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Abstract: In this paper, we investigate the existence and uniqueness of Lp-solutions for nonlinear fractional differential and integro-
differential equations with boundary conditions using the Caputo-Hadamard derivative. By employing Hölder’s inequality together
with the Krasnoselskii fixed-point theorem and the Banach contraction principle, the study establishes sufficient conditions for solving
nonlinear problems. The paper delves into preliminary results, the existence and uniqueness of Lp solutions to the boundary value
problem, and presents the Ulam-Hyers stability. Furthermore, it investigates the existence, uniqueness, and stability of solutions for
fractional integro-differential equations. Through standard fixed-points and rigorous mathematical frameworks, this research contributes
to the theoretical foundations of nonlinear fractional differential equations. Also, the Adomian decomposition method (ADM) is used
to construct the analytical approximate solutions for the problems. Finally, examples are given that illustrate the effectiveness of the
theoretical results.
Keywords: fractional differential equations (FDEs); Caputo-Hadamard (CH) derivative; fixed-point theorems;
Ulam-Hyers (UH) stability; Adomian decomposition method (ADM)

1. Introduction

Fractional differential equations (FDEs) have great
interest for many mathematicians. This is due to extensive
applications of these equations in the mathematical
modeling in various fields of both science and engineering
such as: control theory, physics, biological phenomena,
viscoelasticity, and signal processing (see [1–3]).
Furthermore, integro-differential equations are prevalent
in various physical phenomena, such as fluid dynamics,
biological models, and chemical kinetics. These equations
arise due to the complex interactions and behaviors observed
in these systems, requiring a combination of differential
and integral terms to accurately model their dynamics. For
instance, aero-elastic coupling in structures like wings and
wind turbine blades leads to integro-differential problems,
where control techniques play a crucial role in preventing
instabilities. Overall, the presence of integro-differential

equations in physical phenomena underscores the need for
advanced mathematical tools to understand and predict the
behavior of complex systems (see [4–6]). Recently, authors
used various fixed-point theorems to prove the existence
and uniqueness for the fractional differential equations with
initial and boundary conditions. For example, the existence
and uniqueness of solutions of differential equations
with a mixture of integer and fractional derivatives have
been investigated in [7]. The authors in [8] established
existence and uniqueness results of solutions for fractional
differential equations with integral boundary conditions by
means of the Banach contraction mapping principle under
sufficient conditions. The existence of solutions of integro-
fractional differential equation when δ ∈ (2, 3] through
fixed-point theorem have been studied in [9]. Researchers
in [10, 11] study the existence and uniqueness of solutions
for certain differential equations by using boundary and
initial conditions, along with various techniques based on
fixed-point theorems. The existence theory concerning
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fractional-order three-dimensional differential systems at
resonance is presented in [12]; for additional details see
these manuscripts [13–15].

On the other hand, the properties of Lp-solutions received
a large share of researchers focus. Arshad et al. [16]
examined Lp-solutions of fractional integral equations
involving the Riemann-Liouville integral operator using
a compactness condition. In [17] the author estimated
the existence of an integrable solution for the nonlinear
fractional differential equations involving two Caputo’s
fractional derivatives by means of Hölder’s inequality
together with Banach contraction principle and Schaefer’s
fixed-point theorem. Also see [18–21]. The Ulam-Hyers
(UH) stability analysis has been studied and obtain a great
part from the work of audiences [22, 23]. Murad and
Ameen in [24] researched the existence andUH stability of
nonlinear fractional differential equations of mixed Caputo-
Riemann derivatives. Vu et al. [25] proved theUH stability
for the nonlinear Volterra integro-differential equations.
Caputo-Hadamard (CH) fractional differential equations
have various applications in modeling complex systems
with memory effects in uncertain environments. Some
potential applications include: Describing physical systems
with memory effects and uncertain parameters, analyzing
energy harvesting systems with fractional order properties,
modeling biological systems with uncertain dynamics;
see [26–28]. A series of research papers investigated
the Hadamard derivative and CH derivative to prove the
existence and stability theorems. In [29], existence and
uniqueness of solution for Hadamard fractional differential
equations on an infinite interval with integral boundary
value has been developed. The theoretical analysis of
CH fractional boundary-value problems in Lp-spaces was
introduced in [30]. The authors in [31, 32], focus on the
existence and Ulam stability of solutions for certain CH
fractional differential equations. The study in [33] highlights
the existence of a solution for the boundary value problem of
a nonlinear CH fractional differential equation with integral
and anti-periodic conditions. Among the immense number
of papers dealing with Caputo-Hadamard and Hadamard
fractional differential equations subject to a variety of
boundary conditions using fixed-point theory; we refer
to [34–36]. Muthaiah et al. [37] discussed existence and of

solutions for Hadamard fractional differential equations with
integral boundary conditions. In [38] the authors applied
the Monch’s fixed-point theorem to prove the existence
result for the fractional boundary value problems with
CH derivative. Subsequently, many authors discussed
the subject of approximation solutions by the Adomian
decomposition method (ADM) for various types of FDE,
we allude to [39–41]. Abdulahad et al. in [42] proved the
existence of Lp-solutions for the following boundary value
problem

C Dδϕ(t) = V(t, ϕ(t)), 0 < δ < 1,

aϕ(A) + bϕ(T ) = c, t ∈ [A,T ].

Benhamida et al. [43] studied the existence of a solution for
the boundary value problem:

CH Dδ1+ϕ(t) = V(t, ϕ(t)),

aϕ(1) + bϕ(T ) = c,

where CH Dδ1+ is the CH derivative, (0 < δ ≤ 1) and a, b, c

are constants with
a + b , 0.

Wang et al. [44] employed the existence and uniqueness of
positive solutions for the following integral boundary value
problem:Dδ0+ϕ(t) + V(t, ϕ(t)) = 0, 0 < t < 1, δ ∈ (1, 2],

ϕ(0) = 0, ϕ′(1) =
∫ 1

0 ϕ(s)ds,

where Dδ is the Riemann-Liouville fractional derivative.
In this paper, first we study the following nonlinear

fractional differential equation with boundary conditions:

CHDδ1+ϕ(t) = V(t, ϕ(t)), t ∈ J = [1, e], (1.1)

ϕ(1) = ϕ′(1), ϕ(e) =
∫ e

1
ϕ(t)

dt
t
, (1.2)

where CHDδ1+ CH derivative, with 1 < δ ≤ 2 and

V : [1, e] × R→ R

is continuous function.
Second, the following fractional integro-differential

equations with boundary conditions are investigated:

CHDδ1+ϕ(t) = V(t,
∫ t

1

(ln( t
s ))δ−1

Γ(δ)
∆(s, ϕ(s))

ds
s

), (1.3)
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λ1ϕ(1) + λ2ϕ(T ) = λ3, I = [1,T ], (1.4)

where CHDδ1+ is the CH derivative and 0 < δ ≤ 1. Here
λ1–λ3 are constants

λ1 + λ2 , 0

with
V : I × R→ R, ∆ : I × R→ R

are continuous functions.
This paper is arranged as follows: In Section 2, we present

some preliminary results to be used later. In Section 3, the
Krasnoselskii’s fixed-point theorem and Banach contraction
principle are applied to analyze the existence and uniqueness
of solutions to the problems (1.1)–(1.4) in Lp-spaces.
Moreover, we discuss the UH and UH-Rassias stability
for the problems in Section 4. The ADM is implemented
to find the approximate solutions for the given problems
in Section 5. Finally, examples are also given to show the
applicability of our results.

2. Preliminaries

Let us give some definitions and lemmas that are basic
and needed at various places in this work.

Definition 2.1. [45] The Hadamard fractional integral of

order δ ∈ R for a continuous function V is defined as

Iδa+V(t) =
1
Γ(δ)

∫ t

a+

(
ln(

t
℘

)
)δ−1 V(℘)

℘
d℘, δ > 0

provided the integral exists.

Definition 2.2. [45] The Hadamard derivative of fractional

order δ ∈ R for a continuous function f is defined as

Dδa+V(t) =
1

Γ(n − δ)
(t

d
dt

)n
∫ t

a+

(
ln(

t
℘

)
)n−δ−1 V(℘)

℘
d℘,

where

n − 1 < δ < n, n = [δ] + 1,

where [δ] denotes the integer part of the real number δ.

Definition 2.3. [45] The CH derivative of fractional order
δ ∈ R for a continuous function V is defined as follows:

Dδa+V(t) =
1

Γ(n − δ)

∫ t

a+

(
ln(

t
℘

)
)n−δ−1

∆nV(℘)
d℘
℘
, (2.1)

where

n − 1 < δ < n, n = [δ] + 1, ∆ = (t
d
dt

),

and [δ] denotes the integer part of the real number δ, and Γ
is the gamma function.

Lemma 2.1. [45] Let

δ > 0 and n = [δ] + 1.

If ϕ ∈ ACn
δ[a, b], then the differential equation

CHDδa+ϕ(t) = 0

has solutions

ϕ(t) =
n−1∑
k=0

ck(ln
t
a

)k,

and the following formula holds:

Iδa+
CHDδa+ϕ(t) = ϕ(t) +

n−1∑
k=0

ck(ln
t
a

)k,

where ck ∈ R, k = 1, 2, · · · , n − 1.

Definition 2.4. [46] The Eq (1.1) is UH stable if there

exists a real number c f > 0 such that for each ε > 0 and for

each solution z ∈ C1([a, b],R) of the inequality

|CHDδ1+z(t) − V(t, z(t))| ≤ ε, t ∈ [a, b], (2.2)

there exists a solution ϕ ∈ C1([a, b],R) of Eq (1.1) with

|z(t) − ϕ(t)| ≤ cε, t ∈ [a, b].

Theorem 2.1. [47] (Krasnoselskii fixed-point theorem)
Let H be a closed, bounded, convex, and nonempty subset

of a Banach space V . Let A and B be two operators such that

(1) Az1 + Bz2 ∈ H whenever z1, z2 ∈ H;
(2) A is compact and continuous;
(3) B is a contraction mapping.

Then there exists z ∈ H such that

z = Az + Bz.

Lemma 2.2. [48] (Bochner integrable)
A measurable function

V : [a, b] × R→ R

is Bochner integrable, if ||V || is Lebesgue integrable.
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Theorem 2.2. [49] (Kolmogorov compactness criterion)
Let ν ⊆ Lp[a, b], 1 ≤ p < ∞. If:

(i) ν is bounded in Lp[a, b];

(ii) xh → x as h→ 0 uniformly with respect to x ∈ ν, then ν
is relatively compact in Lp[a, b], where

xh(t) =
1
h

∫ t+h

t
x(s)ds.

Lemma 2.3. [50] (Hölder’s inequality)
Let X be a measurable space, let p and q satisfy

1 ≤ p < ∞, 1 ≤ q < ∞,

and
1
p
+

1
q
= 1.

If h ∈ Lp(X) and g ∈ Lq(X), then (hg) belongs to L(X) and
satisfies ∫

X
|hg| dt ≤

(∫
X
|h|p dt

) 1
p
(∫

X
|g|q dt

) 1
q

.

Lemma 2.4. [36] If

0 < δ < 1, 1 < p < 1/(1 − δ),

then ∫ t

1
(ln

t
s

)p(δ−1) 1
sp ds ≤

(ln t)p(δ−1)+1

p(δ − 1) + 1
. (2.3)

3. Main results

3.1. Existence and uniqueness results for problems (1.1)

and (1.2)

This section deals with the existence and uniqueness of a
solution for the fractional differential Eq (1.1) with boundary
condition (1.2). For measurable functions

V : J × R→ R

define the norm

∥V∥pp =
∫ e

1
|V(t)|p dt, (1 ≤ p < ∞),

where Lp(J,R) is the Banach space of all Lebesgue
measurable functions. Now, consider the following
assumptions:

(F1) There exists a constant µ > 0 such that∣∣∣V(t, ϕ(t))
∣∣∣ ≤ µ |ϕ(t)|,

for each t ∈ J and for all ϕ ∈ R.

(F2) V(t, ϕ) is continuous and satisfies the Lipschitz
condition, there exists a constant ω1 > 0 such that

|V(t, ϕ1(t)) − V(t, ϕ2(t))| ≤ ω1|ϕ1(t) − ϕ2(t)|,

for each ϕ1, ϕ2 ∈ R.

For the sake of convenience, we set the notation:

ℵ1 =

( 23p

(Γ(δ))p (
p − 1
pδ − 1

)p−1 +
23p

(Γ(δ + 1))p (
p − 1

p(δ + 1) − 1
)p−1

)(
2pe − 1

)
,

ℵ2 =

( 22p

(Γ(δ))p (
p − 1
pδ − 1

)p−1 +
22p

(Γ(δ + 1))p (
p − 1

p(δ + 1) − 1
)p−1

) 1
p (

2pe − 1
) 1

p ,

℧1 =

(
ℵ1 +

( 2p

(Γ(δ))p (
p − 1
pδ − 1

)p−1 e
pδ

))
.

Lemma 3.1. For any

ϕ(t) ∈ C(J,R), 1 < δ ≤ 2,

then the boundary value problems (1.1) and (1.2) have a

solution

ϕ(t) =2(ln(t) + 1)
∫ e

1

(ln e
s − δ)(ln

e
s )δ−1

Γ(δ + 1)
V(s, ϕ(s))

ds
s

+

∫ t

1

(ln t
s )δ−1

Γ(δ)
V(s, ϕ(s))

ds
s
.

(3.1)

Proof. Applying Lemma 2.1, we can reduce the
problems (1.1) and (1.2) to an equivalent integral equation

ϕ(t) = c0 + c1 ln(t) +
∫ t

1

(ln t
s )δ−1

Γ(δ)
V(s, ϕ(s))

ds
s

to find c0 and c1, from the first boundary condition

ϕ(1) = ϕ′(1),

we obtain

ϕ(t) = c0(log(t) + 1) +
∫ t

1

(log t
s )δ−1

Γ(δ)
V(s, ϕ(s))

ds
s
,

by using the condition

ϕ(e) =
∫ e

1
ϕ(t)

dt
t
,
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the result is

ϕ(e) = 2c0 +

∫ e

1

(log e
s )δ−1

Γ(δ)
V(s, ϕ(s))

ds
s

and∫ e

1
ϕ(t)

dt
t
=

3
2

c0 +

∫ e

1

∫ t

1

(log t
s )δ−1

Γ(δ)
V(s, ϕ(s))

ds
s

dt
t
,

by using Fubini’s theorem, the following is obtain∫ e

1
ϕ(t)

dt
t
=

3
2

c0 +

∫ e

1

(log e
s )δ

δΓ(δ)
V(s, ϕ(s))

ds
s
.

Hence

c0 = 2
∫ e

1

(log e
s − δ)(log e

s )δ−1

Γ(δ + 1)
V(s, ϕ(s))

ds
s
,

this implies that

ϕ(t) =2(log(t) + 1)
∫ e

1

(log e
s − δ)(log e

s )δ−1

Γ(δ + 1)
V(s, ϕ(s))

ds
s

+

∫ t

1

(log t
s )δ−1

Γ(δ)
V(s, ϕ(s))

ds
s
.

This completes the poof. □

The first result is based on Banach contraction principle.

Theorem 3.1. Assume that (F1) and (F2) hold. If

(℧1)
1
p ω1 < 1.

Then the boundary value problems (1.1) and (1.2) have a

unique solution.

Proof. Define the operator ⊤ by

(⊤ϕ)(t) =2(ln(t) + 1)
∫ e

1

(ln e
s − δ)(ln

e
s )δ−1

Γ(δ + 1)
V(s, ϕ(s))

ds
s

+

∫ t

1

(ln t
s )δ−1

Γ(δ)
V(s, ϕ(s))

ds
s
,

we need to prove that the operator ⊤ has a fixed-point on the
set

ϑu = {ϕ ∈ Lp(J) : ||ϕ||pp ≤ up, u > 0}.

For ϕ ∈ ϑu, we have

|⊤(ϕ)(t)|p ≤
2p

(Γ(δ))p

( ∫ t

1
(ln

t
s

)δ−1|V(s, ϕ(s))|
ds
s

)p

+
23p

(Γ(δ + 1))p

(
ln(t) + 1

)p
( ∫ e

1
(ln

e
s

)δ|V(s, ϕ(s))|
ds
s

)p

+
23p

(Γ(δ))p

(
ln(t) + 1

)p
( ∫ e

1
(ln

e
s

)δ−1|V(s, ϕ(s))|
ds
s

)p
.

(3.2)

By Hölder’s inequality and Lemma 2.4 we obtain

( ∫ t

1
(ln

t
s

)δ−1|V(s, ϕ(s))|
ds
s

)p
≤

(ln(t))pδ−1

( pδ−1
p−1 )p−1

(
∫ t

1
|V(s, ϕ(s))|pds).

(3.3)
Now, by the same way we find that

( ∫ e

1
(ln

e
s

)δ−1|V(s, ϕ(s))|
ds
s

)p
≤

1

( pδ−1
p−1 )p−1

(
∫ e

1
|V(s, ϕ(s))|pds)

(3.4)

and( ∫ e

1
(ln

e
s

)δ|V(s, ϕ(s))|
ds
s

)p
≤

1

( p(δ+1)−1
p−1 )p−1

(
∫ e

1
|V(s, ϕ(s))|pds).

(3.5)

Thus, Eqs (3.3)–(3.5) are Lebesgue integrable;
by using Lemma 2.2, we conclude that
(ln e

s )δ−1V(s, ϕ(s)), (ln e
s )δV(s, ϕ(s)), and (ln t

s )δ−1V(s, ϕ(s))
are Bochner integrable with respect to s ∈ [1, t]; for all
t ∈ J, then the Eq (3.2) becomes∫ e

1
|⊤(ϕ)(t)|pdt

≤
2p

(Γ(δ))p

∫ e

1

(ln(t))pδ−1

( pδ−1
p−1 )p−1

∫ t

1
|V(s, ϕ(s))|pdsdt

+

( 23p

(Γ(δ))p

1

( pδ−1
p−1 )p−1

+
23p

(Γ(δ + 1))p

1

( p(δ+1)−1
p−1 )p−1

)
∫ e

1

(
ln(t) + 1

)p
∫ e

1
|V(s, ϕ(s))|pdsdt.

Then, by the condition (F1) implies that∫ e

1
|⊤(ϕ)(t)|pdt

≤
2p µp

(Γ(δ))p

∫ e

1

(ln(t))pδ−1

( pδ−1
p−1 )p−1

∫ t

1
|ϕ(s)|pdsdt

+

( 23p µp

(Γ(δ))p (
p − 1
pδ − 1

)p−1 +
23p µp

(Γ(δ + 1))p (
p − 1

p(δ + 1) − 1
)p−1

)
∫ e

1

(
ln(t) + 1

)pdt
∫ e

1
|ϕ(s)|pds.

Integrate by parts; the following is obtained:

||⊤ϕ||
p
p ≤

2p

(Γ(δ))p (
p − 1
pδ − 1

)p−1µp e
pδ

∫ e

1
|ϕ(t)|pdt +

( 23p

(Γ(δ))p (
p − 1
pδ − 1

)p−1

+
23p

(Γ(δ + 1))p (
p − 1

p(δ + 1) − 1
)p−1

)
µp(2pe − 1

) ∫ e

1
|ϕ(s)|pds
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and

||⊤ϕ||
p
p ≤

(
ℵ1 +

2p

(Γ(δ))p (
p − 1
pδ − 1

)p−1 e
pδ

)
µp up,

||⊤ϕ||p ≤ (℧1)
1
p µ u,

which implies that ⊤ϑu ⊆ ϑu.

Hence, ⊤(ϕ)(t) is Lebesgue integrable and ⊤maps ϑu into
itself. We have to show that ⊤ is a contraction mapping. Let
ϕ1, ϕ2 ∈ Lp(J), we have

∫ e

1
|⊤(ϕ1(t)) − ⊤(ϕ2(t))|pdt ≤ 2p

∫ e

1

( ∫ t

1

(ln t
s )δ−1

Γ(δ)∣∣∣V(s, ϕ1(s)) − V(s, ϕ2(s))
∣∣∣ds

s

)p
dt + 23p

∫ e

1
(ln(t) + 1)p

( ∫ e

1

(ln e
s )δ−1

Γ(δ)

∣∣∣V(s, ϕ1(s)) − V(s, ϕ2(s))
∣∣∣ds

s

)p
dt + 23p

∫ e

1
(ln(t) + 1)p

( ∫ e

1

(ln e
s )δ

Γ(δ + 1)

∣∣∣V(s, ϕ1(s)) − V(s, ϕ2(s))
∣∣∣ds

s

)p
dt.

Using (F2) and Hölder’s inequality, one has

∫ e

1
|⊤(ϕ1(t)) − ⊤(ϕ2(t))|pdt ≤

2pω
p
1

(Γ(δ))p (
p − 1
pδ − 1

)p−1
∫ e

1
(ln(t))pδ−1

∫ t

1
|ϕ1(s) − ϕ2(s)|pdsdt +

23pω
p
1

(Γ(δ))p (
p − 1
pδ − 1

)p−1
∫ e

1
(ln(t) + 1)p

∫ e

1
|ϕ1(s) − ϕ2(s)|pdsdt +

23pω
p
1

(Γ(δ + 1))p (
p − 1

p(δ + 1) − 1
)p−1∫ e

1
(ln(t) + 1)p

∫ e

1
|ϕ1(s) − ϕ2(s)|pdsdt.

Integrate by parts, leads to

||⊤ϕ1 − ⊤ϕ2||p ≤

[ 2p

(Γ(δ))p (
p − 1
pδ − 1

)p−1 e
pδ
+

( 23p

(Γ(δ))p

(
p − 1
pδ − 1

)p−1 +
23p

(Γ(δ + 1))p (
p − 1

p(δ + 1) − 1
)p−1

)
(
2pe − 1

)] 1
p

ω1||ϕ1 − ϕ2||p

and

||⊤ϕ1 − ⊤ϕ2||p ≤ (℧1)
1
p ω1||ϕ1 − ϕ2||p.

If

(℧1)
1
p ω1 < 1,

then by the contraction mapping principle, the boundary
value problems (1.1) and (1.2) have a unique solution. □

The following result is based on Krasnoselskii’s fixed-
point theorem.

Theorem 3.2. Assume that (F1) and (F2) hold. Then the

boundary value problems (1.1) and (1.2) have at least one

solution.

Proof. Let us define two operators, χ1 and χ2, from Eq (3.1)
as

(χ1ϕ)(t) =
∫ t

1

(ln t
s )δ−1

Γ(δ)
V(s, ϕ(s))

ds
s
,

(χ2ϕ)(t) = 2(ln(t) + 1)
∫ e

1

(ln e
s − δ)(ln

e
s )δ−1

Γ(δ + 1)
V(s, ϕ(s))

ds
s
.

Consider the set

ðr = {ϕ ∈ Lp(J) : ||ϕ||pp ≤ rp, r > 0}.

For x, y ∈ ðr, we have∫ e

1
|(χ1x)(t) + (χ2y)(t)|pdt ≤

2p

(Γ(δ))p

∫ e

1

( ∫ t

1
(ln

t
s

)δ−1

|V(s, x(s))|
ds
s

)p
dt +

23p

(Γ(δ + 1))p

∫ e

1
(ln(t) + 1)p

( ∫ e

1
((ln

e
s

)δ|V(s, ϕ(s))|
ds
s

)p
dt +

23p

(Γ(δ))p

∫ e

1
(ln(t) + 1)p

( ∫ e

1
(ln

e
s

)δ−1|V(s, ϕ(s))|
ds
s

)p
dt. (3.6)

By (F1) and Hölders inequality, Eq (3.6) becomes∫ e

1
|(χ1x)(t) + (χ2y)(t)|pdt ≤

2pµp

(Γ(δ))p

∫ e

1

(ln(t))pδ−1

( pδ−1
p−1 )p−1∫ t

1
|x(s)|pdsdt +

23pµp

(Γ(δ + 1))p

( p − 1
p(δ + 1) − 1

)p−1

∫ e

1
(ln(t) + 1)p

∫ e

1
|ϕ(s)|pdsdt +

23pµp

(Γ(δ))p

( p − 1
pδ − 1

)p−1

∫ e

1
(ln(t) + 1)p

∫ e

1
|ϕ(s)|pdsdt.

It follows from integration by parts, that

||χ1x + χ2y||p ≤
[ 2p

(Γ(δ))p (
p − 1
pδ − 1

)p−1 e
pδ
||x(t)||pp

+

( 23p

(Γ(δ))p (
p − 1
pδ − 1

)p−1 +
23p

(Γ(δ + 1))p (
p − 1

p(δ + 1) − 1
)p−1

)
(
2pe − 1

)
||ϕ(t)||pp

] 1
p

µ

and
||χ1x + χ2y||p ≤ (℧1)

1
p µr.

Hence,
χ1x + χ2y ∈ ðr.
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Now, to prove that χ2 is a contraction mapping on ðr, from
(F2) and Hölder inequality, it is easy to see that

||χ2ϕ1 − χ2ϕ2||
p
p ≤

( 22p

(Γ(δ))p

( p − 1
pδ − 1

)p−1
+

22p

(Γ(δ + 1))p( p − 1
p(δ + 1) − 1

)p−1)
ω

p
1

∫ e

1
(ln(t) + 1)pdt

∫ e

1

∣∣∣ϕ1(s) − ϕ2(s)
∣∣∣pds,

||χ2ϕ1 − χ2ϕ2||p ≤

( 22p

(Γ(δ))p (
p − 1
pδ − 1

)p−1(2pe − 1
)

+
22p

(Γ(δ + 1))p (
p − 1

p(δ + 1) − 1
)p−1(2pe − 1

)) 1
p

ω1||ϕ1 − ϕ2||p

and
||χ2ϕ1 − χ2ϕ2||p ≤ ℵ2ω1||ϕ1 − ϕ2||p.

If ℵ2ω1 < 1, then χ2 is a contraction mapping.
We need to show that χ1 is compact and continuous, for

any x ∈ ðr, we have

||χ1x||p ≤
1
Γ(δ)

(( p − 1
pδ − 1

)p−1 e
pδ

) 1
p

µ r.

Hence, χ1 is uniformly bounded. To show that χ1

is completely continuous, we apply Theorem 2.2, the
Kolmogorov compactness criterion. Let Ω be a bounded
subset of ðr. Then χ1(Ω) is bounded in Lp(J), the condition
(i) of Theorem 2.2 is applied. Next we will show that
(χ1x)h → χ1x in Lp(J) as h → 0, uniformly with respect
to x ∈ Ω.We have the following estimation:

||(χ1x)h(t) − (χ1x)(t)||pp =
∫ e

1

∣∣∣(χ1x)h(s) − (χ1x)(t)
∣∣∣pdt,

≤

∫ e

1

∣∣∣1
h

∫ t+h

t
(χ1x)(s)ds − (χ1x)(t)

∣∣∣pdt,

||(χ1x)h(t) − (χ1x)(t)||pp ≤
∫ e

1

1
h

∫ t+h

t

∣∣∣IδV(s, x(s))

− IδV(t, x(t))
∣∣∣pdsdt.

Since V ∈ Lp(J), we get that IδV ∈ Lp(J)

1
h

∫ t+h

t

∣∣∣IδV(s, x(s)) − IδV(t, x(t))
∣∣∣pds→ 0.

Hence
(χ1x)h(t)→ (χ1x)(t),

uniformly a h→ 0.
Then, by Theorem 2.2, we deduce that χ1(Ω) is relatively

compact; that is, χ1 is a compact operator. As a consequence
of Krasnoselskiis fixed-point theorem, the boundary value
problems (1.1) and (1.2) have at least one solution in ðr. □

3.2. Existence of solution for the fractional

integro-differential equation

In this section, we prove the existence and uniqueness
of solutions through Krasnoselskiis and Banach fixed-point
theorems for the integro-differential equations

CHDδ1+ϕ(t) = V(t,
∫ t

1

(ln( t
s ))δ−1

Γ(δ)
∆(s, ϕ(s))

ds
s

) (3.7)

with the boundary condition

λ1ϕ(1) + λ2ϕ(T ) = λ3, I = [1,T ]. (3.8)

For measurable functions

V : I × R→ R,

define the norm

∥V∥pp =
∫ T

1
|V(t)|p dt, (1 ≤ p < ∞),

where Lp(I,R) is the Banach space of all Lebesgue
measurable functions. In order to achieve the results, the
following assumptions are required:

(P1) There exists positive constants η1 and η2 such that∣∣∣V(t, ϕ(t))
∣∣∣ ≤ η1|ϕ(t)|

and ∣∣∣∆(t, ϕ(t))
∣∣∣ ≤ η2|ϕ(t)|

for each t ∈ I and all ϕ ∈ R.

(P2) There exists a positive constants ϱ1, ϱ2 > 0, such that∣∣∣V(t, ϕ1(t)) − V(t, ϕ2(t))
∣∣∣ ≤ ϱ1|ϕ1(t) − ϕ2(t)|,

∣∣∣∆(t, ϕ1(t)) − ∆(t, ϕ2(t))
∣∣∣ ≤ ϱ2|ϕ1(t) − ϕ2(t)|,

for each ϕ1, ϕ2 ∈ R.

For computational convenience, we set

Λ1 =
λ3

λ1 + λ2
, Λ2 =

λ2

λ1 + λ2
,

℧3 =

( (2ϱ1ϱ2)p

(Γ(δ))2p (
p − 1
pδ − 1

)2p−2 (ln(T ))2pδ

2(pδ)2 T 2

+
(2Λ2ϱ1ϱ2)p

(Γ(δ))2p pδ
(ln(T ))2pδ−1

( pδ−1
p−1 )2p−2

T (T − 1)
)
,
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ℑ1 =
(2η1η2)p

2(Γ(δ))2p(pδ)2

T 2(ln(T ))2pδ

( pδ−1
p−1 )2p−2

+
22p(Λ2η1η2)p

(Γ(δ))2p pδ
(ln(T ))2pδ−1

( pδ−1
p−1 )2p−2

T (T − 1),

ℑ2 =22p(T − 1)|Λ1|
p,

ℑ3 =

( (Λ2ϱ1ϱ2)p

(Γ(δ))2p pδ
(ln(T ))2pδ−1

( pδ−1
p−1 )2p−2

T (T − 1)
) 1

p

.

Lemma 3.2. Let ϕ ∈ C(I,R) and 0 < δ ≤ 1, then the

solution of the boundary value problems (3.7) and (3.8) is

given by

ϕ(t) =
∫ t

1

(ln( t
s ))δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s

− Λ2

∫ T

1

(ln( T
s ))δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s
+ Λ1.

(3.9)

Proof. By applying Lemma 2.1, we can reduce the
problems (3.7) and (3.8) to an integral equation

ϕ(t) =
∫ t

1

(ln( t
s ))δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s
+ c1,

from the boundary condition (3.8), we obtain

c1 = Λ1 − Λ2

∫ T

1

(ln( T
s ))δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s
.

Then the solution is

ϕ(t) =
∫ t

1

(ln( t
s ))δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s

− Λ2

∫ T

1

(ln T
s )δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s

+ Λ1.

The proof is completed. □

Our first result is based on krasnoselskii’s fixed-point
theorem.

Theorem 3.3. Assume that (P1) and (P2) hold. Then the

boundary value problems (3.7) and (3.8) have at least one

solution.

Proof. Let us define two operators,ϖ1 andϖ, from Eq (3.9)
as

ϖ1(ϕ)(t) =
∫ t

1

(ln t
s )δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s
,

ϖ(ϕ)(t) =Λ1 − Λ2

∫ T

1

(ln T
s )δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)

∆(℘, ϕ(℘))
d℘
℘

)
ds
s
.

Consider the set

δr = {ϕ ∈ I : ||ϕ||pp ≤ rp, r > 0}.

For x, ϕ ∈ δr, we have∫ T

1
|(ϖ1x)(t) + (ϖϕ)(t)|pdt ≤

2p

(Γ(δ))p

∫ T

1

( ∫ t

1
(ln

t
s

)δ−1

∣∣∣V(s,
∫ s

1
(
ln( s
℘

))δ−1

Γ(δ)
∆(℘, x(℘))

d℘
℘

)
∣∣∣ds

s

)p
dt

+
22pΛ

p
2

(Γ(δ))p

∫ T

1

( ∫ T

1
(ln

T
s

)δ−1
∣∣∣V(s,

∫ s

1
(
ln( s
℘

))δ−1

Γ(δ)

∆(℘, ϕ(℘))
d℘
℘

)
∣∣∣ds

s

)p
dt + 22p(T − 1)|Λ1|

p.

By using (P1) and Hölder’s inequality, the below is found:∫ T

1
|(ϖ1x)(t) + (ϖϕ)(t)|pdt ≤

(2η1η2)p

(Γ(δ))2p

∫ T

1

(ln(t))pδ−1

( pδ−1
p−1 )2p−2∫ t

1
(ln(s))pδ−1

∫ s

1
|x(℘)|pd℘dsdt + 22p(T − 1)|Λ1|

p

+
22p(Λ2η1η2)p

(Γ(δ))2p

(ln(T ))pδ−1

( pδ−1
p−1 )2p−2

∫ T

1

∫ T

1
(ln(s))pδ−1

∫ s

1
|ϕ(℘)|pd℘dsdt.

Integrate by parts, the result are

||ϖ1x +ϖϕ||pp ≤
(2η1η2)p

2(Γ(δ))2p(pδ)2

T 2

( pδ−1
p−1 )2p−2

(ln(T ))2pδ||x||pp

+ 22p(T − 1)|Λ1|
p

+
22p(Λ2η1η2)p

(Γ(δ))2p pδ
(ln(T ))2pδ−1

( pδ−1
p−1 )2p−2

T (T − 1)||ϕ||pp

and

||ϖ1x +ϖϕ||p ≤
(
ℑ1 rp + ℑ2

) 1
p ≤ r.

Hence, ϖ1x +ϖϕ ∈ δr.

Now, to prove that ϖ is a contraction in Lp(I). Letting
ϕ1, ϕ2 ∈ Lp(I), we have∫ T

1
|(ϖϕ1)(t) − (ϖϕ2)(t)|pdt ≤

Λ
p
2

(Γ(δ))p

∫ T

1

( ∫ T

1
(ln(

T
s

))δ−1

∣∣∣V(s,
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ1(℘))

d℘
℘

)

− V(s,
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ2(℘))

d℘
℘

)
∣∣∣ds

s

)p
dt. (3.10)
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Then from (P2) and Hölder’s inequality, Eq (3.10) becomes

||ϖϕ1 −ϖϕ2||
p
p ≤

(Λ2ϱ1ϱ2)p

(Γ(δ))2p pδ
(ln(T ))2pδ−1

( pδ−1
p−1 )2p−2

T (T − 1) ||ϕ2 − ϕ1||
p
p

and

||ϖϕ1 −ϖϕ2||p ≤ ℑ3 ||ϕ1 − ϕ2||p.

If ℑ3 < 1, then ϖ is a contraction mapping principle.
Moreover, continuity of x(t) implies that the operator ϖ1x

is continuous

||(ϖ1x)(t)||p ≤
1

(Γ(δ))2

( (ln(T ))2pδ

2(pδ)2

T 2

( pδ−1
p−1 )2p−2

) 1
p

η1η2r.

Hence, ϖ1 is uniformly bounded on δr.
Next to show that ϖ1 is completely continuous, we apply

Theorem 2.2, the Kolmogorov compactness criterion. Let ζ
be a bounded subset of δr. Then ϖ1(ζ) is bounded in Lp(I)
and the condition (i) of Theorem 2.2 is applied. Next, to
show that (ϖ1x)h → ϖ1x in Lp(I) as h→ 0, uniformly with
respect to x ∈ ζ. Let

Ξ1(s) =
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, x(℘))

d℘
℘
,

Ξ2(t) =
∫ t

1

(ln( t
s ))δ−1

Γ(δ)
∆(s, x(s))

ds
s
,

and∫ T

1
|⊤(ϖ1x)h(t) − ⊤(ϖ1x)(t)|pdt

≤

∫ T

1
|
1
h

∫ t+h

t
(ϖ1x)(s)ds − (ϖ1x)(t)|pdt,∫ T

1
|⊤(ϖ1x)h(t) − ⊤(ϖ1x)(t)|pdt

≤

∫ T

1

1
h

∫ t+h

t
|IδV(s,Ξ1(s)) − IδV(t,Ξ2(t))|pdsdt.

(3.11)

Since V ∈ Lp(I), we get that IδV ∈ Lp(I), so we have

1
h

∫ t+h

t
|IδV(s,Ξ1(s)) − IδV(t,Ξ2(t))|pds→ 0.

Then by Theorem 2.2, we deduce that ϖ1(ζ) is relatively
compact; this implies that ϖ1 is a compact operator. As
a consequence of Krasnoselskiis fixed-point theorem the
boundary value problems (3.7) and (3.8) have at least one
solution. The proof is complete. □

Now, the uniqueness result for the problems (3.7)
and (3.8) is based on the Banach contraction principle.

Theorem 3.4. Suppose that (P1) and (P2) holds. If

(℧3)
1
p < 1.

Then the boundary value problems (3.7) and (3.8) have a

unique solution.

Proof. Define the operator

θ : Lp(I)→ Lp(I)

as follows:

(θϕ)(t) =
∫ t

1

(ln t
s )δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s

− Λ2

∫ T

1

(ln T
s )δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s
+ Λ1.

We need to show that θσr ⊆ σr, where,

σr = {ϕ ∈ Lp(I) : ||ϕ||pp ≤ rp, r > 0}.

For ϕ ∈ σr, we have

∫ T

1
|(θϕ)(t)|pdt ≤

2p

(Γ(δ))p

∫ T

1

( ∫ t

1
(ln

t
s

)δ−1

∣∣∣V(s,
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
∣∣∣ds

s

)p
dt

+ 22p
∫ T

1
|Λ1|

pdt +
22pΛ

p
2

(Γ(δ))p

∫ T

1

( ∫ T

1
(ln(

T
s

))δ−1

∣∣∣V(s,
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

∣∣∣ds
s

)p
dt.

It follows from condition (P1) and Hölder’s inequality that

||θϕ||
p
p ≤

(2η1η2)p

2(Γ(δ))2p(pδ)2

T 2

( pδ−1
p−1 )2p−2

(ln(T ))2pδ||ϕ||
p
p

+ 22p(T − 1)|Λ1|
p

+
22p(Λ2η1η2)p

(Γ(δ))2p pδ
(ln(T ))2pδ−1

( pδ−1
p−1 )2p−2

T (T − 1)||ϕ||pp.

Hence, θ maps Lp(I) into itself. Now, to prove that θ is a
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contraction mapping. Let ϕ1, ϕ2 ∈ Lp(I), we get

∫ T

1
|(θϕ1)(t) − (θϕ2)(t)|pdt ≤

2p

(Γ(δ))p

∫ T

1

( ∫ t

1
(ln(

t
s

))δ−1

∣∣∣V(s,
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ1(℘))

d℘
℘

)

− V(s,
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ2(℘))

d℘
℘

)
∣∣∣ds

s

)p
dt

+
2pΛ

p
2

(Γ(δ))p

∫ T

1

( ∫ T

1
(ln(

T
s

))δ−1
∣∣∣V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)

∆(℘, ϕ1(℘))
d℘
℘

) − V(s,
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ2(℘))

d℘
℘

)
∣∣∣ds

s

)p
dt.

By repeating the same technique of Theorem 3.3, it
immediately follows that

||θϕ1 − θϕ2||p ≤

( (2ϱ1ϱ2)p

2(Γ(δ))2p(pδ)2

T 2

( pδ−1
p−1 )2p−2

(ln(T ))2pδ

+
(2Λ2ϱ1ϱ2)p

(Γ(δ))2p pδ
(ln(T ))2pδ−1

( pδ−1
p−1 )2p−2

T (T − 1)
) 1

p

||ϕ2 − ϕ1||p

and

||θϕ1 − θϕ2||p ≤ (℧3)
1
p ||ϕ1 − ϕ2||p.

If

(℧3)
1
p < 1,

then θ is a contraction mapping. Therefore, by using Banach
contraction mapping, θ has a unique fixed point, which
is a unique solution of the boundary value problems (3.7)
and (3.8). □

4. UH stability

In this section, we will study the analysis of UH
stability of the fractional differential Eq (1.1) with boundary
condition (1.2) and for the problems (3.7) and (3.8).

4.1. UH stability for problems (1.1) and (1.2)

Theorem 4.1. If the hypothesis (F2) holds with

ω
p
1℧1 < 1.

Then the boundary value problems (1.1) and (1.2) are UH

stable.

Proof. For ϵ > 0 and w be a solution that satisfies the
following inequality

|CHDδ1+w(t) − V(t,w(t))| ≤ ϵ, (4.1)

there exists a solution ϕ ∈ Lp(J) of the boundary value
problems (1.1) and (1.2). Then ϕ(t) is given by

ϕ(t) =2(ln(t) + 1)
∫ e

1

(ln e
s − δ)(ln

e
s )δ−1

Γ(δ + 1)
V(s, ϕ(s))

ds
s

+

∫ t

1

(ln t
s )δ−1

Γ(δ)
V(s, ϕ(s))

ds
s
.

From the inequality (4.1) and for each t ∈ J, we have

|w(t) − 2(ln(t) + 1)
∫ e

1

(ln e
s − δ)(ln

e
s )δ−1

Γ(δ + 1)
V(s,w(s))

ds
s

−

∫ t

1

(ln t
s )δ−1

Γ(δ)
V(s,w(s))

ds
s
|p ≤

(
ϵ(ln(t))δ

Γ(δ + 1)

)p
.

On the other hand, for each t ∈ J, the below is found

|w(t) − ϕ(t)|p

≤ 2p ϵ
p(ln(t))pδ

(Γ(δ + 1))p + 22p
( ∫ t

1

(ln t
s )δ−1

Γ(δ)
|V(s,w(s)) − V(s, ϕ(s))|

ds
s

)p

+ 23p(ln(t) + 1)p
( ∫ e

1

(ln e
s )δ

Γ(δ + 1)
|V(s,w(s)) − V(s, ϕ(s))|

ds
s

)p

+ 23p(ln(t) + 1)p
( ∫ e

1

(ln e
s )δ−1

Γ(δ)
|V(s,w(s)) − V(s, ϕ(s))|

ds
s

)p
.

Thus, by condition (F2) and Hölder inequality which
implies that∫ e

1
|w(t) − ϕ(t)|pdt ≤ 2p

∫ e

1

ϵ p(ln(t))pδ

(Γ(δ + 1))p dt

+
22pω

p
1

(Γ(δ))p

∫ e

1

(ln(t))pδ−1

( pδ−1
p−1 )p−1

∫ t

1
|w(s) − ϕ(s)|pdsdt

+

( 23pω
p
1

(Γ(δ))p (
p − 1
pδ − 1

)p−1 +
23pω

p
1

(Γ(δ + 1))p (
p − 1

p(δ + 1) − 1
)p−1

)
∫ e

1
(ln(t) + 1)pdt

∫ e

1
|w(s) − ϕ(s)|pds.

Integrating by parts, we have

||w − ϕ||pp ≤
2p e ϵ p

(Γ(δ + 1))p + ω
p
1℧1||w − ϕ||

p
p.

Hence
|w − ϕ||p ≤ ccϵ,

where

cc =
2 e

1
p

(1 − ωp
1℧1)

1
p Γ(δ + 1)

,

which implies that the boundary value problems (1.1)
and (1.2) haveUH stability. □
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4.2. UH stability for problems (3.7) and (3.8)

Theorem 4.2. If the hypothesis (P2) holds with ℧3 < 1.
Then the boundary value problems (3.7) and (3.8) are UH

stable.

Proof. For ϵ > 0 and each solution w ∈ Lp(I) of the
inequality

|CHDδ1+w(t)−V(t,
∫ t

1

(ln( t
s ))δ−1

Γ(δ)
∆(s,w(s))

ds
s

)|p ≤ ϵ p, (4.2)

and there exists a solution ϕ ∈ Lp(I) of the boundary value
problems (3.7) and (3.8). Then ϕ(t) is given by

ϕ(t) =
∫ t

1

(ln t
s )δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s

− Λ2

∫ T

1

(ln T
s )δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
ds
s

+ Λ1.

From the inequality (4.2) and for each t ∈ I, we obtain

|w(t) −
∫ t

1

(ln( t
s ))δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘,w(℘))

d℘
℘

)
ds
s

+ Λ2

∫ T

1

(ln( T
s ))δ−1

Γ(δ)
V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘,w(℘))

d℘
℘

)
ds
s

− Λ1|
p ≤

(ln(t))pδ

(Γ(δ + 1))p ϵ
p,

for each t ∈ I, the below is found

∫ T

1
|w(t) − ϕ(t)|pdt

≤ 2pϵ p
∫ T

1

(ln(t))pδ

(Γ(δ + 1))p dt +
22p

(Γ(δ))p∫ T

1

( ∫ t

1
(ln

t
s

)δ−1
∣∣∣∣∣V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘,w(℘))

d℘
℘

)

− V(s,
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
∣∣∣∣∣ds

s

)p
dt +

22p|Λ2|
p

(Γ(δ))p∫ T

1

( ∫ T

1
(ln(

T
s

))δ−1
∣∣∣∣∣V(s,

∫ s

1

(ln( s
℘

))δ−1

Γ(δ)
∆(℘,w(℘))

d℘
℘

)

− V(s,
∫ T

1

(ln( T
s ))δ−1

Γ(δ)
∆(℘, ϕ(℘))

d℘
℘

)
∣∣∣∣∣ds

s

)p
dt,

by (P2), for each t ∈ I, we obtain∫ T

1
|w(t) − ϕ(t)|pdt

≤ 2pϵ p
∫ T

1

(ln(t))pδ

(Γ(δ + 1))p dt +
2p(ϱ1ϱ2)p

(Γ(δ))p∫ T

1

( ∫ t

1
(ln(

t
s

))δ−1
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)

∣∣∣w(℘) − ϕ(℘)
∣∣∣d℘
℘

ds
s

)p
dt

+
2p(ϱ1ϱ2)pΛ

p
2

(Γ(δ))p

∫ T

1

( ∫ T

1
(ln(

T
s

))δ−1
∫ s

1

(ln( s
℘

))δ−1

Γ(δ)∣∣∣w(℘) − ϕ(℘)
∣∣∣d℘
℘

ds
s

)p
dt.

It follows from Hölder’s inequality and integration by
parts that

||w − ϕ||pp

≤
2pT (ln(T ))pδ

(Γ(δ + 1))p ϵ
p +

( (2ϱ1ϱ2)p

2(Γ(δ))2p(pδ)2

T 2

( pδ−1
p−1 )2p−2

(ln(T ))2pδ

+
(2Λ2ϱ1ϱ2)p

(Γ(δ))2p pδ
(ln(T ))2pδ−1

( pδ−1
p−1 )2p−2

T (T − 1)
)
||w − ϕ||pp

and

||w − ϕ||pp ≤
2pT (ln(T ))pδ

(1 −℧3)(Γ(δ + 1))p ϵ
p.

Hence
||w − ϕ||p ≤ chϵ, t ∈ I,

where

ch =
( 2pT (ln(T ))pδ

(1 −℧3)(Γ(δ + 1))p

) 1
p .

Thus, the solution of (3.7) and (3.8) isUH stable. □

5. Examples

In this section, some examples are given to illustrate our
main results.

Example 5.1. Consider the fractional boundary differential

equation

CHD
3
2
1+ϕ(t) =

2 cos(t)
e4t

|ϕ|

1 + |ϕ|
,

ϕ(1) = ϕ′(1), ϕ(e) =
∫ e

1
ϕ(t)

dt
t
,

(5.1)

where

δ =
3
2
, V(t, ϕ(t)) =

2 cos(t)
e4t

|ϕ|

1 + |ϕ|
and µ = 0.0198, from condition (F2), we get

ω1 = 0.01979196385.
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To prove the existence of a solution, Theorem 3.2 is
applied as follows:

||χ1x + χ2y||p ≤
[ 2p

(Γ( 3
2 ))p

( p − 1
3p
2 − 1

)p−1 e
3p
2

+

( 23p

(Γ( 3
2 ))p

( p − 1
3p
2 − 1

)p−1

+
23p

(Γ( 5
2 ))p

( p − 1
5p
2 − 1

)p−1)(
2pe − 1

)] 1
p

(0.0198),

||χ1x + χ2y||p ≤(℧1)
1
p µ r ≤ r.

After taken r = 1, one can has:

If p = 2, then (℧1)
1
p (0.0198) r = 0.4489.

If p = 3, then (℧1)
1
p (0.0198) r = 0.3485.

If p = 4, then (℧1)
1
p (0.0198) r = 0.3137.

The second step shows that χ2 is a contraction mapping

||χ2ϕ1 − χ2ϕ2||p ≤ ℵ2ω1||ϕ1 − ϕ2||p.

If p = 2, then (ℵ2)
1
2 = 11.0867, (ℵ2)

1
2ω1 = 0.2194.

If p = 3, then (ℵ2)
1
3 = 8.7781, (ℵ2)

1
3ω1 = 0.1737.

If p = 4, then (ℵ2)
1
4 = 7.9218, (ℵ2)

1
4ω1 = 0.1568.

Hence, χ2 is a contraction mapping.
The third step shows that χ1 is compact and continuous,

one can has

||χ1x||p ≤
1

Γ(3/2)

(( p − 1
(3/2)p − 1

)p−1 e
(3/2)p

) 1
p

(0.0198) r ≤ r.

If p = 2, then ||χ1x||p < 0.5370 ∗ 0.0198 = 0.0106.

If p = 3, then ||χ1x||p < 0.3115 ∗ 0.0198 = 0.0062.

If p = 4, then ||χ1x||p < 0.2000 ∗ 0.0198 = 0.0040.

Hence, χ1 is uniformly bounded and relatively compact.
All steps of Theorem 3.2 are satisfied; therefore, we deduce
that the problem has at least one solution.

Next, to explain the uniqueness of the solution, and
according to Theorem (3.1), the results are:

If p = 2, then (℧1)
1
2 = 22.2253, (℧1)

1
2ω1 = 0.43988 < 1.

If p = 3, then (℧1)
1
3 = 17.5586, (℧1)

1
3ω1 = 0.34752 < 1.

If p = 4, then (℧1)
1
4 = 15.8437, (℧1)

1
4ω1 = 0.31357 < 1.

Then, the problem (5.1) has a unique solution.

Example 5.2. Consider the following boundary value

problem:

CHD
7
4
1+ϕ(t) =

(ln(t))3

19 + sin(3t)
1

1 + |ϕ|
,

ϕ(1) = ϕ′(1), ϕ(e) =
∫ e

1
ϕ(t)

dt
t
,

(5.2)

where

δ =
7
4

and

V(t, ϕ(t)) =
ln(t)3

19 + sin(3t)
1

1 + |ϕ|
,

by using the condition (F2), one has ω1 = 0.05011255.
Moreover, from Theorem 3.1, we see that:

If p = 2, then

(℧1)
1
2 = 18.84098, (℧1)

1
2ω1 = 0.94416 < 1.

If p = 3, then

(℧1)
1
3 = 14.77526, (℧1)

1
3ω1 = 0.74042 < 1.

If p = 4, then

(℧1)
1
4 = 13.29004, (℧1)

1
4ω1 = 0.6659 < 1.

By Theorem 3.1, the problem (5.2) has a unique solution.

Example 5.3. Consider the boundary value problem

CHDδ1+ϕ(t) =
sin(t)

(2 + et)

∫ t

1

(ln( t
s ))δ−1

Γ(δ)
(ln(s))3

4
ϕ(s)

ds
s
,

2ϕ(1) + 4ϕ(e) = 1,
(5.3)

where

δ =
3
4
, λ1 = 2, λ2 = 4, λ3 = 1,

and using the Lipshitz condition (P2), the out comes are

ϱ1 = 0.17834267 and ϱ2 = 0.25.

To estimate the problem has at least one solution, apply
Theorem 3.3. For the first step, we have

||ϖ1x +ϖϕ||p ≤
(
ℑ1 rp + ℑ2

) 1
p ≤ r.

Let
r = 1 and ℑ4 =

(
ℑ1 rp + ℑ2

) 1
p

to get:

If p = 2, ℑ4 = 0.9302 < r.

If p = 3, ℑ4 = 0.8025 < r.

If p = 4, ℑ4 = 0.7637 < r.

Hence,
ϖ1x +ϖϕ ∈ δr.
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For the second step,

||ϖϕ1 −ϖϕ2||p ≤ ℑ3 ||ϕ1 − ϕ2||p,

to prove that ϖ is a contraction mapping, the results are:

If p = 2, ℑ3 = 0.0699 < 1.

If p = 3, ℑ3 = 0.0473 < 1.

If p = 4, ℑ3 = 0.0407 < 1.

Hence, ϖ is a contraction mapping.
For the third step, show that ϖ1 is compact, we have

||(ϖ1x)(t)||p ≤
1

(Γ(δ))2

( (ln(T ))2pδ

2(pδ)2

T 2

( pδ−1
p−1 )2p−2

) 1
p

η1η2r.

If p = 2 then, ||(ϖ1x)(t)||p < 0.0762.

If p = 3 then, ||(ϖ1x)(t)||p < 0.0501.

If p = 4 then, ||(ϖ1x)(t)||p < 0.0437.

Hence, ϖ1 is uniformly bounded and relatively compact.
All conditions of Krasnoselskiis fixed-point theorem are
satisfied, then the problem has at least one solution.

Now, To exhibit there is only one solution, the Banach
fixed-point Theorem 3.4 is applied as follows

(℧3)
1
p =

( (2ϱ1ϱ2)p

2(Γ(δ))2p(pδ)2

T 2(ln(T ))2pδ

( pδ−1
p−1 )2p−2

+
(2Λ2ϱ1ϱ2)p

(Γ(δ))2p pδ
(ln(T ))2pδ−1

( pδ−1
p−1 )2p−2

T (T − 1)
) 1

p

.

If p = 2 then (℧3)
1
2 = 0.20659 < 1.

If p = 3 then (℧3)
1
3 = 0.12266 < 1.

If p = 4 then (℧3)
1
4 = 0.10042 < 1.

Then the problem (5.3) has a unique solution.

Example 5.4. Consider the fractional boundary value

problem

CHDδ1+ϕ(t) =
e2t−4

(3 + 4t2)

∫ t

1

(ln( t
s ))δ−1

Γ(δ)
2
√

ln(s)
5
|ϕ(s)|

ds
s
,

4ϕ(1) + 2ϕ(e) = 0.5,
(5.4)

where δ = 0.6, λ1 = 4, λ2 = 2, λ3 = 0.5, and by using the

condition (P2), we have ϱ1 = 0.129198 and ϱ1 = 0.4, from

Theorem 3.4, the results are:

If p = 2, then (℧3)
1
2 = 0.403497 < 1.

If p = 3, then (℧3)
1
3 = 0.169727 < 1.

If p = 4, then (℧3)
1
4 = 0.132042 < 1.

Then by Theorem 3.4, the problem (5.4) has a unique

solution.

6. Numerical results

In this section, we deal with ADM to find the
approximate solution of fractional differential and integro-
differential equations; some numerical examples are
presented to compare between the exact and approximate
solutions.

6.1. TheADM

George Adomian established the ADM in the 1980s.
The ADM has been paid much attention in the recent
years in applied mathematics, and in the field of series
solutions particular. Moreover, it is a fact that this
method is powerful and effective, and it easily solves many
types of linear or nonlinear ordinary or partial differential
equations, and integral equations; see [51, 52]. This method
generates a solution in the form of a series whose terms are
determined by a recursive relationship using these Adomian
polynomials. A brief outline of the method follows. For
every nonlinear differential equation, it can be decomposed
into the following form:

L(ϕ) + R(ϕ) + N(ϕ) = h, (6.1)

where L is the highest order differential operator, R(ϕ) is the
remainder of the linear part, N(ϕ) represents the nonlinear
part and h is a given function. In general, the operator L is
invertible. If we take L−1( integral operator) on both sides of
Eq (6.1), an equivalent expression can be given

ϕ = −L−1R(ϕ) − L−1N(ϕ) + L−1h + g, (6.2)

here g satisfies Lg = 0 and the initial conditions. If L is the
second-order derivative, L−1 is the two-fold definite integral.
For the ADM, the solution u is expressed in terms of a
series form

ϕ =

∞∑
k=0

ϕk.
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If we have a nonlinear term N(ϕ) it is represented by the
Adomian polynomials Ak

N(ϕ) =
∞∑

k=0

Ak.

Ak depends on ϕ0, ϕ1, · · · , ϕk and can be formulated by

Ak =
1
k!

[ dk

dλk N
( ∞∑

k=0

λkϕk

)
,
]
λ=0
, k = 0, 1, 2, · · · .

Then Eq (6.2) can be written as

∞∑
k=0

ϕk = −L−1R
∞∑

k=0

(ϕk) − L−1
∞∑

k=0

(Ak) + g.

Example 6.1. Consider the boundary value problem

CHDδ1+ϕ(t) = ln(t) + ϕ −
(ln(t))δ+1

Γ(δ + 2)
+

2(δ + 1)
Γ(δ + 3)

(ln(t) + 1),

ϕ(1) = ϕ′(1), ϕ(e) =
∫ e

1
ϕ(t)

dt
t
, 1 < δ ≤ 2.

(6.3)
The exact solution is

ϕ(t) =
(ln(t))δ+1

Γ(δ + 2)
−

2(δ + 1)
Γ(δ + 3)

(ln(t) + 1).

Applying the inverse operator

L−1 = t
1Iδ

on (6.3), we find that:

ϕ(t) = t
1Iδϕ(t) + ϕ0(t).

In order to obtain ϕ(t), we apply the Adomian iterative

scheme

ϕn+1(t) =t
1 Iδϕn(t),

ϕ0(t) = (k + 1)
(ln(t))δ+1

Γ(δ + 2)
−

(ln(t))2δ+1

Γ(2δ + 2)

+ k
(ln(t))δ

Γ(δ + 1)
+ c0 + c1 ln(t),

k =
2(δ + 1)
Γ(δ + 3)

.

Now, to find, ϕ1, ϕ2, ϕ3, · · · , it follows

ϕ1(t) =(k + 1)
(ln(t))2δ+1

Γ(2δ + 2)
−

(ln(t))3δ+1

Γ(3δ + 2)

+ k
(ln(t))2δ

Γ(2δ + 1)
+ c0

(ln(t))δ

Γ(δ + 1)
+ c1

(ln(t))δ+1

Γ(δ + 2)
,

ϕ2(t) =(k + 1)
(ln(t))3δ+1

Γ(3δ + 2)
−

(ln(t))4δ+1

Γ(4δ + 2)

+ k
(ln(t))3δ

Γ(3δ + 1)
+ c0

(ln(t))2δ

Γ(2δ + 1)
+ c1

(ln(t))2δ+1

Γ(2δ + 2)
,

ϕ3(t) =(k + 1)
(ln(t))4δ+1

Γ(4δ + 2)
−

(ln(t))5δ+1

Γ(5δ + 2)

+ k
(ln(t))4δ

Γ(4δ + 1)
+ c0

(ln(t))3δ

Γ(3δ + 1)
+ c1

(ln(t))3δ+1

Γ(3δ + 2)
,

· · ·

The approximate solution of problem (6.3) is:

ϕ(t) =ϕ0(t) + ϕ1(t) + ϕ2(t) + ϕ3(t) + · · · ,

ϕ(t) =(k + 1)
∞∑

p=0

(ln(t))(p+1)δ+1

Γ((p + 1)δ + 2)
−

∞∑
p=0

(ln(t))(p+2)δ+1

Γ((p + 2)δ + 2)

+ k
∞∑

p=0

(ln(t))(p+1)δ

Γ((p + 1)δ + 1)
+ c0

∞∑
p=0

(ln(t))pδ

Γ(pδ + 1)

+ c1

∞∑
p=0

(ln(t))pδ+1

Γ(pδ + 2)
.

Tables 1–3 show the approximate and exact solutions for

Example 6.3.

Table 1. Exact and approximate solutions for
Example 6.1 where δ = 1.2.

t Exact ADM Error

1 -0.5673 -0.5710 0.0038
1.2718 -0.6857 -0.6911 0.0054
1.5437 -0.7477 -0.7547 0.0070
1.8155 -0.7732 -0.7815 0.0082
2.0873 -0.7746 -0.7835 0.0089
2.3591 -0.7594 -0.7681 0.0087
2.6310 -0.7325 -0.7400 0.0075

Table 2. Exact and approximate solutions for
Example 6.1 where δ = 1.5.

t Exact ADM Error

1 -0.4299 0.4303 0.0004
1.2718 -0.5247 -0.5253 0.0006
1.5437 -0.5791 -0.5798 0.0007
1.8155 -0.6036 -0.6044 0.0009
2.0873 -0.6064 -0.6073 0.0009
2.3591 -0.5934 -0.5944 0.0009
2.6310 -0.5688 -0.5696 0.0008
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Table 3. Exact and approximate solutions for
Example 6.1 where δ = 1.9.

t Exact ADM Error

1 -0.2807 -0.2807 0.00006
1.2718 -0.3451 -0.3452 0.00008
1.5437 -0.3857 -0.3858 0.0001
1.8155 -0.4059 -0.4060 0.0001
2.0873 -0.4096 -0.4100 0.0001
2.3591 -0.4004 -0.4005 0.0001
2.6310 -0.3807 -0.3809 0.0002

One can observe on Figure 1 a decrease of the
calculated errors towards zero, which confirms the results
of convergences of the approximate solution to the exact
solution in Example 6.1 when t ∈ [1, e] and for various
fractional orders δ = 1.2, 1.3, · · · , 1.9.

Figure 1. The absolute error between the exact
and approximate solutions ADM for Example
6.1.

Example 6.2. Consider the boundary value problem

CHDδ1+ϕ(t) = ϕ − ln(t) − 1, 1 < δ ≤ 2,

ϕ(1) = ϕ′(1), ϕ(e) = 2.
(6.4)

The exact solution is

ϕ(t) = ln(t) + 1.

Now applying the inverse operator

L−1 = t
1Iδ

on (6.4), one obtains

ϕn+1(t) =t
1 Iδϕn(t),

where

ϕ0(t) = c0 + c1 ln(t) −
(ln(t))δ

Γ(δ + 1)
−

(ln(t))δ+1

Γ(δ + 2)
.

By the same technique, we find

ϕ1(t) = c0
(ln(t))δ

Γ(δ + 1)
+ c1

(ln(t))δ+1

Γ(δ + 2)
−

(ln(t))2δ

Γ(2δ + 1)
−

(ln(t))2δ+1

Γ(2δ + 2)
,

ϕ2(t) = c0
(ln(t))2δ

Γ(2δ + 1)
+ c1

(ln(t))2δ+1

Γ(2δ + 2)
−

(ln(t))3δ

Γ(3δ + 1)
−

(ln(t))3δ+1

Γ(3δ + 2)
,

ϕ3(t) = c0
(ln(t))3δ

Γ(3δ + 1)
+ c1

(ln(t))3δ+1

Γ(3δ + 2)
−

(ln(t))4δ

Γ(4δ + 1)
−

(ln(t))4δ+1

Γ(4δ + 2)
,

ϕ4(t) = c0
(ln(t))4δ

Γ(4δ + 1)
+ c1

(ln(t))4δ+1

Γ(4δ + 2)
−

(ln(t))5δ

Γ(5δ + 1)
−

(ln(t))5δ+1

Γ(5δ + 2)
.

The solution is the given by

ϕ(t) =ϕ0(t) + ϕ1(t) + ϕ2(t) + ϕ3(t) + · · · ,

ϕ(t) =c0

∞∑
p=0

(ln(t))pδ

Γ(pδ + 1)
+ c1

∞∑
p=0

(ln(t))pδ+1

Γ(pδ + 2)

−

∞∑
p=0

( (ln(t))(p+1)δ

Γ((p + 1)δ + 1)
(ln(t))(p+1)δ+1

Γ((p + 1)δ + 2))

)
.

Tables 4–6, approximate and exact solutions for Eq (6.4).

Table 4. Approximate solution for Example 6.2
when δ = 1.2.

t Exact ADM Error

1 1.000 1.0209 0.0209
1.2 1.1823 1.2098 0.0028
1.4 1.3365 1.3710 0.0033
1.6 1.4700 1.511 0.0414
1.8 1.5878 1.6362 0.0487
2 1.6931 1.7485 0.0554
2.2 1.7885 1.8510 0.0622
2.4 1.8754 1.9443 0.0690
2.6 1.9555 2.0310 0.0754
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Table 5. Exact and approximate solutions for
Example 6.2 when δ = 1.5.

t Exact ADM Error

1 1.0000 1.0065 0.0065
1.2 1.1823 1.9037 0.0080
1.4 1.3365 1.3462 0.0098
1.6 1.4700 1.4815 0.0114
1.8 1.5878 1.6010 0.0132
2 1.6932 1.7081 0.0150
2.2 1.7885 1.8051 0.0167
2.4 1.8754 1.8939 0.0184
2.6 1.9555 1.9756 0.0201

Table 6. Approximate solution for Example 6.2
when δ = 1.9

t Exact ADM Error

1 1.0000 1.00097 0.00097
1.2 1.1823 1.8349 0.0012
1.4 1.3365 1.3378 0.0014
1.6 1.4700 1.4716 0.0016
1.8 1.5878 1.5896 0.0018
2 1.6932 1.6951 0.0020
2.2 1.7885 1.7906 0.0022
2.4 1.8754 1.8779 0.0024
2.6 1.9555 1.9581 0.0026

The behavior of the absolute errors approaching zero, as
displayed in Figure 2, supports the convergence results of the
approximate solution toward the exact solution referenced in
Example 6.2.

Figure 2. The absolute error between the exact
and approximate solutions ADM for Example
6.2.

Example 6.3. Consider the fractional integro-differential

equation with initial condition

CHDδ1+ϕ(t) =ϕ(t) +
∫ t

1
ln(s)ϕ(s)

ds
s
+

2(ln(t))2−δ

Γ(3 − δ)

− (ln(t))2 −
(ln(t))4

4
, 0 < δ ≤ 1,

ϕ(1) =0.

(6.5)

The exact solution is

ϕ(t) = (ln(t))2.

Applying the inverse operator

L−1 = t
1Iδ

on (6.5), we find that

ϕ = L−1ϕ + L−1
∫ t

1
ln(s)ϕ(s)

ds
s
+ ϕ0(t),

where

ϕ0(t) = (ln(t))2 −
Γ(3)(ln(t))δ+2

Γ(δ + 3)
−
Γ(4)(ln(t))δ+4

Γ(δ + 5)
+ c0,

ϕn+1 = L−1ϕn + L−1
∫ t

1
ln(s)ϕn(s)

ds
s
,

and

ϕ1(t) =
c0 + 2Γ(3)
2Γ(δ + 3)

(ln(t))δ+2 −
Γ(4) + 2(δ + 3)
Γ(2δ + 5)

(ln(t))2δ+4

−
Γ(3)(ln(t))2δ+2

Γ(2δ + 3)
+

c0(ln(t))δ

Γ(δ + 1)
+
Γ(4)(ln(t))δ+4

Γ(δ + 5)

+
Γ(4)(δ + 5)
Γ(2δ + 7)

(ln(t))2δ+6,

ϕ2(t) =
c0(2δ + 3) + 4

2Γ(2δ + 3)
(ln(t))2δ+2 −

6(δ + 3)
Γ(3δ + 5)

(ln(t))3δ+4

−
Γ(3)(ln(t))3δ+2

Γ(3δ + 3)
+

c0(ln(t))2δ

Γ(2δ + 1)

+
Γ(4) + (c0 + 4)(δ + 3)

Γ(2δ + 5)
(ln(t))2δ+4

+
4δ2 + 40δ + 78
Γ(3δ + 7)

(ln(t))3δ+6 −
Γ(4)(δ + 5)
Γ(2δ + 7)

(ln(t))2δ+6

−
Γ(4)(δ + 5)(2δ + 7)
Γ(3δ + 9)

(ln(t))3δ+8,

The analogous process gives

ϕ(t) = ϕ0(t) + ϕ1(t) + ϕ2(t) + ϕ3(t) + · · · .
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Tables 7–9 show the approximate and exact solutions for

Eq (6.5).

Table 7. Approximate solution for Example 6.3
when δ = 0.3.

t Exact ADM Error

1 0 0 0
1.2 0.0332 0.0305 2.7 × 10−3

1.4 0.1132 0.0969 1.6 × 10−2

1.6 0.2209 0.1768 4.4 × 10−2

1.8 0.3454 0.2581 8.7 × 10−2

2.0 0.4804 0.3332 1.5 × 10−1

2.2 0.6216 0.3969 2.2 × 10−1

2.4 0.7664 0.4454 3.2 × 10−1

2.6 0.9131 0.4755 4.4 × 10−1

Table 8. Exact and approximate solutions for
Example 6.3 where δ = 0.5.

t Exact ADM Error

1 0 0 0
1.2 0.0332 0.0328 4.3 × 10−4

1.4 0.1132 0.1094 3.7 × 10−3

1.6 0.2209 0.2087 1.2 × 10−2

1.8 0.3454 0.3184 2.7 × 10−2

2.0 0.4804 0.4309 5.0 × 10−2

2.2 0.6216 0.5411 8.0 × 10−2

2.4 0.7664 0.6455 1.2 × 10−1

2.6 0.9131 0.7413 1.7 × 10−1

Table 9. Exact and approximate solutions for
Example 6.3 where δ = 0.9.

t Exact ADM Error

1 0 0 0
1.2 0.0332 0.0332 5.5 × 10−7

1.4 0.1132 0.1131 1.4 × 10−4

1.6 0.2209 0.2202 6.6 × 10−4

1.8 0.3454 0.3436 1.8 × 10−3

2.0 0.4804 0.4764 4.0 × 10−3

2.2 0.6216 0.61437 7.2 × 10−3

2.4 0.7664 0.7543 1.2 × 10−2

2.6 0.9131 0.8942 1.9 × 10−2

The Figure 3 shows that the absolute errors between the
approximate solution and the exact solution described in
Example 6.3 are approaching zero.

Figure 3. The absolute error between the exact
and approximate solutions ADM for Example
6.3.

This indicates that the ADM is a powerful and effective
technique for obtaining accurate results.

7. Conclusions

In this paper, we investigated the Lp-solutions for
nonlinear fractional differential and integro-differential
equations with boundary conditions in the sense of the
CH derivative. By means of the Krasnoselskii fixed-
point theorem and the Banach contraction principle, we
have established sufficient conditions for the existence and
uniqueness of solutions for a nonlinear problems. In
addition, theUH stability of the solutions for the indicated
problems is studied. We also employed the ADM to
estimate the approximate solutions. Finally, we present
examples to demonstrate the consistency of the theoretical
findings. In future works, one can extend the given problems
to more fractional derivatives such as the Hilfer derivative
and Caputo-Fabrizio derivative.
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