C. In

this paper, we will also use semi-tensor product as a basic
tool to study matrix equation problems.

The semi-tensor product of real matrices was proposed
by Cheng [20], which is a generalization of ordinary matrix
multiplication and has quasi-commutativity under certain
conditions. In this paper, we extend the semi-tensor product
of real matrices to reduced biquaternion matrices, and
then some new conclusions of reduced biquaternion matrix
under vector operator are proposed by using semi-tensor
product of reduced biquaternion matrices. Using these
new conclusions, we study the reduced biquaternion matrix
equation

l∑
p=1

ApXBp = C. (1.1)

Some contributions are summarized as follows:

1. Semi-tensor product of real matrices is generalized to
reduced biquaternion matrices, and then some new results
of reduced biquaternion matrices under vector operator are
proposed, so that the reduced biquaternion matrix equation
is directly transformed into reduced biquaternion linear
equations.

2. Inspired by the H-representation method, we define

the GH-representation method to eliminate redundant
elements in reduced biquaternion matrices with special
structure, so as to improve operation efficiency. We
give the GH-representation of anti-Hermitian matrix,
Skew-Persymmetric matrix and Skew-Bisymmetric matrix,
respectively.

3. Using semi-tensor product of matrices and the
structure matrix of multiplication of reduced biquaternion,
a more widely defined complex representation matrix of
reduced biquaternion matrix is defined, which is called LC-
representation.

4. Compared with the real vector representation method
in [19], the method proposed in this paper is superior in time.
The method which we proposed is applied to color image
restoration.

The remainder of this paper is organized as follows:
Section 2 introduces the basic knowledge of reduced
biquaternion, reduced biquaternion matrix and semi-tensor
product of the reduced biquaternion matrices. Some
new results are stated and proved in Section 3, including
the vector operator of reduced biquaternion matrix, LC-
representation and GH-representation; Section 4 gives
the expression of the least squares solution of Problems
1, 2 and 3, the necessary and sufficient conditions for
the compatibility and the expression of general solutions
are obtained in corollary; In Section 5, corresponding
algorithms are given, the effectiveness of the algorithms
is verified by the corresponding numerical examples and a
comparison between the method in this paper and the existed
is made; Section 6 applies the proposed method to color
image restoration; Section 7 summarizes the content of this
paper.

Notations: R/C/QRB represent the set of real
number/complex number/reduced biquaternion,
respectively. Rn/Cn represent the set of all real/complex
column vectors with order n, respectively. Rm×n/Cm×n/Qm×n

RB

represent the set of all m × n real matrices/complex
matrices/reduced biquaternion matrices, respectively.
Ā/AT /AH/A† represent the conjugate/the transpose/the
conjugate transpose/Moore-Penrose inverse of matrix A,
respectively. Re(A) and Im(A) represent the real and
imaginary parts of matrix A, respectively. āi j represents the
conjugate of ai j. δin is the ith column of identity matrix In. ⊗
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represents the Kronecker product of matrices. ⋉/⋊ represent
left semi-tensor product of matrices and right semi-tensor
product of matrices, respectively. ∥·∥F represents the
Frobenius norm of a matrix or Eucliden norm of a vector.

2. Preliminaries

In this section, we give some necessary preliminaries,
which will be used throughout this paper.

2.1. Reduced biquaternion and reduced biquaternion

matrix

Definition 2.1. [6] The set of reduced biquaternion is

expressed as

QRB = {q = q11 + q12i + q13j + q14k, q11, q12, q13, q14 ∈ R},

where i, j,k satisfy

i2 = k2 = −1, j2 = 1, ij = ji = k, ik = ki = −j, jk = kj = i.

A reduced biquaternion q can be uniquely represented
as q = q1 + q2j, where q1 = q11 + q12i, q2 =

q13 + q14i ∈ C. The modulus of q is defined as |q| =√
| q11 |

2 + | q12 |
2 + | q13 |

2 + | q14 |
2.

Similarly, a reduced biquaternion matrix A = A11 +

A12i + A13j + A14k can also be uniquely represented as
A = A1 + A2j, where A1 = A11 + A12i, A2 = A13 +

A14i ∈ Cm×n. The norm of A is defined as ∥A∥(F) =√
∥A11∥

2
F + ∥A12∥

2
F + ∥A13∥

2
F + ∥A14∥

2
F .

2.2. Semi-tensor product of reduced biquaternion matrices

For semi-tensor product of real matrices, please refer to
[21, 22] for details. Now, we generalize semi-tensor product
of real matrices to reduced biquaternion matrices.

Definition 2.2. Suppose A ∈ Qm×n
RB , B ∈ Qp×q

RB , left semi-

tensor product of A and B is defined as

A ⋉ B = (A ⊗ I t
n
)(B ⊗ I t

p
),

and right semi-tensor product of A and B is defined as

A ⋊ B = (I t
n
⊗ A)(I t

p
⊗ B),

where t = lcm(n, p) is the least common multiple of n and p.

Remark 2.1. Left semi-tensor product of reduced

biquaternion matrices and right semi-tensor product of

reduced biquaternion matrices are collectively called semi-

tensor product of reduced biquaternion matrices. When n =

p, semi-tensor product of reduced biquaternion matrices is

ordinarily reduced biquaternion matrix multiplication.

Example 2.1. Let A = (1+i 2−j 3k i+j), B = (i k)T .

Then

A ⋉ B = A(B ⊗ I2)

= (1 + i 2 − j 3k i + j)


i 0
0 i
k 0
0 k


= (i − 4 3i − j − k)

= (1 + i 2 − j)i + (3k i + j)k,

A ⋊ B = A(I2 ⊗ B)

= (1 + i 2 − j 3k i + j)


i 0
k 0
0 i
0 k


= (−1 + 2k i − 4j) , (1 + i 2 − j)i + (3k i + j)k.

It can be seen from Example 2.1 that left semi-tensor
product of reduced biquaternion matrices satisfies the
multiplication of block matrices while right semi-tensor
product of reduced biquaternion matrices does not. This
is also the biggest difference between these two matrix
multiplications, which makes the application range of
left semi-tensor product of reduced biquaternion matrices
wider than that of right semi-tensor product of reduced
biquaternion matrices.

Since the left semi-tensor product of reduced biquaternion
matrices is used more widely, the semi-tensor product of
reduced biquaternion matrices mentioned below refers to left
semi-tensor product of reduced biquaternion matrices.

Definition 2.3. Suppose A = (ai j) ∈ Qm×n
RB , denote

Vc(A) = (a11, a21, · · · , am1, · · · , a1n, a2n, · · · , amn)T ∈ Qmn×1
RB ,

Vr(A) = (a11, a12, · · · , a1n, · · · , am1, am2, · · · , amn)T ∈ Qmn×1
RB .
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Theorem 2.1. Suppose A = (ai j) ∈ Qm×n
RB , B = (bi j) ∈ Qs×t

RB ,

and for any positive integer p, then

(1) W[m,n]Vr(A) = Vc(A), W[n,m]Vc(A) = Vr(A),
(2) W[s,p] ⋉ B ⋉W[p,t] ⋉ A = (Ip ⊗ B) ⋉ A,

where W[m,n] = (In ⊗ δ
1
m, In ⊗ δ

2
m, · · · , In ⊗ δ

m
m) is called swap

matrix.

The above equations are easily obtained by direct
calculation.

2.3. Problem formulation

First, several kinds of reduced biquaternion matrices with
symmetric structure are introduced.

Definition 2.4. Let A = (ai j) ∈ Qn×n
RB , denote AH = (ā ji) ∈

Qn×n
RB , A(H) = (ān− j+1,n−i+1) ∈ Qn×n

RB , and A(H) = VnAHVn. Vn

has the following form, Vn =

 1
1

. .
.

1

, in which the other

elements are zero.

(1) A ∈ Qn×n
RB is called anti-Hermitian matrix if A = −AH ,

denoted by AHn×n
RB .

(2) A ∈ Qn×n
RB is called Skew-Persymmetric matrix if A =

−A(H), denoted by APn×n
RB .

(3) A ∈ Qn×n
RB is called Skew-Bisymmetric matrix if ai j =

an−i+1,n− j+1 = −ā ji, denoted by ABn×n
RB .

For the above-mentioned special symmetric matrices, this
paper studies the following problems.
Problem 1 Suppose Ap ∈ Qm×n

RB , Bp ∈ Qn×q
RB (p =

1, · · · , l),C ∈ Qm×q
RB , and

S AH = {X | X ∈ AHn×n
RB , ∥

l∑
p=1

ApXBp −C∥(F) = min},

find out XAH ∈ S AH such that

∥XAH∥(F) = min
X∈S AH

∥X∥(F).

Problem 2 Suppose Ap ∈ Qm×n
RB , Bp ∈ Qn×q

RB (p =

1, · · · , l), C ∈ Qm×q
RB , and

S AP = {X | X ∈ APn×n
RB , ∥

l∑
p=1

ApXBp −C∥(F) = min},

find out XAP ∈ S AP such that

∥XAP∥(F) = min
X∈S AP

∥X∥(F).

Problem 3 Suppose Ap ∈ Qm×n
RB , Bp ∈ Qn×q

RB (p =

1, · · · , l), C ∈ Qm×q
RB , and

S AB = {X | X ∈ ABn×n
RB , ∥

l∑
p=1

ApXBp −C∥(F) = min},

find out XAB ∈ S AB such that

∥XAB∥(F) = min
X∈S AB

∥X∥(F).

3. Some new properties of vector operators,
LC-representation and GH-representation

3.1. The properties of vector operator of reduced

biquaternion matrix

Using the semi-tensor product of reduced biquaternion
matrices, we can obtain some new properties of vector
operators.

Theorem 3.1. Suppose A ∈ Qm×n
RB , X ∈ Qn×q

RB , Y ∈ Qp×m
RB ,

then

(1) Vc(AX) = A ⋊ Vc(X), Vr(AX) = A ⋉ Vr(X);
(2) Vc(YA) = AT ⋉ Vc(Y), Vr(YA) = AT ⋊ Vr(Y).

Proof. (1) For the equation Vr(AX) = A⋉Vr(X), let C = AX,
ai (i = 1, 2, · · · ,m) is the i-th row of A, xk (k = 1, 2, · · · , n)
is the k-th row of X, ci (i = 1, 2, · · · ,m) is the i-th row of C,
then the i-th block of A ⋉ Vr(X) is

ai ⋉ Vr(X) = ai ⋉


(x1)T

...

(xn)T

 =


n∑
k=1

aik xk1

...
n∑

k=1
aik xkp


= (ci)T ,

therefore Vr(AX) = A ⋉ Vr(X).

Applying Theorem 2.1, we have

Vc(AX) = W[m,q]Vr(AX) = W[m,q] ⋉ A ⋉ Vr(X)

= W[m,q] ⋉ A ⋉W[q,n] ⋉ Vc(X)

= (Iq ⊗ A)Vc(X) = A ⋊ Vc(X).

(2) By Vr(AX) = A ⋉ Vr(X), then

Vc(YA) = Vr(AT YT ) = AT ⋉ Vr(YT ) = AT ⋉ Vc(Y).
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Applying Theorem 2.1, we have

Vr(YA) = W[n,p]Vc(YA) = W[n,p] ⋉ AT ⋉ Vc(Y)

= W[n,p] ⋉ AT ⋉W[p,m] ⋉ Vr(Y)

= (Ip ⊗ AT )Vr(Y) = AT ⋊ Vr(Y).

Yuan et al. [18] pointed out that Vc(ABC) = (CT ⊗A)Vc(B)
cannot hold in the reduced biquaternion algebra. However,
the new conclusion of the reduced biquaternion matrix under
the vector operator obtained using the semi-tensor product of
reduced biquaternion matrices can prove that the conclusion
in [18] is wrong.

Proposition 3.1. Let A ∈ Qm×n
RB , B ∈ Qn×n

RB , C ∈ Qn×p
RB , then

Vc(ABC) = (CT ⊗ A)Vc(B).

Proof: Using Theorem 3.1, then

Vc(ABC) = CT ⋉ Vc(AB) = CT ⋉ (A ⋊ Vc(B))

= (CT ⊗ Im)(In ⊗ A)Vc(B)

= (CT ⊗ A)Vc(B).

3.2. LC-representation of reduced biquaternion matrix

Using semi-tensor product of matrices, we can find the
isomorphism between the set of m × n reduced biquaternion
matrices and the corresponding set of 2m × 2n complex
matrices, and give the computable algebraic expression of
this isomorphism.

Definition 3.1. [22] Let Wi(i = 0, 1, · · · , n) be vector

spaces. The mapping F :
n∏

i=1

Wi → W0 is called a

multilinear mapping, if for any 1 ≤ i ≤ n, α, β ∈ R,

F(x1, · · · , αxi + βyi, · · · , xn) = αF(x1, · · · , xi, · · · , xn)

+βF(x1, · · · , yi, · · · , xn),

in which xi, yi ∈ Wi, (1 ≤ i ≤ n). If dim(Wi) = ki, (i =
0, 1, · · · , n), and (δ1ki

, δ2ki
, · · · , δki

ki
) is the basis of Wi. Denote

F(δ j1
k1
, δ

j2
k2
, · · · , δ

jn
kn

) =
k0∑

s=1

c j1 j2··· jn
s δs

k0
,

then

{c j1 j2··· jn
s | jt = 1, · · · , kt, t = 1, · · · , n; s = 1, · · · , k0},

which is called structure constant set of F. Arranging these

structure constants in the following form

MF =


c11···1

1 · · · c11···kn
1 · · · ck1k2···kn

1

c11···1
2 · · · c11···kn

2 · · · ck1k2···kn
2

...
...

...

c11···1
k0

· · · c11···kn
k0

· · · ck1k2···kn
k0


,

MF is called structure matrix of F.

Let 1 ∼ δ12, j ∼ δ
2
2 and define symbol × to represent

the reduced biquaternion multiplication. The multiplication
rule of the basis satisfies Definition 2.1. According to
Definition 3.1, we can obtain the structure matrix of reduced
biquaternion multiplication, denoted by M as

M =

1 0 0 1
0 1 1 0

 .
Example 3.1. Suppose a, b ∈ QRB, it can also be representd

as a = a1 + a2j ∼
a1

a2

 , b = b1 + b2j ∼
b1

b2

, where a1 =

a11+a12i, a2 = a21+a22i, b1 = b11+b12i, b2 = b21+b22i ∈ C.

Consider the multiplication a × b on QRB, we can obtain

a × b = (a1 + a2j)(b1 + b2j) = (a1b1 + a2b2) + (a1b2 + a2b1)j

∼

a1b1 + a2b2

a1b2 + a2b1

 = M ⋉

a1

a2

 ⋉ b1

b2

 .
Suppose A = A1 + A2j, we denote

←−
A =

A1

A2

 , Ė2 =

±1 0
0 ±1

 .
Definition 3.2. Let A = A1 + A2j ∈ Qm×n

RB , where A1, A2 ∈

Cm×n, define a mapping from Qm×n
RB to subspace of C2m×2n

χ(A) = M ⋉ (I2 ⊗ (Ė2 ⋉
←−
A)),

is called the complex matrix representation of reduced

biquaternion matrix, if for A ∈ Qm×n
RB , B ∈ Qn×p

RB , χ satisfies

(1) χ(AB) = χ(A)χ(B),
(2) χc(AB) = χ(A)χc(B),

where χc(A) = χ(A) ⋉ δ12, then χ is called LC-representation

of reduced biquaternion matrix.

Next, using the semi-tensor product of reduced
biquaternion matrices, we give the algebraic form of
LC-representation of reduced biquaternion matrix.
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Proposition 3.2. Let A ∈ Qm×n
RB , B ∈ Qn×p

RB , then χ is LC-

representation of reduced biquaternion matrix if and only if

(1) (M ⊗ Im)(I2 ⊗ (Ė2 ⋉
←−−
AB))

= (M ⊗ Im)(M ⊗ (Ė2 ⋉
←−
A))(I2 ⊗ (Ė2 ⋉

←−
B)),

(2) (M ⊗ Im)(δ12 ⊗ (Ė2 ⋉
←−−
AB))

= (M ⊗ Im)(M ⊗ (Ė2 ⋉
←−
A))(δ12 ⊗ (Ė2 ⋉

←−
B)).

Proof. The proof is straightforward. For instance, we can
prove each equation in Proposition 3.2 is equivalent to each
equation in Dedinition 3.2. Consider the first one. Using the
LC-representation of reduced biquaternion matrix, we know
χ(AB) = χ(A)χ(B) holds if and only if

M⋉(I2⊗(Ė2⋉
←−−
AB)) = M⋉(I2⊗(Ė2⋉

←−
A))⋉M⋉(I2⊗(Ė2⋉

←−
B)),

which is equivalent to

(M⊗Im)(I2⊗(Ė2⋉
←−−
AB)) = (M⊗Im)(M⊗(Ė2⋉

←−
A))(I2⊗(Ė2⋉

←−
B)).

Remark 3.1. The LC-representation of reduced

biquaternion matrix is not unique in sense that the

structure matrix may be different due to the different

vectorization choices of 1 and j or the choices of Ė2.

Let us take a simple example to illustrate Remark 3.1.

Example 3.2. Fix M =

1 0 0 1
0 1 1 0

, if we select Ė2 =1 0
0 1

, we can obtain

χ1(A) = M ⋉ (I2 ⊗ (Ė2 ⋉
←−
A)) =

A1 A2

A2 A1

 ,
if we select Ė2 =

1 0
0 −1

, we can obtain

χ2(A) = M ⋉ (I2 ⊗ (Ė2 ⋉
←−
A)) =

 A1 −A2

−A2 A1

 .
Test the equations in Proposition 3.2 for χ1(A) and χ2(A),

respectively, it can be found that χ1 and χ2 are all LC-
representation.

Remark 3.2. For convenience, χ used below is χ1.

3.3. GH-representation of reduced biquaternion matrix

with special structures

The GH-representation method can represent a matrix
with a special structure by its independent elements. This
method is a generalization of the H-representation method
proposed by Zhang [23].

Definition 3.3. [23] Let L ⊂ Rn×n be a p-dimensional matrix

subspace, where (p ≤ n2), e1, e2, · · · , ep are its basis, and

define H = [Vc(e1), Vc(e2), · · · ,Vc(ep)], ∀X ∈ L, there exists

unique l1, l2, · · · , lp ∈ R, such that X =
p∑

i=1
liei. There is a

mapping φ: X ∈ L 7→ Vc(X), and

φ(X) = Vc(X) = HX̃

where X̃ = [l1, l2, · · · , lp]T ∈ Rp, HX̃ is called the H-

representation of φ(X), H is called the H-representation

matrix of φ(X).
The H-representation method can transform a matrix-

valued equation into a standard vector-valued equation with
independent coordinates. [23] used the H-representation
method to research the properties of a class of generalized
Lyapunov equations, observability of linear stochastic
time-varying systems, stochastic stability and stabilization.
Reduced biquaternion matrix has one real part and three
imaginary parts. The real matrix of different parts may
not have the same structural characteristics, so the H-
representation method cannot be directly applied. We extend
it to the GH-representation method suitable for reduced
biquaternion matrix.

Definition 3.4. Consider a reduced biquaternion matrices

subspace L ⊂ Qn×n
RB . For each X = X11 +X12i+X13j+X14k ∈

L, let
−→
X = [X11 X12 X13 X14], if we express

ϕ(X) = Vc(
−→
X ) = GH

¯̄X,

where ¯̄X =


X̃11

X̃12

X̃13

X̃14

, then GH
¯̄X is called theGH-representation

of ϕ(X), and GH is called the GH-representation matrix of

ϕ(X), where GH =


HX1 0 0 0
0 HX2 0 0
0 0 HX3 0
0 0 0 HX4

, HXi represents
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theH-representation matrix of real matrix Xi, i = 1, 2, 3, 4.
It is easy to see that the key to construct GH-

representation matrix is to find the H-representation matrix
of real matrix corresponding to four parts of reduced
biquaternion matrix. Next, we give the GH-representation
matrix of anti-Hermitian matrix, Skew-Persymmetric matrix
and Skew-Bisymmetric matrix, respectively.

First we consider anti-Hermitian matrix.
When X = X11 + X12i + X13j + X14k ∈ AHn×n

RB , X11 is anti-
symmetric matrix and X12, X13, X14 are symmetric matrices.
Denote S n×n

R be the set of symmetric matrices and AS n×n
R be

the set of anti-symmetric matrices. For L = S n×n
R , we select

a set of basis

{E11, · · · , En1, E22, · · · , En2, · · · , Enn},

where Ei j = (ei j)n×n, ei j = e ji = 1, the other elements are
zeros.

Similarly, for L = AS n×n
R , we select a set of basis

{F21, , · · · , Fn1, F32, · · · , Fn2, · · · , Fn,n−1},

where Fi j = ( fi j)n×n, fi j = − f ji = 1, the other elements are
zeros.

After the basis is determined above, for L = S n×n
R /AS n×n

R ,
we have

X̃S = (x11, · · · , xn1, x22, · · · , xn2, · · · , xnn)T ,

X̃AS = (x21, · · · , xn1, x32, · · · , xn2, · · · , xn,n−1)T .

HS /HAS is used to represent theH-representation matrix
of L = S n×n

R /AS n×n
R , respectively.

Theorem 3.2. For X = X11 + X12i + X13j + X14k ∈ AHn×n
RB ,

the GH-representation of X is expressed as

ϕ(X) = Vc(
−→
X ) =


HAS 0 0 0

0 HS 0 0
0 0 HS 0
0 0 0 HS


¯̄X ≜ VAH

¯̄X.

Similarly, we use the above idea to consider the other two
classes of special matrices.

Pn×n
R represents the set of real matrices whose elements

satisfy ai j = an− j+1,n−i+1. APn×n
R represents the set of

real matrices whose elements satisfy ai j = −an− j+1,n−i+1.

When X = X11 + X12i + X13j + X14k ∈ APn×n
RB , X11 ∈

APn×n
R , X12, X13, X14 ∈ Pn×n

R . For L = Pn×n
R , we can select

a set of basis

{M11, · · · , Mn1, M12, · · · , Mn−1,2, · · · ,M1n},

where Mi j = (mi j)n×n, mi j = mn+1− j,n+1−i = 1, the other
elements are zeros.

For L = APn×n
R , we take a set of basis

{Z11, · · · , Zn−1,1, Z12, · · · , Zn−2,2, · · · , Z1,n−1},

where Zi j = (zi j)n×n, zi j = −zn+1− j,n+1−i = 1, the other
elements are zeros.

After the basis is determined above, for L = Pn×n
R /APn×n

R ,
we have

X̃P = (x11, · · · , xn1, x12, · · · , xn−1,2, · · · , x1n)T ,

X̃AP = (x11, · · · , xn−1,1, x12, · · · , xn−2,2, · · · , x1,n−1)T .

In the same way, we denote the H-representation matrix
corresponding to L = Pn×n

R by HP and HAP refers to H-
representation matrix corresponding to L = APn×n

R .

Theorem 3.3. For X = X11 + X12i + X13j + X14k ∈ APn×n
RB ,

the GH-representation of X is expressed as

ϕ(X) = Vc(
−→
X ) =


HAP 0 0 0

0 HP 0 0
0 0 HP 0
0 0 0 HP


¯̄X ≜ VAP

¯̄X.

Bn×n
R represents the set of real matrices whose elements

satisfy ai j = an−i+1,n− j+1 = a ji. ABn×n
R represents the set

of real matrices whose elements satisfy ai j = an−i+1,n− j+1 =

−a ji. When X = X11 + X12i + X13j + X14k ∈ ABn×n
RB , X11 ∈

ABn×n
R , X12, X13, X14 ∈ Bn×n

R , for L = Bn×n
R , when n is even,

we can select a set of basis

{S 11, · · · , S n1, S 22, · · · , S n−1,2, · · · , S n
2 ,

n
2
, S n

2+1, n2 },

when n is odd, we can select a set of basis

{S 11, · · · , S n1, S 22, · · · , S n−1,2, · · · , S n+1
2 ,

n+1
2
},

where S i j = (si j)n×n, si j = sn−i+1,n− j+1 = s ji = 1, the other
elements are zeros. After the basis is determined above,
when n is even, we have

X̃B = (x11, · · · , xn1, x22, · · · , xn−1,2, · · · , x n
2 ,

n
2
, x n

2+1, n2 )T ,
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when n is odd,

X̃B = (x11, · · · , xn1, x22, · · · , xn−1,2, · · · , x n+1
2 ,

n+1
2

)T .

For L = ABn×n
R , when n is even, we can select a set of

basis

{T21, · · · ,Tn−1,1, · · · ,T n
2 ,

n
2−1, T n

2+1, n2−1},

when n is odd, we can select a set of basis

{T21, · · · ,Tn−1,1, T32, · · · ,Tn−2,2, · · · ,T n+1
2 ,

n−1
2
},

where Ti j = (ti j)n×n, ti j = tn−i+1,n− j+1 = −t ji = 1, the other
elements are zeros. After the basis is determined above,
when n is even, we have

X̃AB = (x21, · · · , xn−1,1, · · · , x n
2 ,

n
2−1, x n

2+1, n2−1)T ,

when n is odd,

X̃AB = (x21, · · · , xn−1,1, x32, · · · , xn−2,2, · · · , x n+1
2 ,

n−1
2

)T .

When n is even, we denote the H-representation matrix
corresponding to L = Bn×n

R by HB1 , and denote the H-
representation matrix corresponding to L = ABn×n

R by HAB1 .

When n is odd, we denote the H-representation matrix
corresponding to L = Bn×n

R by HB2 , and denote the H-
representation matrix corresponding to L = ABn×n

R by HAB2 .

Theorem 3.4. For X = X11 + X12i + X13j + X14k ∈ ABn×n
RB ,

when n is even, the GH-representation of X is expressed as

ϕ(X) = Vc(
−→
X ) =


HAB1 0 0 0

0 HB1 0 0
0 0 HB1 0
0 0 0 HB1


¯̄X ≜ VABe

¯̄X,

when n is odd, the GH-representation of X is expressed as

ϕ(X) = Vc(
−→
X ) =


HAB2 0 0 0

0 HB2 0 0
0 0 HB2 0
0 0 0 HB2


¯̄X ≜ VABo

¯̄X.

4. Algebra solutions of problem 1,2,3

Using the semi-tensor product of reduced biquaternion
matrices and LC-representation method, we can transform
the reduced biquaternion matrix equation into complex
linear equations, and then, according to the special structure
of the solution, the redundant elements are eliminated
using the GH-representation method, so as to simplify
the operation. Finally, we can use the following existing
classical results of matrix equations to solve the equation.

Lemma 4.1. [24] The least squares solutions of the matrix

equation Ax = b with A ∈ Rm×n and b ∈ Rm can be

represented as

x = A†b + (I − A†A)y,

where y ∈ Rn is an arbitrary vector. The minimal norm least

squares solution of the matrix equation Ax = b is A†b.

Lemma 4.2. [24] The matrix equation Ax = b with A ∈

Rm×n and b ∈ Rm has a solution x ∈ Rn if and only if

AA†b = b.

In that case it has the general solution

x = A†b + (I − A†A)y,

where y ∈ Rn is an arbitrary vector. The minimal norm

solution of the matrix equation Ax = b is A†b.

For the convenience of narration, we introduce the
following notation:

Let

X = X11 + X12i + X13j + X14k = X1 + X2j,

−→
X = [X11 X12 X13 X14], γ = χ(BT

p ⊗ Ap),

H̆ = UVAH , P̆ = UVAP, B̆e = UVABe, B̆0 = UVABo,

ϑ =

In2 i ∗ In2 0 0
0 0 In2 i ∗ In2

 , U =


l∑

p=1
Re(γϑ)

l∑
p=1

Im(γϑ)

 ,

W =

Re(χc(Vc(C)))
Im(χc(Vc(C)))

 .
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Theorem 4.1. Suppose Ap ∈ Qm×n
RB , Bp ∈ Qn×q

RB (p =

1, · · · , l), C ∈ Qm×q
RB . Then the set S AH of Problem 1 can

be represented as

S AH = {X ∈ AHn×n
RB | Vc(

−→
X ) = VAH H̆†W+VAH(I2n2+n−H̆†H̆)y},

(4.1)
where ∀y ∈ R2n2+n, and the minimal norm least squares anti-

Hermitian solution XAH satisfies

Vc(
−−−→
XAH) = VAH H̆†W. (4.2)

Proof.

∥

l∑
p=1

ApXBp −C∥(F) = ∥

l∑
p=1

Vc(ApXBp) − Vc(C)∥(F)

= ∥

l∑
p=1

(BT
p ⊗ Ap)Vc(X) − Vc(C)∥(F)

= ∥

l∑
p=1

χc((BT
p ⊗ Ap)Vc(X)) − χc(Vc(C))∥F

= ∥

l∑
p=1

χ(BT
p ⊗ Ap)χc(Vc(X)) − χc(Vc(C))∥F

= ∥

l∑
p=1

χ(BT
p ⊗ Ap)

In2 i ∗ In2 0 0
0 0 In2 i ∗ In2



Vc(X11)
Vc(X12)
Vc(X13)
Vc(X14)


− χc(Vc(C))∥F

= ∥

l∑
p=1

γϑVc(
−→
X ) − χc(Vc(C))∥F

= ∥

l∑
p=1

(Re(γϑ) + Im(γϑ)i)Vc(
−→
X ) − (Re(χc(Vc(C)))

+ Im(χc(Vc(C)))i)∥F

= ∥


l∑

p=1
Re(γϑ)Vc(

−→
X ) − Re(χc(Vc(C)))

l∑
p=1

Im(γϑ)Vc(
−→
X ) − Im(χc(Vc(C)))

 ∥F

= ∥


l∑

p=1
Re(γϑ)

l∑
p=1

Im(γϑ)

Vc(
−→
X ) −

Re(χc(Vc(C)))
Im(χc(Vc(C)))

 ∥F .

From the GH-representatian matrix of anti-Hermitian

matrix, we can obtain

Vc(
−→
X ) =


Vc(X11)
Vc(X12)
Vc(X13)
Vc(X14)

 =

HAS 0 0 0

0 HS 0 0
0 0 HS 0
0 0 0 HS


¯̄X ≜ VAH

¯̄X.

Then

∥


l∑

p=1
Re(γϑ)

l∑
p=1

Im(γϑ)

Vc(
−→
X ) −

Re(χc(Vc(C)))
Im(χc(Vc(C)))

 ∥F = ∥UVAH
¯̄X −W∥F

= ∥H̆ ¯̄X −W∥F ,

thus

∥

l∑
p=1

ApXBp −C∥(F) = min

if and only if
∥H̆ ¯̄X −W∥F = min.

For real linear equations

H̆ ¯̄X = W,

according to Lemma 4.1, its least squares solution is

¯̄X = H̆†W + (I2n2+n − H̆†H̆)y, (4.3)

where ∀y ∈ R2n2+n, (4.1) can be obtained by multiplying both
sides of (4.3) by VAH . Notice

min
X∈AHn×n

RB

∥X∥(F) = min
Vc(
−→
X )∈R4n2

∥Vc(
−→
X )∥F ,

then, we can obtain the minimal norm least squares anti-
Hermitian solution XAH of reduced biquaternion matrix
equation (1.1) satisfies

Vc(
−−−→
XAH) = VAH H̆†W. (4.4)

From the above proof process, we can obtain the
compatible condition for the anti-Hermitian solution of
reduced biquaternion matrix equation (1.1).

Corollary 4.1. Suppose Ap ∈ Qm×n
RB , Bp ∈ Qn×q

RB (p =

1, · · · , l), C ∈ Qm×q
RB , H̆ is in the form of Theorem 4.1. Then,

equation (1.1) has a solution X ∈ AHn×n
RB if and only if

(H̆H̆† − I4mq)W = 0. (4.5)
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In this case, the general solution of equation (1.1) can be

expressed as

Vc(
−→
X ) = VAH H̆†W + VAH(I2n2+n − H̆†H̆)y, ∀y ∈ R2n2+n,

and the minimal norm anti-Hermitian solution ẌAH satisfies

Vc(
−−−→
ẌAH) = VAH H̆†W. (4.6)

Proof. Since

∥

l∑
p=1

ApXBp −C∥(F) = ∥H̆ ¯̄X −W∥F = ∥H̆H̆†H̆ ¯̄X −W∥F

= ∥H̆H̆†W −W∥F = ∥(H̆H̆† − I4mq)W∥F ,

thus

∥

l∑
p=1

ApXBp −C∥(F) = 0⇐⇒ ∥(H̆H̆† − I4mq)W∥F = 0

⇐⇒ (H̆H̆† − I4mq)W = 0.

thus (4.5) can be obtained. Moreover, using Lemma 4.2,
we can obtain the expression of general solutions and the
minimal norm solution.

Through the proof of Theorem 4.1, we can see that
the main difference between Problem 1, 2 and 3 is that
the GH-representation matrix of the solution. Therefore,
for Problem 2 and 3, we can easily get the following
conclusions:

Theorem 4.2. Suppose Ap ∈ Qm×n
RB , Bp ∈ Qn×q

RB (p =

1, · · · , l), C ∈ Qm×q
RB . Then the set S AP of Problem 2 can

be represented as

S AP = {X ∈ APn×n
RB | Vc(

−→
X ) = VAPP̆†W+VAP(I2n2+n− P̆†P̆)y},

(4.7)
where ∀y ∈ R2n2+n, and the minimal norm least squares

Skew-Persymmetric solution XAP satisfies

Vc(
−−→
XAP) = VAPP̆†W. (4.8)

Corollary 4.2. Suppose Ap ∈ Qm×n
RB , Bp ∈ Qn×q

RB (p =

1, · · · , l), C ∈ Qm×q
RB , P̆ is in the form of Theorem 4.2. Then,

equation (1.1) has a solution X ∈ APn×n
RB if and only if

(P̆P̆† − I4mq)W = 0. (4.9)

In this case, the general solution of equation (1.1) can be

expressed as

Vc(
−→
X ) = VAPP̆†W + VAP(I2n2+n − P̆†P̆)y, ∀y ∈ R2n2+n,

and the minimal norm Skew-Persymmetric solution ẌAP

satisfies

Vc(
−−→
ẌAP) = VAPP̆†W. (4.10)

Theorem 4.3. Suppose Ap ∈ Qm×n
RB , Bp ∈ Qn×q

RB (p =

1, · · · , l), C ∈ Qm×q
RB . When n is even, then the set S AB of

Problem 3 can be represented as

S AB = {X ∈ ABn×n
RB | Vc(

−→
X ) = VABeB̆e

†
W+VABe(In2+n−B̆e

†
B̆e)y},

(4.11)
where ∀y ∈ Rn2+n, and the minimal norm least squares Skew-

Bisymmetric solution XAB satisfies

Vc(
−−→
XAB) = VABeB̆e

†
W. (4.12)

When n is odd, the set S AB of Problem 3 can be

represented as

S AB = {X ∈ ABn×n
RB | Vc(

−→
X ) = VABoB̆o

†
W+VABo(In2+n+1−B̆o

†
B̆o)y},

(4.13)
where ∀y ∈ Rn2+n+1, and the minimal norm least squares

Skew-Bisymmetric solution XAB satisfies

Vc(
−−→
XAB) = VABoB̆o

†
W. (4.14)

Corollary 4.3. Suppose Ap ∈ Qm×n
RB , Bp ∈ Qn×q

RB (p =

1, · · · , l), C ∈ Qm×q
RB . When n is even, B̆e is in the form of

Theorem 4.3, then equation (1.1) has a solution X ∈ ABn×n
RB

if and only if

(B̆eB̆e
†
− I4mq)W = 0. (4.15)

In this case, the general solution of equation (1.1) can be

expressed as

Vc(
−→
X ) = VABeB̆e

†
W + VABe(In2+n − B̆e

†
B̆e)y, ∀y ∈ Rn2+n,

and the minimal norm Skew-Bisymmetric solution ẌAB

satisfies

Vc(
−−→
ẌAB) = VABeB̆e

†
W. (4.16)

When n is odd, B̆o is in the form of Theorem 4.3, then

equation (1.1) has a solution X ∈ ABn×n
RB if and only if

(B̆oB̆o
†
− I4mq)W = 0. (4.17)
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In this case, the general solution of equation (1.1) can be

expressed as

Vc(
−→
X ) = VABoB̆o

†
W+VABo(In2+n+1− B̆o

†
B̆o)y, ∀y ∈ Rn2+n+1,

and the minimal norm Skew-Bisymmetric solution ẌAB

satisfies

Vc(
−−→
ẌAB) = VABoB̆o

†
W. (4.18)

5. Algorithm and numerical example

In this section, we give an algorithm for calculating
the minimal norm least squares anti-Hermitian/Skew-
Persymmetric/Skew-Bisymmetric solution of reduced
biquaternion matrix equation (1.1), and verify the
effectiveness of the method proposed in this paper
through numerical examples. Then, we compare the posed
method with the real vector representation method in [19]
to illustrate the improvement of our algorithm.

Algorithm 1 Calculate the minimal norm least squares
anti-Hermitian/Skew-Persymmetric/Skew-Bisymmetric
solution of reduced biquaternion matrix equation (1.1).

Require: Ap, Bp,C ∈ Qm×n
RB ; HS /HAS ; HP/HAP; HB1/HAB1 ,

HB2/HAB2 ;ϑ;
Ensure: Vc(

−−−→
XAH)/Vc(

−−→
XAP)/Vc(

−−→
XAB);

1: Fix the form of χ satisfying the Definition 3.2 and
calculate the matrix U;

2: if X ∈ AHn×n
RB , then

3: Calculate the VAH of GH-representation matrix of anti-
Hermitian matrix, then calculate H̆;

4: Calculate the minimal norm least squares anti-
Hermitian solution according to (4.2);

5: else if X ∈ APn×n
RB , then

6: Calculate the VAP of GH-representation matrix of
Skew-Persymmetric matrix, then calculate P̆;

7: Calculate the minimal norm least squares Skew-
Persymmetric solution according to (4.8);

8: else if X ∈ ABn×n
RB , then

9: Calculate the VABe/VABo of GH-representation matrix
of Skew-Bisymmetric matrix, then calculate B̆e/B̆o;

10: Calculate the minimal norm least squares Skew-
Bisymmetric solution according to (4.12)/ (4.14);

11: end if

Example 5.1. Let m = n = p = 5K,K = 1 : 10, for fixed

A ∈ Qm×n
RB , B ∈ Qn×p

RB , X∗ ∈ AHn×n
RB /APn×n

RB /ABn×n
RB , compute

C = AX∗B.

For AXB = C with unknown X, by Algorithm 1, we

can obtain the numerical solution X. Denote the error

between calculated solution X and the exact solution X∗ as

ε = log10∥X − X∗∥(F) and ε is recorded in Figure 1.

Figure 1. Error of Problem 1, 2,3.

It can be seen from the error analysis charts that the
method proposed in this paper is effective.

Next, we will make a comparison between the method in
this paper and the real vector representation method [19].

Example 5.2. Let m = n = p = K,K = 1 : 14, for fixed

A ∈ Qm×n
RB , B ∈ Qn×p

RB , X∗ ∈ AHn×n
RB , compute

C = AX∗B.

For AXB = C with unknown X, numerical solution X is

obtained by using the method in this paper and the method

in [19], respectively. Note down the CPU times of two

methods. Detailed results are shown in Figure 2.
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Figure 2. Time comparison of anti-Hermitian
solution calculated by two methods.

From Figure 2, we observe that the operation time of our
method is significantly better than that of the method in [19].

6. Application to color image restoration

With the increasing role of color images in daily life,
color image restoration has become a hot research field. In
recent years, reduced biquaternion has been widely used
in color image processing because of its good structural
characteristics [6, 9, 17, 25].

In 2004, Pei [6] applied the reducd biquaternion model to
image processing. A reduced biquaternion consists of one
real part and three imaginary parts, however each pixel of
a color image consists of three basic pixels: red, green and
blue. Therefore, image processing is usually modeled as a
pure imaginary reduce biquaternion, that is

q(x, y) = r(x, y)i + g(x, y)j + b(x, y)k,

where r(x, y), g(x, y) and b(x, y) are the red, green and blue
values of the pixel (x, y), respectively. Thus a color image
with m rows and n columns can be represented by a pure
imaginary reduced biquaternion matrix

Q = (qi j)m×n = Ri +Gj + Bk, qi j ∈ QRB.

The field of image restoration is required to retrieve the
information from degraded images. Image restoration is
to remove or reduce the degradation caused by noise, out
of focus blurring and other factors in the process of image

acquisition. A linear discrete model of image restoration is
the matrix-vector equation

g = Km + n,

where g is an observed image, m is the true or ideal image,
n is additive noise, and K is a matrix that represents the
blurring phenomena. Given g, K, and in some cases,
statistical information about the noise, the methods used in
image restoration aim to construct an approximation to m.
However, in most cases, the noise n is unknown. We wish to
find m′ such that

∥n∥F = ∥Km′ − g∥F = min∥Km − g∥F .

The problem described by the above model is the problem
of the minimal norm least squares solution of reduced

biquaternion matrix equation
l∑

p=1
ApXBp = C, when p = 1

and B is the identity matrix.

Algorithm 2 Calculate the minimal norm least squares pure
imaginary anti-Hermitian/ Skew-Persymmetric/
Skew-Bisymmetric solution of reduced biquaternion matrix
equation AX = C.

Require: A ∈ Qm×n
RB ,C ∈ Qn×q

RB ; HS ; HP; HB1/HB2 ;ϑ′ =i ∗ In2 0 0
0 In2 i ∗ In2

;
Ensure: Vc(

−−→
Xah)/Vc(

−−→
Xap)/Vc(

−−→
Xab);

1: Fix the form of χ satisfying the Definition 3.2;

2: Calculate W, Â = In ⊗ A, u′ =

Re(χ(Â)ϑ′)
Im(χ(Â)ϑ′)

 ;

3: if X is pure imaginary anti-Hermitian matrix, then
4: Calculate VAH′ = blkdiag(HS ,HS ,HS ), and then

calculate h̆′ = u′VAH′ ;
5: Calculate the minimal norm least squares pure

imaginary anti-Hermitian solution Xah satisfies

Vc(
−−→
Xah) = VAH′ h̆′

†
W;

6: else if X is pure imaginary Skew-Persymmetric matrix,
then

7: Calculate VAP′ = blkdiag(HP,HP,HP), and then
calculate p̆′ = u′VAP′ ;

8: Calculate the minimal norm least squares pure
imaginary Skew-Persymmetric solution Xap satisfies

Vc(
−−→
Xap) = VAP′ p̆′

†W;
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9: else if X is pure imaginary Skew-Bisymmetric matrix,
then

10: Calculate the VABe′ = blkdiag(HB1 ,HB1 ,HB1 )/VABo′ =

blkdiag(HB2 ,HB2 ,HB2 ), and then calculate ˘be′ =

u′VABe′ / ˘bo′ = u′VABo′ ;
11: Calculate the minimal norm least squares pure

imaginary Skew-Bisymmetric solution Xbq satisfies

Vc(
−−→
Xab) = VABe′

˘be′
†
W/VABo′

˘bo′
†
W;

12: end if

Example 6.1. Given three 64 × 64 ideal color images.

m = (mr,mg,mb) is the image matrix, m can be represented

as the pure imaginary matrix m = mri + mgj + mbk.

By using LEN = 15; T HET A = 30; PS F =

f special(′motion′, LEN,T HET A) disturb the image mr,

and get the disturb image matrix gr. Obviously, K = grm
†
r .

By using the matrix K, we can get the disturb image g =

(gr, gg, gb) = Km = K(mr,mg,mb). Through the “reshape”

command of MATLAB, we can get the corresponding color

restored image m′ = (m′r,m
′
g,m

′
b). The error of each channel

is represented by ϵr, ϵg, ϵb, respectively, and the results are

shown in Table 1.

(a) Original
image

(b) Disturbed
image

(c) Restored
image

Figure 3. 64 × 64 Symmetric color image
restoration.

(a) Original
image

(b) Disturbed
image

(c) Restored
image

Figure 4. 64 × 64 Persymmetric color image
restoration.

(a) Original
image

(b) Disturbed
image

(c) Restored
image

Figure 5. 64 × 64 Bisymmetric color image
restoration.

Table 1. The error between computed m′r,m
′
g,m

′
b

and original mr,mg,mb.

ϵr ϵg ϵb

Figure 6.1 3.5112e−10 5.4348e−11 5.0430e−11

Figure 6.2 6.7334e−11 1.4514e−11 1.9030e−11

Figure 6.3 7.4626e−12 1.1468e−11 1.1538e−11

7. Conclusions

In this paper, we use the semi-tensor product of
reduced biquaternion matrices to obtain the algebraic
expression of the isomorphism between the set of reduced
biquaternion matrices and the corresponding set of complex
representation matrices, and obtain some new conclusions
of reduced biquaternion matrix under the vector operator, so
that the problem of the reduced biquaternion matrix equation
can be equivalently transformed into the problem of the
reduced biquaternion linear equations, further transformed
into real linear equations. Through the GH-representation
method we proposed, the number of variables in the real
linear equations can be reduced, and the operation can be
simplified. Finally, the proposed method is applied to color
image restoration.
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