Research article

A novel numerical approach for solving delay differential equations arising in population dynamics

  • Received: 16 January 2023 Revised: 16 January 2023 Accepted: 17 June 2023 Published: 07 September 2023
  • In this paper, the initial-value problem for a class of first order delay differential equations, which emerges as a model for population dynamics, is considered. To solve this problem numerically, using the finite difference method including interpolating quadrature rules with the basis functions, we construct a fitted difference scheme on a uniform mesh. Although this scheme has the same rate of convergence, it has more efficiency and accuracy compared to the classical Euler scheme. The different models, Nicolson's blowfly and Mackey–Glass models, in population dynamics are solved by using the proposed method and the classical Euler method. The numerical results obtained from here show that the proposed method is reliable, efficient, and accurate.

    Citation: Tugba Obut, Erkan Cimen, Musa Cakir. A novel numerical approach for solving delay differential equations arising in population dynamics[J]. Mathematical Modelling and Control, 2023, 3(3): 233-243. doi: 10.3934/mmc.2023020

    Related Papers:

  • In this paper, the initial-value problem for a class of first order delay differential equations, which emerges as a model for population dynamics, is considered. To solve this problem numerically, using the finite difference method including interpolating quadrature rules with the basis functions, we construct a fitted difference scheme on a uniform mesh. Although this scheme has the same rate of convergence, it has more efficiency and accuracy compared to the classical Euler scheme. The different models, Nicolson's blowfly and Mackey–Glass models, in population dynamics are solved by using the proposed method and the classical Euler method. The numerical results obtained from here show that the proposed method is reliable, efficient, and accurate.



    加载中


    [1] B. Balachandran, T. K. Nagy, D.E. Gilsinn, Delay differential equations, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-85595-0
    [2] C. Foley, M. C. Mackey, Dynamic hematological disease: a review, J. Math. Biol., 58 (2009), 285–322. https://doi.org/10.1007/s00285-008-0165-3 doi: 10.1007/s00285-008-0165-3
    [3] S. A. Gourley, Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM J. Appl. Math., 65 (2004), 550–566. https://doi.org/10.1137/S0036139903436613 doi: 10.1137/S0036139903436613
    [4] V. Kolmanovskii, A. Myshkis, Introduction to the theory and applications of functional differential equations, Netherlands: Kluwer Academic Pub., 1999. https://doi.org/10.1007/978-94-017-1965-0
    [5] E. Liz, G. Röst, Global dynamics in a commodity market model, J. Math. Anal. Appl., 398 (2013), 707–714. https://doi.org/10.1016/j.jmaa.2012.09.024 doi: 10.1016/j.jmaa.2012.09.024
    [6] A. Martin, S. Ruan, Predator-prey models with delay and prey harvesting, J. Math. Biol., 43 (2001), 247–267. https://doi.org/10.1007/s002850100095 doi: 10.1007/s002850100095
    [7] F. A. Rihan, Delay differential equations and applications to Biology, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-0626-7
    [8] M. Villasana, A. Radunskaya, A delay differential equation model for tumor growth, J. Math. Biol., 47 (2003), 270–294. https://doi.org/10.1007/s00285-003-0211-0 doi: 10.1007/s00285-003-0211-0
    [9] S. Bera, S. Khajanchi, T. K. Roy, Dynamics of an HTLV-I infection model with delayed CTLs immune response, Appl. Math. Comput., 430 (2022), 127206. https://doi.org/10.1016/j.amc.2022.127206 doi: 10.1016/j.amc.2022.127206
    [10] A. C. Fowler, M. J. McGuinness, A delay recruitment model of the cardiovascular control system, J. Math. Biol., 51 (2005), 508–526. https://doi.org/10.1007/s00285-005-0339-1 doi: 10.1007/s00285-005-0339-1
    [11] A. Gallegos, T. Plummer, D. Uminsky, C. Vega, C. Wickman, M. Zawoiski, A mathematical model of a crocodilian population using delay-differential equations, J. Math. Biol., 57 (2008), 737–754. https://doi.org/10.1007/s00285-008-0187-x doi: 10.1007/s00285-008-0187-x
    [12] H. Gulbudak, P.L. Salceanu, G. S. K. Wolkowicz, A delay model for persistent viral infections in replicating cells, J. Math. Biol., 82 (2021), 1–52. https://doi.org/10.1007/s00285-021-01612-3 doi: 10.1007/s00285-021-01612-3
    [13] W. Gurney, S. Blythe, R. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17–21. https://doi.org/10.1038/287017a0 doi: 10.1038/287017a0
    [14] A. Keane, B. Krauskopt, C. M. Postlethwaite, Climate models with delay differential equations, Chaos, 27 (2017), 114309. https://doi.org/10.1063/1.5006923 doi: 10.1063/1.5006923
    [15] P. de Leenheer, H. Smith, Feedback control for chemostat models, J. Math. Biol., 46 (2003), 48–70. https://doi.org/10.1007/s00285-002-0170-x doi: 10.1007/s00285-002-0170-x
    [16] C. J. Lin, T. H. Hsu, G. S. K. Wolkowicz, Population growth and competition models with decay and competition consistent delay, J. Math. Biol., 84 (2022), 39. https://doi.org/10.1007/s00285-022-01741-3 doi: 10.1007/s00285-022-01741-3
    [17] M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287–289. https://doi.org/10.1126/science.267326 doi: 10.1126/science.267326
    [18] P. W. Nelson, J. D. Murray, A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201–215. https://doi.org/10.1016/S0025-5564(99)00055-3 doi: 10.1016/S0025-5564(99)00055-3
    [19] G. P. Samanta, Dynamic behaviour for a nonautonomous heroin epidemic model with time delay, J. Appl. Math. Comput., 35 (2011), 161–178. https://doi.org/10.1007/s12190-009-0349-z doi: 10.1007/s12190-009-0349-z
    [20] L. R. M. Wilson, N. C. Cryer, E. Haughey, Simulation of the effect of rainfall on farm-level cocoa yield using a delayed differential equation model, Sci. Hortic., 253 (2019), 371–375. https://doi.org/10.1016/j.scienta.2019.04.016 doi: 10.1016/j.scienta.2019.04.016
    [21] P. Yan, S. Liu, SEIR epidemic model with delay, ANZIAM J., 48 (2006), 119–134. https://doi.org/10.1017/S144618110000345X doi: 10.1017/S144618110000345X
    [22] J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187. https://doi.org/10.1137/18M1204917 doi: 10.1137/18M1204917
    [23] L. Berezansky, E. Braverman, L. Idels, Nicholson's blowflies differential equations revisited: main results and open problems, Appl. Math. Model., 34 (2010), 1405–1417. https://doi.org/10.1016/j.apm.2009.08.027 doi: 10.1016/j.apm.2009.08.027
    [24] L. Berezansky, E. Braverman, L. Idels, The Mackey-Glass model of respiratory dynamics: review and new results, Nonlinear Anal., 75 (2012), 6034–6052. https://doi.org/10.1016/j.na.2012.06.013 doi: 10.1016/j.na.2012.06.013
    [25] L. Berezansky, E. Braverman, L. Idels, Mackey–Glass model of hematopoiesis with non-monotone feedback: stability, oscillation and control, Appl. Math. Comput., 219 (2013), 6268–6283. https://doi.org/10.1016/j.amc.2012.12.043 doi: 10.1016/j.amc.2012.12.043
    [26] R. Hakl, J. Oyarce, Periodic, permanent, and extinct solutions to population models, J. Math. Anal. Appl., 514 (2022), 126262. https://doi.org/10.1016/j.jmaa.2022.126262 doi: 10.1016/j.jmaa.2022.126262
    [27] H. Jafari, M. Mahmoudi, M. H. Noori Skandari, A new numerical method to solve pantograph delay differential equations with convergence analysis, Adv. Differ. Equ., 2021 (2021), 129. https://doi.org/10.1186/s13662-021-03293-0 doi: 10.1186/s13662-021-03293-0
    [28] A. Bellen, M. Zennaro, Numerical methods for delay differential equations, Oxford: Oxford University Press, 2003. https://doi.org/10.1093/acprof: oso/9780198506546.001.0001
    [29] R. D. Driver, Ordinary and delay differential equations, New York: Springer-Verlag, 1977. https://doi.org/10.1007/978-1-4684-9467-9
    [30] M. Pinto, F. Poblete, D. Sepulveda, Approximation of mild solutions of delay differential equations on Banach spaces, J. Differ. Equ., 303 (2021), 156–182. https://doi.org/10.1016/j.jde.2021.09.008 doi: 10.1016/j.jde.2021.09.008
    [31] H. Smith, An introduction to delay differential equations with applications to the life sciences, New York: Springer, 2010. https://doi.org/10.1007/978-1-4419-7646-8
    [32] J. Fang, R. Zhan, High order explicit exponential Runge-Kutta methods for semilinear delay differential equations, J. Comput. Appl. Math., 388 (2021), 113279. https://doi.org/10.1016/j.cam.2020.113279 doi: 10.1016/j.cam.2020.113279
    [33] J. Fang, C. Liu, T. E. Simos, I. T. Famelis, Neural network solution of single-delay differential equations, Mediterr. J. Math., 17 (2020), 30. https://doi.org/10.1007/s00009-019-1452-5 doi: 10.1007/s00009-019-1452-5
    [34] M. B. Suleiman, F. Ishak, Numerical solution and stability of multistep method for solving delay differential equations, Japan J. Indust. Appl. Math., 27 (2010), 395–410. https://doi.org/10.1007/s13160-010-0017-6 doi: 10.1007/s13160-010-0017-6
    [35] Z. Q. Wang, L. L. Wang, A Legendre-Gauss collocation method for nonlinear delay differential equations, Discrete Contin. Dyn. Syst. - B, 13 (2010), 685–708. https://doi.org/10.3934/dcdsb.2010.13.685 doi: 10.3934/dcdsb.2010.13.685
    [36] M. I. Syam, M. Al-Refai, A reliable method for first order delay equations based on the implicit hybrid method, Alex. Eng. J., 59 (2020), 2677–2681. https://doi.org/10.1016/j.aej.2020.04.043 doi: 10.1016/j.aej.2020.04.043
    [37] G. M. Amiraliyev, Y. D. Mamedov, Difference schemes on the uniform mesh for singular perturbed pseudo-parabolic equations, Turkish J. Math., 19 (1995), 207–222.
    [38] E. Cimen, K. Enterili, A numerical approach for Fredholm delay integro differential equation, Commun. Math. Appl., 12 (2021), 619–631. https://doi.org/10.26713/cma.v12i3.1574 doi: 10.26713/cma.v12i3.1574
    [39] J. K. Hale, S. M. V. Lunel, Introduction to functional differential equations, New York: Springer-Verlag, 1993. https://doi.org/10.1007/978-1-4612-4342-7
    [40] M. Mahmoudi, M. Ghovatmand, M. H. Noori Skandari, A new convergent pseudospectral method for delay differential equations, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 203–211. https://doi.org/10.1007/s40995-019-00812-3 doi: 10.1007/s40995-019-00812-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1992) PDF downloads(197) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog