In this paper, we established a big data model based on the data analysis method and the endogenous structure mutation theory, and judged from the dimensions of time and space. Additionally, we gave a detailed inspection and analysis among enterprises producing cement of a certain province. The results indicated that this model can identify monopolistic behaviors from multiple dimensions and, thus, improve regulatory efficiency.
Citation: Weiguang Zhou, Guangxin Wang, Jixiao Lu, Hongxin Ruan, Jun Wang, Rui Zhang. On a data model associated with antitrust behaviors[J]. Mathematical Modelling and Control, 2024, 4(4): 459-469. doi: 10.3934/mmc.2024036
In this paper, we established a big data model based on the data analysis method and the endogenous structure mutation theory, and judged from the dimensions of time and space. Additionally, we gave a detailed inspection and analysis among enterprises producing cement of a certain province. The results indicated that this model can identify monopolistic behaviors from multiple dimensions and, thus, improve regulatory efficiency.
[1] |
J. Bai, P. Perron, Estimating and testing linear models with multiple structural changes, Econometrica, 66 (1998), 47–78. https://doi.org/10.2307/2998540 doi: 10.2307/2998540
![]() |
[2] |
J. Bai, P. Perron, Computation and analysis of multiple structural change models, J. Appl. Econometrics, 18 (2003), 1–22. https://doi.org/10.1002/jae.659 doi: 10.1002/jae.659
![]() |
[3] |
T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometrics, 31 (1986), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 doi: 10.1016/0304-4076(86)90063-1
![]() |
[4] |
J. A. Doornik, M. Ooms, Multimodality in the GARCH regression models, Int. J. Forecast., 24 (2008), 432–448. https://doi.org/10.1016/j.ijforecast.2008.06.002 doi: 10.1016/j.ijforecast.2008.06.002
![]() |
[5] |
A. Charles, O. Darné, Outliers and GARCH models in financial data, Econ. Lett., 86 (2005), 347–352. https://doi.org/10.1016/j.econlet.2004.07.019 doi: 10.1016/j.econlet.2004.07.019
![]() |
[6] |
M. Yavuz, F. Özköse, M. Akman, Z. T. Taştan, A new mathematical model for tuberculosis epidemic under the consciousness effect, Math. Modell. Control, 3 (2023), 88–103. https://doi.org/10.3934/mmc.2023009 doi: 10.3934/mmc.2023009
![]() |
[7] |
A. Chavada, N. Pathak, S. R. Khirsariya, A fractional mathematical model for assessing cancer risk due to smoking habits, Math. Modell. Control, 4 (2024), 246–259. https://doi.org/10.3934/mmc.2024020 doi: 10.3934/mmc.2024020
![]() |
[8] | G. E. A. P. A. Batista, M. C. Monard, A study of $K$-nearest neighbour as a model-based method to treat missing data, Proceedings of Argentine Symposium on Artificial Intelligence, 2001. |
[9] |
R. Engle, Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models, J. Bus. Econ. Stat., 3 (2002), 339–350. https://doi.org/10.1198/073500102288618487 doi: 10.1198/073500102288618487
![]() |
[10] |
H. N. Huang, W. Zhong, Evaluation on volatility forecasting performance of GARCH-type models, Chin. J. Mana. Sci., 15 (2007), 13–19. https://doi.org/10.3321/j.issn:1003-207x.2007.06.003 doi: 10.3321/j.issn:1003-207x.2007.06.003
![]() |
[11] |
P. Kokoszka, R. Leipus, Change-point estimation in ARCH models, Bernoulli, 6 (2000), 513–539. https://doi.org/10.2307/3318673 doi: 10.2307/3318673
![]() |
[12] |
C. W. J. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica, 37 (1969), 424–438. https://doi.org/10.2307/1912791 doi: 10.2307/1912791
![]() |
[13] | C. A. Sims, Money, income, and causality, Amer. Econ. Rev., 62 (1972), 540–552. |
[14] |
S. F. Liu, Z. G. Fang, Y. Lin, Study on a new definition of degree of grey incidence, J. Grey Syst., 9 (2006), 115–122. https://doi.org/10.30016/JGS.200612.0005 doi: 10.30016/JGS.200612.0005
![]() |
[15] |
C. Truong, L. Oudre, N. Vayatis, Selective review of offline change point detection methods, Signal Process., 167 (2020), 107299. https://doi.org/10.1016/j.sigpro.2019.107299 doi: 10.1016/j.sigpro.2019.107299
![]() |