Research article

On a data model associated with antitrust behaviors

  • Received: 22 August 2024 Revised: 07 September 2024 Accepted: 13 September 2024 Published: 20 December 2024
  • In this paper, we established a big data model based on the data analysis method and the endogenous structure mutation theory, and judged from the dimensions of time and space. Additionally, we gave a detailed inspection and analysis among enterprises producing cement of a certain province. The results indicated that this model can identify monopolistic behaviors from multiple dimensions and, thus, improve regulatory efficiency.

    Citation: Weiguang Zhou, Guangxin Wang, Jixiao Lu, Hongxin Ruan, Jun Wang, Rui Zhang. On a data model associated with antitrust behaviors[J]. Mathematical Modelling and Control, 2024, 4(4): 459-469. doi: 10.3934/mmc.2024036

    Related Papers:

  • In this paper, we established a big data model based on the data analysis method and the endogenous structure mutation theory, and judged from the dimensions of time and space. Additionally, we gave a detailed inspection and analysis among enterprises producing cement of a certain province. The results indicated that this model can identify monopolistic behaviors from multiple dimensions and, thus, improve regulatory efficiency.



    加载中


    [1] J. Bai, P. Perron, Estimating and testing linear models with multiple structural changes, Econometrica, 66 (1998), 47–78. https://doi.org/10.2307/2998540 doi: 10.2307/2998540
    [2] J. Bai, P. Perron, Computation and analysis of multiple structural change models, J. Appl. Econometrics, 18 (2003), 1–22. https://doi.org/10.1002/jae.659 doi: 10.1002/jae.659
    [3] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometrics, 31 (1986), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 doi: 10.1016/0304-4076(86)90063-1
    [4] J. A. Doornik, M. Ooms, Multimodality in the GARCH regression models, Int. J. Forecast., 24 (2008), 432–448. https://doi.org/10.1016/j.ijforecast.2008.06.002 doi: 10.1016/j.ijforecast.2008.06.002
    [5] A. Charles, O. Darné, Outliers and GARCH models in financial data, Econ. Lett., 86 (2005), 347–352. https://doi.org/10.1016/j.econlet.2004.07.019 doi: 10.1016/j.econlet.2004.07.019
    [6] M. Yavuz, F. Özköse, M. Akman, Z. T. Taştan, A new mathematical model for tuberculosis epidemic under the consciousness effect, Math. Modell. Control, 3 (2023), 88–103. https://doi.org/10.3934/mmc.2023009 doi: 10.3934/mmc.2023009
    [7] A. Chavada, N. Pathak, S. R. Khirsariya, A fractional mathematical model for assessing cancer risk due to smoking habits, Math. Modell. Control, 4 (2024), 246–259. https://doi.org/10.3934/mmc.2024020 doi: 10.3934/mmc.2024020
    [8] G. E. A. P. A. Batista, M. C. Monard, A study of $K$-nearest neighbour as a model-based method to treat missing data, Proceedings of Argentine Symposium on Artificial Intelligence, 2001.
    [9] R. Engle, Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models, J. Bus. Econ. Stat., 3 (2002), 339–350. https://doi.org/10.1198/073500102288618487 doi: 10.1198/073500102288618487
    [10] H. N. Huang, W. Zhong, Evaluation on volatility forecasting performance of GARCH-type models, Chin. J. Mana. Sci., 15 (2007), 13–19. https://doi.org/10.3321/j.issn:1003-207x.2007.06.003 doi: 10.3321/j.issn:1003-207x.2007.06.003
    [11] P. Kokoszka, R. Leipus, Change-point estimation in ARCH models, Bernoulli, 6 (2000), 513–539. https://doi.org/10.2307/3318673 doi: 10.2307/3318673
    [12] C. W. J. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica, 37 (1969), 424–438. https://doi.org/10.2307/1912791 doi: 10.2307/1912791
    [13] C. A. Sims, Money, income, and causality, Amer. Econ. Rev., 62 (1972), 540–552.
    [14] S. F. Liu, Z. G. Fang, Y. Lin, Study on a new definition of degree of grey incidence, J. Grey Syst., 9 (2006), 115–122. https://doi.org/10.30016/JGS.200612.0005 doi: 10.30016/JGS.200612.0005
    [15] C. Truong, L. Oudre, N. Vayatis, Selective review of offline change point detection methods, Signal Process., 167 (2020), 107299. https://doi.org/10.1016/j.sigpro.2019.107299 doi: 10.1016/j.sigpro.2019.107299
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(321) PDF downloads(51) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog