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Abstract: In this paper, we investigate the existence and uniqueness of L?-solutions for nonlinear fractional differential and integro-
differential equations with boundary conditions using the Caputo-Hadamard derivative. By employing Holder’s inequality together
with the Krasnoselskii fixed-point theorem and the Banach contraction principle, the study establishes sufficient conditions for solving
nonlinear problems. The paper delves into preliminary results, the existence and uniqueness of L” solutions to the boundary value
problem, and presents the Ulam-Hyers stability. Furthermore, it investigates the existence, uniqueness, and stability of solutions for
fractional integro-differential equations. Through standard fixed-points and rigorous mathematical frameworks, this research contributes
to the theoretical foundations of nonlinear fractional differential equations. Also, the Adomian decomposition method (ADM) is used
to construct the analytical approximate solutions for the problems. Finally, examples are given that illustrate the effectiveness of the

theoretical results.
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1. Introduction

Fractional differential equations (FDEs) have great
interest for many mathematicians. This is due to extensive
applications of these equations in the mathematical
modeling in various fields of both science and engineering
such as: control theory, physics, biological phenomena,
[1-3D).

Furthermore, integro-differential equations are prevalent

viscoelasticity, and signal processing (see
in various physical phenomena, such as fluid dynamics,
biological models, and chemical kinetics. These equations
arise due to the complex interactions and behaviors observed
in these systems, requiring a combination of differential
and integral terms to accurately model their dynamics. For
instance, aero-elastic coupling in structures like wings and
wind turbine blades leads to integro-differential problems,
where control techniques play a crucial role in preventing

instabilities. Overall, the presence of integro-differential

equations in physical phenomena underscores the need for
advanced mathematical tools to understand and predict the
behavior of complex systems (see [4—6]). Recently, authors
used various fixed-point theorems to prove the existence
and uniqueness for the fractional differential equations with
initial and boundary conditions. For example, the existence
and uniqueness of solutions of differential equations
with a mixture of integer and fractional derivatives have
The authors in [8] established
existence and uniqueness results of solutions for fractional

been investigated in [7].

differential equations with integral boundary conditions by
means of the Banach contraction mapping principle under
sufficient conditions. The existence of solutions of integro-
fractional differential equation when 6 € (2,3] through
fixed-point theorem have been studied in [9]. Researchers
in [10, 11] study the existence and uniqueness of solutions
for certain differential equations by using boundary and
initial conditions, along with various techniques based on

fixed-point theorems. The existence theory concerning
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fractional-order three-dimensional differential systems at
resonance is presented in [12]; for additional details see
these manuscripts [13—15].

On the other hand, the properties of L”-solutions received
Arshad et al. [16]

examined LP-solutions of fractional integral equations

a large share of researchers focus.

involving the Riemann-Liouville integral operator using
a compactness condition. In [17] the author estimated
the existence of an integrable solution for the nonlinear
fractional differential equations involving two Caputo’s
fractional derivatives by means of Holder’s inequality
together with Banach contraction principle and Schaefer’s
fixed-point theorem. Also see [18-21]. The Ulam-Hyers
(UH) stability analysis has been studied and obtain a great
Murad and

Ameen in [24] researched the existence and UH stability of

part from the work of audiences [22, 23].

nonlinear fractional differential equations of mixed Caputo-
Riemann derivatives. Vu et al. [25] proved the UH stability
for the nonlinear Volterra integro-differential equations.
Caputo-Hadamard (CH) fractional differential equations
have various applications in modeling complex systems
with memory effects in uncertain environments. Some
potential applications include: Describing physical systems
with memory effects and uncertain parameters, analyzing
energy harvesting systems with fractional order properties,
modeling biological systems with uncertain dynamics;
see [26-28].
the Hadamard derivative and CH derivative to prove the

A series of research papers investigated
existence and stability theorems. In [29], existence and
uniqueness of solution for Hadamard fractional differential
equations on an infinite interval with integral boundary
value has been developed. The theoretical analysis of
CH fractional boundary-value problems in L’-spaces was
introduced in [30]. The authors in [31, 32], focus on the
existence and Ulam stability of solutions for certain CH
fractional differential equations. The study in [33] highlights
the existence of a solution for the boundary value problem of
anonlinear CH fractional differential equation with integral
and anti-periodic conditions. Among the immense number
of papers dealing with Caputo-Hadamard and Hadamard
fractional differential equations subject to a variety of
boundary conditions using fixed-point theory; we refer
to [34-36]. Muthaiah et al. [37] discussed existence and of
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solutions for Hadamard fractional differential equations with
integral boundary conditions. In [38] the authors applied
the Monch’s fixed-point theorem to prove the existence
result for the fractional boundary value problems with
CH derivative.
the subject of approximation solutions by the Adomian
decomposition method (ADM) for various types of FDE,
we allude to [39-41]. Abdulahad et al. in [42] proved the

existence of LP-solutions for the following boundary value

Subsequently, many authors discussed

problem

D°¢(t) = V(t, p(1)),
ag(A) + bp(T) = c,

0<d<1,
te[A,T].

Benhamida et al. [43] studied the existence of a solution for
the boundary value problem:

CHDY, p(1) = V(t,6(2)),
ag(1) + b§(T) = c,
where ¥ D?_is the CH derivative, (0 <6 < 1)anda,b,c

are constants with
a+b#0.

Wang et al. [44] employed the existence and uniqueness of
positive solutions for the following integral boundary value
problem:

{D€+¢(t)+V(z,¢(t))=o, 0<t<1, 6€e(1,2],

$0)=0, ¢(1) = [ d(s)ds.

where D° is the Riemann-Liouville fractional derivative.
In this paper, first we study the following nonlinear

fractional differential equation with boundary conditions:

(1.1)
¢ d
d(e) = fl ¢<r)7t, (1.2)

DL, p(0) = V(t,6(0), 1€ =11.el,

¢(1) = ¢'(D),

where C'HD? N CH derivative, with 1 < 6 <2 and
Vi[l,e] xR >R

is continuous function.
Second, the following fractional integro-differential
equations with boundary conditions are investigated:
1y\6-1
" (In(5))

d
G ¢(s)>;s>, (13)

CH yo _
Di, () =V, I'@)
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4¢(1) + Lp(T) = 1, I=[LT], (1.4)

where C(HD‘ls . is the CH derivative and 0 < 6 < 1. Here

A;—A3 are constants
A+ # 0

with
ViIXR->R A:IXR->R

are continuous functions.

This paper is arranged as follows: In Section 2, we present
some preliminary results to be used later. In Section 3, the
Krasnoselskii’s fixed-point theorem and Banach contraction
principle are applied to analyze the existence and uniqueness
of solutions to the problems (1.1)—(1.4) in LP”-spaces.
Moreover, we discuss the UH and UIH-Rassias stability
for the problems in Section 4. The ADM is implemented
to find the approximate solutions for the given problems
in Section 5. Finally, examples are also given to show the

applicability of our results.
2. Preliminaries

Let us give some definitions and lemmas that are basic

and needed at various places in this work.

Definition 2.1. [45] The Hadamard fractional integral of

order 6 € R for a continuous function V is defined as

1t N Vi)
L V(t):—f (m(—)) —dp, 5>0
’ [©6) Jar \ 9 9
provided the integral exists.

Definition 2.2. [45] The Hadamard derivative of fractional

order 6 € R for a continuous function f is defined as

Ry
PV Ot 5" ). (ln(@)

s

n—o-1
| o,
Y

where

n—-1<d6<n, n=[0]+1,
where [8] denotes the integer part of the real number o.

Definition 2.3. [45] The CH derivative of fractional order

0 € R for a continuous function V is defined as follows:

1 t t n—o6-1 . d(v)
[(1-9) L(ln(%)) AVrS. G
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D2 V() =

where
d
n—-1<d6<n, n=[0]+1, A:(tE)’

and [¢] denotes the integer part of the real number 6, and "

is the gamma function.

Lemma 2.1. [45] Let
0>0 and n=1[6]+1.
If ¢ € AC}[a, b], then the differential equation
CHDS p(r) = 0

has solutions
n—1

_ Iy
o) = ) clin—)f,

k=0
and the following formula holds:

n—1
12, DAL 90 = 40 + ) culin 2,
k=0

wherec, € R, k=1,2,--- ,n—1.

Definition 2.4. [46] The Eq (1.1) is UH stable if there
exists a real number cy > 0 such that for each & > 0 and for
each solution z € Cl([a, b],R) of the inequality
CHDS.2(H) - V(t,z(D)| < &, 1€ [a,b), (2.2)
there exists a solution ¢ € C'([a, b],R) of Eq (1.1) with
lz(t) — p()] < ce, t € [a,b].

Theorem 2.1. [47] (Krasnoselskii fixed-point theorem)
Let H be a closed, bounded, convex, and nonempty subset

of a Banach space V. Let A and B be two operators such that

(1) Azy + Bz € H whenever 21,2, € H;
(2) A is compact and continuous;

(3) B is a contraction mapping.

Then there exists z € H such that
z=Az+ Bz

Lemma 2.2. [48] (Bochner integrable)

A measurable function
Vila,b)] xR >R

is Bochner integrable, if ||V]| is Lebesgue integrable.
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Theorem 2.2.
Letv C LP[a,b],1 < p < co. If:

[49] (Kolmogorov compactness criterion)

(i) vis bounded in LP[a, b];

(i1) x, = x as h — 0 uniformly with respect to x € v, then v

is relatively compact in L?[a, b], where

1 t+h
xp(t) = Ef x(s)ds.

[50] (Holder’s inequality)
Let X be a measurable space, let p and ¢ satisfy

Lemma 2.3.

1<p<oo, 1<g<oo,

and L1
—+-=1
P q

If h € 2°(X) and g € L9(X), then (hg) belongs to L(X) and
satisfies

1

| |hg|dts( [ |h|pdt)p ( [ |g|th)5_

Lemma 2.4. [36] If

0<d<1,

l
p-1) _—
f (In ) —d

3. Main results

l<p<1/(1-9),

then
(111 t)p(6—1)+ 1

S e-D+1 2.3)

3.1. Existence and uniqueness results for problems (1.1)
and (1.2)

This section deals with the existence and uniqueness of a
solution for the fractional differential Eq (1.1) with boundary

condition (1.2). For measurable functions
ViIXR-oR
define the norm
Wi = [ vord. (1 <p<w),

where LP(J,°R) is the Banach space of all Lebesgue

measurable functions. Now, consider the following

assumptions:

Mathematical Modelling and Control

(F1) There exists a constant u > 0 such that

V(. ¢(0)| < 1 16D,

for each ¢ € J and for all ¢ € R.
(F2) V(t,¢) is continuous and satisfies the Lipschitz

condition, there exists a constant w; > 0 such that

V(t,¢1(0) = V(t, g2(D)| < wilg1(2) = pa(1)],

for each ¢y, ¢, € R.

For the sake of convenience, we set the notation:

_ 23p p-1 " 23p p-1 .
%= (Faree  Ter e T P

= 20 p=l, LS 2% p-1 1 v v
Nz_((r(é))"(w—l)l Ty pern-1 ) @re-y,

Gi= (N‘ ((r(zg))ﬂ(;a - :5))

Lemma 3.1. For any

() e CUR), 1<56<2,

then the boundary value problems (1.1) and (1.2) have a
solution

e _ 6)(11’1 i)d—l

(In§ d
¢(1) =2(In(r) + 1) fl L V(SAZ’(S))TS

I'o+1
( 1)6—1 ( +d ) (31)
s
Vs, —.
@) (s ¢(S))s
Proof. Applying Lemma 2.1, we can reduce the

problems (1.1) and (1.2) to an equivalent integral equation

t)51

¢(1) = co + ¢ ln(f)+f o o) Vs, ¢(S))—

to find ¢y and ¢y, from the first boundary condition

o(1) = ¢'(1),
we obtain
¢<r)=c(log<t>+1)+f( CHUBMN e
0 )

by using the condition

¢ d
w0 = [ o7,
1
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the result is
( og €)6 1
. TTe) ——V(s, ¢(S))

¢ dt 3
fl¢(f)7=§Co+f |

by using Fubini’s
¢ dt 3
H— = =co +
[ o0 =3a

¢ (log ¢ — 6)(log <)°~!
Cco = Zf - -
1

r@e+1)
this implies that

2¢co +

¢(e) =

" (log £)°!
()

dsd
2 V(s d(s ))—sl

theorem, the following is obtain

¢ (log £)°
SV de)

Hence

d
V(s, ¢<s>>§,

g £)0!
D

¢ (log ¢ — )1
8(1) =2(log(r) + 1) f (log il OB s psn &
(6 s

! (log £)°!
V —_
RSV

This completes the poof.
The first result is based on Banach contraction principle.
Theorem 3.1. Assume that (F1) and (F2) hold. If
(O)) w; < 1.

Then the boundary value problems (1.1) and (1.2) have a

unique solution.

Proof. Define the operator T by

 (In € - §)(In £)’"! ds
(TOND =2000) + 1) | =S Vs 6
( 1)6 l
V)

we need to prove that the operator T has a fixed-point on the
set
={¢peL’(J):lIgll, <u’,u> O}

For ¢ € ¢,, we have

( f1 t(lné)‘*'wu, okl

3p e e ds\P
- p € ds
+<r<5+1)>ﬁ“n(’)“) ([ anSrves. o)

(1n(t)+1)p f(ln =) Vs, ¢(S))|—)
(3.2)

2P
TOOF <555

(F (6)”

Mathematical Modelling and Control

By Holder’s inequality and Lemma 2.4 we obtain

1 po—1
f (n £ Vs, o5 ) _(“(’)) ( f V(s B(s)IPds).

(p§ 1
3.3)
Now, by the same way we find that

e ds\P "
(["an Sy weoon ) < s [ wisowpas

1 s N Lo~ 1yp-1"J
(3.4)

and

e ds\P 1 ¢
(f(ln;)ﬂv(& ¢(S))|?) = W(ﬁ IV(s, g(s)IPds).
=

3.5
Thus, Eqs (3.3)-(3.5) are Lebesgue integrable;
by using Lemma 2.2, we  conclude that

(In £)°-1V(s,¢(s)), (In )YV (s, ¢(s)), and (In £)-1V(s, ¢(s))
are Bochner integrable with respect to s € [1,¢]; for all
t € J, then the Eq (3.2) becomes

fl [T dt

2 !
- @ Ji (e

23r 1
(7o (BT

fe(ln(t) +1)P fe |V(s, p(s)IPdsdt.
1 1

f [V(s, ()N dsdt

23p 1
+

([(S + )P (21, )
p-1

Then, by the condition (F'1) implies that

f1 @Ot

2P P 1 po-1
B (r(él;)v ((;lé(t)l) f|¢(S)|pdsdt

(pr( ey 2T o) )

Oy po—1" " TGE+Dy po+D-1

fe(ln(t) +1)’dt fe lp(s)IPds.
1 1

Integrate by parts; the following is obtained:

p- | 23p P‘l n—1
ol <o (Bt [ oo+ (o (L
2% p-

)f’*l)u"(z”e -1) f ‘ lp(s)IPds
1

T TGy po+ D1
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and Theorem 3.2. Assume that (F1) and (F2) hold. Then the
o» p— B boundary value problems (1.1) and (1.2) have at least one
7ol < (N1 + e (Lt £ ), solution.
T'@)r pé— po
ITell, < (Ul)” uu, Proof. Let us define two operators, y; and y», from Eq (3.1)
as

which implies that T#, C 9,.

Hence, T(¢)(¢) is Lebesgue integrable and T maps ¥, into (16)(®) = f *(n [)6 1 V(s, ¢(s ))_

itself. We have to show that T is a contraction mapping. Let I'©) .
In ¢ —§)(In £)°~ ds
¢1, ¢ € LP(J), we have — (s—s @’
(29)(@) = 2(In(?) + l)fl r6+1) V(s, ¢(s) s
e e 7 (In 5)6—1 c der th
- Pdr < 2° g onsider the set
f1 IT(61(0) = T@a(e)Pdr fl ( fl s
[V(s, 61(5) = V(s, ¢2(s))|d—ss)pdt + 23I’f (In(f) + 1) 5, = {p € LP(J): lIgll> < r”,r > O}
1
(In £)°~! ds\P 3 For x,y € 8,, we have
o Ve ao) - Vs, G| ) dr +2
o [rmosoras ([’
fl )+ 107 [ T Vs i) = Vs a0 ) 000+ GO < in
— - - p
Using (F2) and Holder’s inequality, one has Vs, x( s ) di+ T (6 + 1)) _[; (In@ +1)
e ds\P 23]) e
e v pt o ([ e s [ane oy
f IT(@1(1) — T(@2(0)Idr < (r( 6)),,(p — f (D))" LS s O
( f an & Vs, o S ) . (3.6)
f [¢1(s) — pa()IPdsdt + (F(é))P p5 )” lf(ln(t) +1) 1 S S
) 200 - By (F'1) and Holders inequality, Eq (3.6) becomes
[0 - antorpasar s o Lo o
e e f 1010)(@) + Qay)(DPdr < e f e
]1‘ (In(®) + 1)”]1‘ [91(s) — pa(s)IPdsdt. )4 (%)p—l
' 231)#17 p-1 p-1
P
Integrate by parts, leads to f Ix(s)I"dsdt + (T6 + 1))p(p(5 +1)- 1)
-1
20 p-1., e 2% f lnt+1pf Pdsdt + T (P LY
ITé1 - Téall, S[W(pé i ((r(é)),, (In@+ D" | - Ig(slds (r((s))p(pa _ 1)
by 2 pol o) [y [T
po—1 T+ 1)y po+1)-1 1 1
(2% - 1)]%0)1” 61 - dall, It follows from integration by parts, that
P~ 1 p—1 i V4
and ”Xlx +X2y||p < (F(é))p p6 — 1) p5||X(t)||p
1T — Thall, < (V)7 willgr — dallp. +( 23 ( p- )p - 23 ( p—1 )p—l)
It @)y pé - (T((5 + D)y pé+1)-1
O o <1, (2e - 1)||¢(r>||5]”u
then by the contraction mapping principle, the boundary ;.4
value problems (1.1) and (1.2) have a unique solution. O Iy 1.x + x2yll, < (Ul)zl’l,ur.
The following result is based on Krasnoselskii’s fixed- Hence,
point theorem. X1X + X2y € 0,.

Mathematical Modelling and Control Volume 4, Issue 4, 439-458.



445

Now, to prove that y; is a contraction mapping on 9,, from
(F2) and Holder inequality, it is easy to see that
2%
T'@+1)”r

22p — 1\ 1
21 — X262l < ((F(é))l’(m) +

-1 p l
(W f (In() + 1)’dt f |61(5) = a(s)|"ds,
2p .
- p=1(opr, _
Ihy201 )(2¢52||p_((1_(6))P(p‘S Y1 (2Pe - 1)

2% p-1

T TGy P D1

1

y(2re - 1))” willér - all

and

261 = @2l

If Now; < 1, then y, is a contraction mapping.

= x202ll, < Nawillgy

We need to show that y, is compact and continuous, for

any x € 0,, we have

b1l < r((5)((;1)"11)%)"’,1 ,

To show that y;
the

Hence, y; is uniformly bounded.

is completely continuous, we apply Theorem 2.2,

Kolmogorov compactness criterion. Let Q be a bounded
subset of 8,. Then y;(Q) is bounded in L”(J), the condition
(i) of Theorem 2.2 is applied. Next we will show that
(1) = xi1xin LP(J) as h — 0, uniformly with respect
to x € Q. We have the following estimation:

01008(8) = Q)OI = fl |G 108(s) = G| dt,
e 1 t+h
< fl | f (1 0)(s)ds = (@) dt,

e l t+h
100 — GO < fl - f 1V (s, x(s))
- IPV(t, x(t)| dsdt.
Since V € LP(J), we get that I°V € LP(J)

1

t+h
- f [PV (s, x(s) = PV(t, x(2)| ds — 0.

Hence
(r10n() —

uniformly a &2 — 0.

1)),

Then, by Theorem 2.2, we deduce that y () is relatively
compact; that is, y is a compact operator. As a consequence
of Krasnoselskiis fixed-point theorem, the boundary value
problems (1.1) and (1.2) have at least one solution in §,. O

Mathematical Modelling and Control

3.2. Existence of solution for the fractional

integro-differential equation

In this section, we prove the existence and uniqueness
of solutions through Krasnoselskiis and Banach fixed-point
theorems for the integro-differential equations

Hpf gy = v, [ LUV ¢<s)> 5 G
')
with the boundary condition
4d(1) + L¢(T) = A3, I1=1[1,T]. (3.8)
For measurable functions
ViIXR >R,

define the norm

T
i, = f IVOP dt, (1< p <o),
1

where LP(I,'R) is the Banach space of all Lebesgue

measurable functions. In order to achieve the results, the

following assumptions are required:

(P1) There exists positive constants 77; and 7, such that

Ve, ¢)| < milp@)
and
A, ()] < male(@)]

foreach ¢t € I and all ¢ € R.

(P2) There exists a positive constants o1, 0> > 0, such that
V(£ ¢1(1) = V(t. (1)) < 01161(8) = o (D),

Az, 1(5) = Alt, p2(D)] < 0211 (1) = (0],
for each ¢y, ¢, € R.

For computational convenience, we set

_ A )
T4+ A _/11+/12’
(201020 p=1 5 (In(T)
s = sy o s 2o

(2A20102)" (In(T)yr"!
T@)ps (2l

T(T - 1)),

Volume 4, Issue 4, 439-458.
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__ Q@) TAAn(T)
2@ (po)* (2

1

227 (M) (In(7))*"!

Toyrps (b
3, =2%(T = DIAII,

\([(6)% ps (22

Lemma 3.2. Let ¢ € C(I,R) and 0 < § <
solution of the boundary value problems (3.7) and (3.8) is

_ V. s
61 fl Vs f1

7 (In(L)y-! :
_Azfl T(6) V(s’fl

Proof. By applying Lemma 2.1,

1, then the

given by
(In(%))*! (In(2)°’"!
I'(%)
(In()>!
')

do d
A p(e) )2
o s

do d

A p ) E 4 A,
o s

(3.9)

we can reduce the
problems (3.7) and (3.8) to an integral equation

s (In(%))°~! v s (111(%))‘; IA
() _f1 TG) (S,fl TG) (p, ¢(K>)) )— + 1,
from the boundary condition (3.8), we obtain
7 (In( L)1 s (In(2))>~! dp _ds
cr=Ar-As fl eV fl .0 D)
Then the solution is
! (In(4)y>! s (In(3))°! dg ds
o) = | eV, fl M) D
T (In Lyt (n(3 !
-A 2 V(s, ——A
) fl VG fl oA, ¢(«a>) 2y
+ A
The proof is completed. O

Our first result is based on krasnoselskii’s fixed-point

theorem.

Theorem 3.3. Assume that (P1) and (P2) hold. Then the
boundary value problems (3.7) and (3.8) have at least one

solution.

as

Proof. Let us define two operators, @ and @, from Eq (3.9)
 (In 1) (In()"!
@ (P)) = f

1

rka) V(s, fl r(a) A(go,(ﬁ(p))

7 (In Lyo-! s (In(£))5!
A s 9
zfl T'(6) V(S’fl

r'()
do d
Alp, ¢<go»—")—s

@(P)(1) =N -

Mathematical Modelling and Control

Consider the set
={pel:lgl, <r’,r>0}.

For x, ¢ € 6,, we have

T
f (@1 x)(t) + (@) (D)Pdt <

(F(é))P f f (In

lV(sf( F(6) A(KJ,X(K))) 7% )
22pAP S 1[1( ))6 1

o—1
(r<6)>pf f n Vs o

Ay, ¢(p>)—)|—) di + 22(T = DIAP.
© S

By using (P1) and Holder’s inequality, the below is found:

" (In(ny”!
(B2

2mn2)?
@T6)2»

f [(@10)(@) + (@)D dr <

f (In(s))”°! f S Ix(@)Pdpdsdt + 2*P(T — 1A
1 1

22P(Apymm)? (In(Ty)Po-t T T -
’ T (%)2])—2]; fl‘(ln(s))

f ()P dpdsd.
1

Integrate by parts, the result are

Q2minp)? 2

2pé V4
Z2(I(5))2(po)? (e — In(T)™*|Ixll,

lwx + woll}, <

+22P(T = DA P

22 (Agip)? (In(T))*P!
T@)rps (Bl

T(T - Dl

and

1
loix+@dll, < (T " +B)» <.

Hence, wx + @w¢ € 6,.
Now, to prove that @ is a contraction in L”(I). Letting
é1,¢> € LP(I), we have

f (@d)(0) = (@p2)(0)I"dt < (m)),, f f (In(~ ))‘”
v f (In(5)°"!
> 1

W Ap, (151(50))—)
~V(s, f
1

(In(3))"!

o) (3.10)

© ds\P
Ao, ¢2<go>>;)|7) dr
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Then from (P2) and Holder’s inequality, Eq (3.10) becomes

B p _ (A20102)" (In(T))**"!
’ZD'¢2“ < (r(é))pr(S (%)zp_g

lwe: T(T - 1) llg2 = ¢nll;

and

lwg: — weall, < 33 llp1 — ol

If 33 < 1, then w is a contraction mapping principle.
Moreover, continuity of x(¢#) implies that the operator @;x
is continuous

P
) mmnar.

1 In(T)*°  T?
@0l < s (S (B2
Hence, @ is uniformly bounded on 6, .

Next to show that @ is completely continuous, we apply
Theorem 2.2, the Kolmogorov compactness criterion. Let £
be a bounded subset of §,. Then @({) is bounded in L’ (1)
and the condition (i) of Theorem 2.2 is applied. Next, to
show that (@ x), — @wxin LP(I) as h — 0, uniformly with
respect to x € {. Let

_ (In(5 et

Ei(s) = ]1‘ WA(KJ’ X(K)))—
_ ! (In(4))°! ds
Ea(n) = 1 WA(S,X(S))?,

and
T
f I T (@ 0)p(1) — T(@x)@)| dt
1

T 1 t+h
< f |E f (@12)(8)ds — (w1 x)()I dt,
! ! (3.11)

T
f | T (@ x)p(t) — T(@ 1 x)(@)|Pdt
f f IPV(s,21(s)) — I°V(t, Zy(0))|Pdsdt.

Since V € LP(I), we get that I°V € LP(I), so we have

1

1+h
- f II°V(s,E1(s)) — I°V(t, Z2(1)|Pds — 0.

Then by Theorem 2.2, we deduce that @({) is relatively
compact; this implies that @, is a compact operator. As
a consequence of Krasnoselskiis fixed-point theorem the
boundary value problems (3.7) and (3.8) have at least one
solution. The proof is complete. O
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Now, the uniqueness result for the problems (3.7)

and (3.8) is based on the Banach contraction principle.

Theorem 3.4. Suppose that (P1) and (P2) holds. If
1
(U3)r < 1.

Then the boundary value problems (3.7) and (3.8) have a

unique solution.

Proof. Define the operator

0:LP(I)— LP()

as follows:

=[G o, o[ (nG D
0= e V), e AT
N fT n ' f Gy o ) N
v | e Ma) .

We need to show that 0o, C o, where,

={p e L"(D) : lIgll, < r",r > O}.

For ¢ € o,, we have

o T
(r<6))pf (f (n-9)

o-1

f OO dr <
57 A, pon ™ >|—) di

|V( fs (111(-))
) TTe)
22pA1’ T T
2 2 161
+2Pf |A1|”dt+(r(6))pf (f (In(-))
o—1

(2)
S Al ))—i—)

It follows from condition (P1) and Hélder’s inequality that

mm)? 2
6, < e

" 2T (po) (ELypr

5 (n(T)*°[lglf;

+2°P(T = DA )P
227 (Aymimn)? (ln(T))Z”‘S !
T©)*ps  (2=lyp-
p-1

T(T - Dligll-

Hence, 6 maps L”(I) into itself. Now, to prove that 6 is a
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contraction mapping. Let ¢, ¢, € LP(I), we get

ff(())“

f 6011 — (B2 (D7 <

" f (In(2))*!
) TTe)

———Alp, ¢1(50))—)
- V(s,f
1

(ln( ERY !
F(é)

2"Ap

(F(é))”

B (F(é))”

Ao, ¢z(@>)—>l—) dr

(In()”!
r(a)

f f(ln( N Vs, fl

" ln(v 6—

A(p, —) =V —_—
@) -vis, [ =2

Alp. ¢z<p>>—>|—) dr.

By repeating the same technique of Theorem 3.3, it

immediately follows that

(20102)" 2

2ps
2T (po)? ( ,,:T_ll 2 (n(T))?

1661 — 665, s(

(2A20102)7 (In(T))*P°~!
T©Prps (B)w-2

(T - 1))F||¢2 ~ il

and

661 — 6¢all, < (U3)71I61 — ol

If
Uy <1,

then 8 is a contraction mapping. Therefore, by using Banach
contraction mapping, 6 has a unique fixed point, which
is a unique solution of the boundary value problems (3.7)
and (3.8). ]

4. UH stability

In this section, we will study the analysis of UH
stability of the fractional differential Eq (1.1) with boundary
condition (1.2) and for the problems (3.7) and (3.8).

4.1. UH stability for problems (1.1) and (1.2)

Theorem 4.1. If the hypothesis (F2) holds with
a)fU] <1.

Then the boundary value problems (1.1) and (1.2) are UH
stable.

Mathematical Modelling and Control

Proof. For € > 0 and w be a solution that satisfies the

following inequality

CH DS w(r) — V(E, w(®D)| < €, “4.1

there exists a solution ¢ € LP(J) of the boundary value
problems (1.1) and (1.2). Then ¢(¢) is given by

¢ (In € - §)(In £)°"!
#(1) =2(In(?) + 1)]: TTerD
( t)5—1

o )

From the inequality (4.1) and for each ¢ € J, we have

d
Vis. 4D

d
V(s ¢<s)>§.

6)6 1

(In¢ -06)(In ds
w(t) — 2(In(?) + 1)[ T V(s, W(S))?
( t)6 1

e(In(1))° )"
() re+1/"°
On the other hand, for each ¢ € J, the below is found
[w(t) — ¢(0)|”

» € (In(0)"°
@@+ 1)y

Vs, w(s))?sl” < (

1)5—1

+22p(f’ (nt
1

()
(In ¢)°
I@+1)

e\o—1
+2°P(In(®) + 1)? f (n})
1

I (6)
Thus, by condition (F2) and Holder inequality which
implies that

fe Iw(r) — g0l dr < 27 fe
1

ds\P
V(s w(s) = Vs o)1)

+2%(In(r) + 1)”( V(5. w(s)) - V(s ¢<s>>|%)p

ds\P
V(s w(s) = Vs, o))

e’ (In()”
TG+ 1)

220 (¢ (In()P*!

* ([(6))? pé 1)p ! f [w(s) — ¢(s)|Pdsdt
(2%f ( o VR S bt S )
I'@)r pé-1 TG+ 1)y po+ -1

fe(ln(t) + 1)Pdt fe lw(s) — ¢(s)|Pds.
1 1

Integrating by parts, we have
27 e €f

Iw = ol < TGy

+ WUy llw — oI5

Hence
w =l < cce,
where 1
2er
(1 - 'U)ITE + 1)
which implies that the boundary value problems (1.1)
and (1.2) have UH stability. O

Ce =
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4.2. UH stability for problems (3.7) and (3.8)

Theorem 4.2. If the hypothesis (P2) holds with U3 < 1.
Then the boundary value problems (3.7) and (3.8) are UH
stable.

Proof. For € > 0 and each solution w € LP(I) of the

inequality
CH DS w(t)—V(t IMA( ())@)|"< P, (4.2)
=W s 1 T©) s, w(s B < €, .

and there exists a solution ¢ € LP(I) of the boundary value
problems (3.7) and (3.8). Then ¢() is given by

¢ = f L Vs f a2 lA(w ¢(p))—)—
Lo ) TTe
A f Ty f L, ¢<ga>) 0)&
L Te ) TTe

+A1.

From the inequality (4.2) and for each ¢ € I, we obtain

 (In(L))°! s (In(3))°! do ds
[w(t) — 1 W"(&j}‘ WA(SQW(KJ));)?
T (In(L))*! s (lfl(ff,))‘s_l do ds
Azﬁ W"(&ﬁ WA(Q’W(SO))E)T
5
CAP < (In(2))”

TG+ Dy
for each ¢ € I, the below is found

T
fIIW(I)—Qﬁ(t)Ipdt
T ()™

1 T+ 1)P
e (TG
“’fl “To) @

/([
1 1 s
o dg ds)

V( fﬂn(_)) AN )
S, TTe AW0w

T T ' Sy)d-1
f(f (In(-yy! V(s,f( (W))
1 1 s 1

Y0)
T (ln(€))‘s‘1
- V“’fl “To) 4

dp |ds\P
4 —S) dt
s
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22p

+
@T6)r

< 2PeP

dp
D)

22| AglP
Ty

dg
A, w(p) )
©

(9, ¢() o

by (P2), for each 1 € I, we obtain

T
f1 () — BN dt

T ()"
T@+ 1Dy
(In(2))>"!

1
S (fancor [
RN A R )
2P(0102)" A} fT f s f
i) In(=
T Te)y 1( (n(s)) |

(o) - oo )ld@ds) d.

2P(0102)F
)y

< 2PeP

———|w(p) - d(p)|——| dt

(In (,;,))6 !
T'(0)

de ds)

It follows from Holder’s inequality and integration by
parts that

p
lw — &l

2P T(In(T))"
< Terny © +(

(20102)" T’
2T@) (po)? (Bhyr2

(2A20102)” (In(T))?P*~!
T©O)yrps (L=pyw-2

(In(T))*”°

(T - 1)) w = @Il

and
2P T (In(T))"?

(1 =03)T(6 + D)y

lw = ¢l <

Hence

w—9ll, <che, 1€l

where
2PT(In(T))?° 1
cp = ( P
(1 =U3)T6 + 1)r
Thus, the solution of (3.7) and (3.8) is T H stable. O

5. Examples

In this section, some examples are given to illustrate our

main results.

Example 5.1. Consider the fractional boundary differential

equation
C(HDz #(0) = 20(25(1) [ ’
e 1+ ¢
<4 (5.1
¢(1) =¢'(1), ¢(e) =fl ¢(t)7,
where

2
Vo) = 2500

and u = 0.0198, from condition (F2), we get

3
5=2,
2

=0.01979196385.
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To prove the existence of a solution, Theorem 3.2 is

applied as follows:

lhprx + vl g[%(%—fl )p—é N (%( ;—_11 ),,_1

1

1
Ibe1x +xoyll, <(O)rur<r.

S

After taken r = 1, one can has:
If p = 2, then (U;)7 (0.0198) r = 0.4489.
If p = 3, then (U)7 (0.0198) r = 0.3485.
If p = 4, then (U)7 (0.0198) r = 0.3137.

The second step shows that y; is a contraction mapping

D201 — x2d2ll, < Rowilldr — éallp.

If p = 2, then (N»)? = 11.0867,
If p = 3, then (N»)5 = 8.7781,
If p = 4, then (N»)# = 7.9218,

(R)?w; = 0.2194.
(R2)5w; = 0.1737.
(R2)iw; = 0.1568.

Hence, y» is a contraction mapping.
The third step shows that y; is compact and continuous,

one can has

1 p-1 yo' e
”Xlx“p < F(3/2)(((3/2)p — 1) 3/2)p

If p = 2, then [ly; xl|, < 0.5370 * 0.0198 = 0.0106.
If p = 3, then [y, 4ll, < 0.3115 * 0.0198 = 0.0062.
If p = 4, then [[y; ||, < 0.2000 x 0.0198 = 0.0040.

);(0.0198) r<r

Hence, y, is uniformly bounded and relatively compact.
All steps of Theorem 3.2 are satisfied; therefore, we deduce
that the problem has at least one solution.

Next, to explain the uniqueness of the solution, and
according to Theorem (3.1), the results are:

If p = 2, then (U})? =22.2253, (U)2w; = 0.43988 < 1.

If p = 3, then (U})3 = 17.5586, (U))w; = 0.34752 < 1.

If p = 4, then (U])% = 15.8437, (Ul)%wl =0.31357 < 1.

Then, the problem (5.1) has a unique solution.

Example 5.2. Consider the following boundary value
problem:

(In(1))* 1
19 +sin(3n) 1+ g’

MDY, (1) =
5.2)
, ¢ dt

(1) = ¢'(1), ¢(e):fl¢(t)7,

Mathematical Modelling and Control

where
==
and
In(7)? 1
19 +sin(31) 1 + |¢|
by using the condition (F2), one has w; = 0.05011255.

Moreover, from Theorem 3.1, we see that:

If p =2, then

V(. ¢(1) =

(U))? = 18.84098, (U))2w; = 0.94416 < 1.
If p =3, then

(U))5 = 1477526, (U;)5w, = 0.74042 < 1.
If p = 4, then

(U))F = 13.29004, (U))iw; = 0.6659 < 1.

By Theorem 3.1, the problem (5.2) has a unique solution.

Example 5.3. Consider the boundary value problem

CHpg o sin@® )Y (n(s)®  ds
PO mia ) e e M 6
2¢(1) + 4¢(e) = 1,
where 3
6=7. hi=2 k=4 b=l

and using the Lipshitz condition (P2), the out comes are
o1 = 0.17834267 and o0, =0.25.

To estimate the problem has at least one solution, apply

Theorem 3.3. For the first step, we have
l@1x + @dll, < Iy 7 + T2)F <.

Let
r=1 and 4= (3, 1" +3,)»
to get:
Ifp =29, =09302 < r.
If p=3, 9, =0.8025 < r.
Ifp=4,3,=07637 <r

Hence,

WX+ WP € J,.
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For the second step,

o) — wdhall, < T3 lld1 — ¢allps

to prove that @ is a contraction mapping, the results are:
If p=2,3;=0.0699 < 1.
If p=3,3;=00473 < 1.
If p=4, 35 =0.0407 < 1.
Hence, @ is a contraction mapping.
For the third step, show that @ is compact, we have

)pmnzr.

1 In(T))2P¢ T2
(@ )l < (<n< )

@T@6)*\ 2(po)y* (2=lyp-2
p-1

If p = 2 then, ||(@1x)®)Il, < 0.0762.

If p = 3 then, [[(@1x)(@®)Il, < 0.0501.

If p = 4 then, |[(@1x)(®)Il, < 0.0437.

Hence, @, is uniformly bounded and relatively compact.
All conditions of Krasnoselskiis fixed-point theorem are
satisfied, then the problem has at least one solution.

Now, To exhibit there is only one solution, the Banach
fixed-point Theorem 3.4 is applied as follows

(20102)"  T?(In(T))*"°
2T @) (po)* (2=byn2

(2A20102)” (In(T)y2r~!
T@)ps (2l

) =

(T - 1));.

If p = 2 then (U3)? = 0.20659 < 1.
If p = 3 then (U3)5 = 0.12266 < 1.
If p = 4 then (U3)# = 0.10042 < 1.

Then the problem (5.3) has a unique solution.

Example 5.4. Consider the fractional boundary value

problem
CH s &t ()’ 2 yIn(s) ds
D=5 s | Tre s O
44(1) + 2¢(e) = 0.5,
(5.4)

where 6 = 0.6, 1} = 4,1, = 2,43 = 0.5, and by using the
condition (P2), we have o1 = 0.129198 and o0, = 0.4, from

Theorem 3.4, the results are:

If p =2, then (U3)? = 0.403497 < 1.

Mathematical Modelling and Control

If p =3, then (U3)5 =0.169727 < 1.
If p = 4, then (U3)7 = 0.132042 < 1.
Then by Theorem 3.4, the problem (5.4) has a unique

solution.
6. Numerical results

we deal with ADM to find the

approximate solution of fractional differential and integro-

In this section,

differential equations; some numerical examples are
presented to compare between the exact and approximate

solutions.

6.1. The ADM

George Adomian established the ADM in the 1980s.
The ADM has been paid much attention in the recent
years in applied mathematics, and in the field of series
it is a fact that this
method is powerful and effective, and it easily solves many

solutions particular. ~ Moreover,
types of linear or nonlinear ordinary or partial differential
equations, and integral equations; see [51,52]. This method
generates a solution in the form of a series whose terms are
determined by a recursive relationship using these Adomian
polynomials. A brief outline of the method follows. For
every nonlinear differential equation, it can be decomposed
into the following form:

L(¢) + R(¢) + N(¢) = h, (6.1)

where L is the highest order differential operator, R(¢) is the
remainder of the linear part, N(¢) represents the nonlinear
part and 4 is a given function. In general, the operator L is
invertible. If we take L~!( integral operator) on both sides of
Eq (6.1), an equivalent expression can be given
¢=-L"'R@)-L'N@+L'h+g (62
here g satisfies Lg = 0 and the initial conditions. If L is the
second-order derivative, L~! is the two-fold definite integral.

For the ADM, the solution u is expressed in terms of a

series form
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If we have a nonlinear term N(¢) it is represented by the (In())* ‘o (In(n))° ¢ (In())**!
Adomian polynomials A I'26+1) F@+1) r¢+2)°
(ln(t))36+1 (1I1(f))46+1
1 =(k+1 -
S0 =k + D55 “ Tas +2)

N(¢) = iAk-
k=0

(In(1))* N (In(1)* . (In(r)**!
TG+ “T2s+ 1) “'Tes+2)°
Ay depends on ¢, @1, - - - , ¢ and can be formulated by (In())**1  (In(£))%+!
o0 =+ Drass2) " Tes+2)
- Z Po)| k=012 L@ @) )

T4s+1)  °T@Gs+1)  'TBs+2)°
Then Eq (6.2) can be written as

00

R R The approximate solution of problem (6.3) is:
S o= -LRY 40 -1 Y A0+ g, o Sproblem (6.3)
k=0 = =
@) =Po(1) + ¢1(1) + 2(1) + P3(D) + - - -,
Example 6.1. Consider the boundary value problem

©° (ln(t))(p+1)6+l ©0 (ln(t))(p+2)§+l
=k+1 -
(In())**' 26+ 1) o0 =k )Z‘ N(p+1)6+2) LHI((p+2)6+2)
CHDS p(1) = In(2) + ¢ — + (In(r) + 1), .

I'(o+ Ze) I'6+3) Z (ln(t))(p+l)6 Z (ln(t))pé

=, o= [ o0T. 1<s<2 AT+ 5+ D TP LT+ )
1
(6.3) (In(z))Po+!
The exact solution is ta z:;) I(ps+2)

1 o+1 2 1
o) = (Flz((;l) 3~ I“E(;: 3; (In(z) + 1). Tables 1-3 show the approximate and exact solutions for

Example 6.3.
Applying the inverse operator
Table 1. Exact and approximate solutions for

L'=ir Example 6.1 where § = 1.2.
t Exact ADM Error
on (6.3), we find that: 1 -0.5673 -0.5710 0.0038
1.2718 -0.6857 -0.6911 0.0054
(1) = ’115¢(t) + Po(2). 1.5437 -0.7477 -0.7547 0.0070
1.8155 -0.7732 -0.7815 0.0082
In order to obtain ¢(t), we apply the Adomian iterative 2.0873 -0.7746 -0.7835 0.0089
2.3591 -0.7594 -0.7681 0.0087
scheme
2.6310 -0.7325 -0.7400 0.0075

Gus1 (1) =) Pa(D),

do(0) = (k + 1)(1n(t))6+] _ (n(@y**! Table 2. Exact and approximate solutions for
I6+2) TI@25+2) Example 6.1 where 6 = 1.5.
(In(1)°
kr 5+ 1) + ¢o + ¢ In(), t Exact ADM Error
5 ( 1 1 -0.4299 0.4303 0.0004
_ 26+ 12718 -0.5247 -0.5253 0.0006
[ +3) 15437 205791 -0.5798 0.0007
. 1.8155 -0.6036 -0.6044 0.0009
Now, to find, 1, $2, ¢3,-- -, it follows 2.0873 -0.6064 -0.6073 0.0009
(M2 ()] 2.3591 -0.5934 -0.5944 0.0009
¢1(t) =(k + 1)( 0()) - Un®) 2.6310 -0.5688 -0.5696 0.0008

F25+2) T(36+2)
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Table 3. Exact and approximate solutions for

Example 6.1 where § = 1.9.

on (6.4), one obtains

t Exact ADM Error

1 -0.2807 -0.2807 0.00006
1.2718 -0.3451 -0.3452 0.00008
1.5437 -0.3857 -0.3858 0.0001
1.8155 -0.4059 -0.4060 0.0001
2.0873 -0.4096 -0.4100 0.0001
2.3591 -0.4004 -0.4005 0.0001
2.6310 -0.3807 -0.3809 0.0002

Gui1 (1) =) (t),

where

One can observe on Figure 1 a decrease of the
calculated errors towards zero, which confirms the results
of convergences of the approximate solution to the exact
solution in Example 6.1 when ¢ € [1,e] and for various
fractional orders 6 = 1.2,1.3,---,1.9.

g x107% S
i N §=12
T’ §=1.3|4
/ =14
5=15| |
- §=1.6
8=17
§=18] ]

o o+1
9o(t) = co + e1 In(®) - r(lg(? )1) - (;I(l((stl) )

By the same technique, we find

(In())° (n@®)**'  (n@)*  (n(@)**!
¢1(’)=C°r(5+1) '"T6+2) T2s+1) TQ25+2)°

(In(0))® (In@)®*' (n@))*  (In())***!
P20 = oy Y Tas+2) TGo+1) T(36+2)

(In())* (In@)®*" (In@)*  (n()**!
S0 = o T Y T35+ T@s+1) T +2)

(In())*® (n()**t (An@)*®  (In()>**!
SO = Y Tas 1) TGs+1) T(6+2)

§=1.9

Error

Figure 1. The absolute error between the exact
and approximate solutions ADM for Example
6.1.

Example 6.2. Consider the boundary value problem

CHDS p(t)=¢p—In(r) -1, 1<6<2,

(6.4)

The solution is the given by

$(1) =go(t) + 1() + (1) + P3(1) + - - -,

(1) =c OZF( R

_’Z‘;(

() < ()]
L4 T(ps +2)
(n@)P™  (In(r)e+Hor!

I'((p+ 1)+ DHI'((p+ 1) +2))

)

Tables 4-6, approximate and exact solutions for Eq (6.4).

Table 4. Approximate solution for Example 6.2

p() =¢'(1), ¢le)=2

The exact solution is
o) =In(r) + 1.
Now applying the inverse operator
L'=1p

Mathematical Modelling and Control

when § = 1.2.

t Exact ADM Error

1 1.000 1.0209 0.0209
1.2 1.1823 1.2098 0.0028
1.4 1.3365 1.3710 0.0033
1.6 1.4700 1.511 0.0414
1.8 1.5878 1.6362 0.0487
2 1.6931 1.7485 0.0554
2.2 1.7885 1.8510 0.0622
24 1.8754 1.9443 0.0690
2.6 1.9555 2.0310 0.0754
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Table 5. Exact and approximate solutions for

Example 6.2 when ¢ = 1.5.

t Exact ADM Error

1 1.0000 1.0065 0.0065
1.2 1.1823 1.9037 0.0080
1.4 1.3365 1.3462 0.0098
1.6 1.4700 1.4815 0.0114
1.8 1.5878 1.6010 0.0132
2 1.6932 1.7081 0.0150
22 1.7885 1.8051 0.0167
24 1.8754 1.8939 0.0184
2.6 1.9555 1.9756 0.0201

Table 6. Approximate solution for Example 6.2

when 6 = 1.9

t Exact ADM Error
1 1.0000 1.00097 0.00097
1.2 1.1823 1.8349 0.0012
14 1.3365 1.3378 0.0014
1.6 1.4700 1.4716 0.0016
1.8 1.5878 1.5896 0.0018
2 1.6932 1.6951 0.0020
22 1.7885 1.7906 0.0022
2.4 1.8754 1.8779 0.0024
2.6 1.9555 1.9581 0.0026

The behavior of the absolute errors approaching zero, as
displayed in Figure 2, supports the convergence results of the

approximate solution toward the exact solution referenced in

Example 6.3. Consider the fractional integro-differential

equation with initial condition

D00 =) + [ )05 +
1
(In()’!

- (In(t))* -
#(1) =0.

The exact solution is

ds  2(In()*°
T3 -90)
(6.5)

0<d6<1
4 b —_— b

¢(t) = (In(t))*.

Applying the inverse operator

Lh=tp

on (6.5), we find that

p=L"'p+L"! fl ln(s)(ﬁ(s)% + ¢o(),

where

T3)(n(®))*** T (In()°*

do(1) = (In(1))* -

T +3)

TG+5 @

¢n+1 = L_1¢n + L_l f ln(s)¢n(s)%’
1

Example 6.2.

0.08 /
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Figure 2. The absolute error between the exact

and approximate solutions ADM for Example

6.2.
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and
_co+ 2I°(3) 542 I'4)+206+3) 2544
é1(2) “UG13) (In()) TT2515) (In())
B r3)(In0))**?  co(In(2))° = T(A)(In(1))°**
T'(26 +3) Ire+1) I'6+5)
') +)5) 2546
Tas+7) (In(0)=™,
_co(26+3)+4 w2 06 +3) 3544
$2(1) =TAr@s+3) (In(5)) TGs+5) 5)(ln(t))
B L3)(In())***?  co(In())?
'35+ 3) Ir26+1)
I'4) + (co+4)(0+3) 2544
Tas+5) @
46% + 406 + 78 e LA +5) 2546
W(IH(I)) - m(ln(ﬂ)
3 I +526+7) 3548
rGo+0)  ne)™

The analogous process gives

P(1) = Po() + $1(1) + ¢2(1) +

$3() + -
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Tables 7-9 show the approximate and exact solutions for
Eq (6.5).

Table 7. Approximate solution for Example 6.3

when 6 = 0.3.

t Exact ADM Error

1 0 0 0

1.2 0.0332 0.0305 2.7% 1073
1.4 0.1132 0.0969 1.6 x 1072
1.6 0.2209 0.1768 4.4 %1072
1.8 0.3454 0.2581 8.7 x 1072
2.0 0.4804 0.3332 1.5x 107!
2.2 0.6216 0.3969 22x107!
2.4 0.7664 0.4454 3.2x 107!
2.6 0.9131 0.4755 4.4x107!

Table 8. Exact and approximate solutions for
Example 6.3 where § = 0.5.

t Exact ADM Error

1 0 0 0

1.2 0.0332 0.0328 43x107*
1.4 0.1132 0.1094 3.7x 1073
1.6 0.2209 0.2087 1.2x1072
1.8 0.3454 0.3184 2.7 %1072
2.0 0.4804 0.4309 5.0x 1072
22 0.6216 0.5411 8.0 x 1072
2.4 0.7664 0.6455 12x 107!
2.6 0.9131 0.7413 1.7x 107!

Table 9. Exact and approximate solutions for
Example 6.3 where § = 0.9.

t Exact ADM Error

1 0 0 0

1.2 0.0332 0.0332 5.5%x 1077
1.4 0.1132 0.1131 1.4x107*
1.6 0.2209 0.2202 6.6x 1074
1.8 0.3454 0.3436 1.8x 1073
2.0 0.4804 0.4764 40x%x1073
22 0.6216 0.61437 7.2%1073
2.4 0.7664 0.7543 1.2x1072
26 0.9131 0.8942 1.9x 1072

The Figure 3 shows that the absolute errors between the
approximate solution and the exact solution described in
Example 6.3 are approaching zero.
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Figure 3. The absolute error between the exact
and approximate solutions ADM for Example
6.3.

This indicates that the ADM is a powerful and effective

technique for obtaining accurate results.

7. Conclusions

In this paper, we investigated the LP-solutions for
nonlinear fractional differential and integro-differential
equations with boundary conditions in the sense of the
CH derivative.
point theorem and the Banach contraction principle, we

By means of the Krasnoselskii fixed-

have established sufficient conditions for the existence and
uniqueness of solutions for a nonlinear problems. In
addition, the TH stability of the solutions for the indicated
problems is studied. We also employed the ADM to
estimate the approximate solutions. Finally, we present
examples to demonstrate the consistency of the theoretical
findings. In future works, one can extend the given problems
to more fractional derivatives such as the Hilfer derivative

and Caputo-Fabrizio derivative.
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