In this study, a one-dimensional chemotaxis-haptotaxis model of cancer cell invasion of tissue was numerically and statistically investigated. In the numerical part, the time dependent, nonlinear, triplet governing dimensionless equations consisting of cancer cell (CC) density, extracellular matrix (ECM) density, and urokinase plasminogen activator (uPA) density were solved by the radial basis function (RBF) collocation method both in time and space discretization. In the statistical part, mean CC density, mean ECM density, and mean uPA density were modeled by two different machine learning approaches. The datasets for modeling were originated from the numerical results. The numerical method was performed in a set of parameter combinations by parallel computing and the data in case of convergent combinations were stored. In this data, inputs consisted of selected time values up to a maximum time value and converged parameter values, and outputs were mean CC, mean ECM, and mean uPA. The whole data was divided randomly into train and test data. Trilayer neural network (TNN) and multilayer adaptive regression splines (Mars) model the train data. Then, the models were tested on test data. TNN modeling resulting in terms of mean squared error metric was better than Mars results.
Citation: Bengisen Pekmen, Ummuhan Yirmili. Numerical and statistical approach on chemotaxis-haptotaxis model for cancer cell invasion of tissue[J]. Mathematical Modelling and Control, 2024, 4(2): 195-207. doi: 10.3934/mmc.2024017
In this study, a one-dimensional chemotaxis-haptotaxis model of cancer cell invasion of tissue was numerically and statistically investigated. In the numerical part, the time dependent, nonlinear, triplet governing dimensionless equations consisting of cancer cell (CC) density, extracellular matrix (ECM) density, and urokinase plasminogen activator (uPA) density were solved by the radial basis function (RBF) collocation method both in time and space discretization. In the statistical part, mean CC density, mean ECM density, and mean uPA density were modeled by two different machine learning approaches. The datasets for modeling were originated from the numerical results. The numerical method was performed in a set of parameter combinations by parallel computing and the data in case of convergent combinations were stored. In this data, inputs consisted of selected time values up to a maximum time value and converged parameter values, and outputs were mean CC, mean ECM, and mean uPA. The whole data was divided randomly into train and test data. Trilayer neural network (TNN) and multilayer adaptive regression splines (Mars) model the train data. Then, the models were tested on test data. TNN modeling resulting in terms of mean squared error metric was better than Mars results.
[1] | T. L. Jackson, S. R. Lubkin, N. O. Siemers, D. E. Kerri, P. D. Senter, J. D. Murray, Mathematical and experimental analysis of localization of anti-tumor antibody-enzyme conjugates, Brit. J. Cancer, 80 (1999), 1747–1753. https://doi.org/10.1038/sj.bjc.6690592 doi: 10.1038/sj.bjc.6690592 |
[2] | A. R. A. Anderson, M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857–900. https://doi.org/10.1006/bulm.1998.0042 doi: 10.1006/bulm.1998.0042 |
[3] | A. R. A. Anderson, M. A. J. Chaplain, E. L. New Man, R. J. C. Steele, A. M. Thompson, Mathematical modelling of tumour invasion and metastasis, J. Theor. Med., 2 (2000), 129–154. |
[4] | J. A. Sherratt, M. A. J. Chaplain, A new mathematical model for avascular tumour growth, J. Math. Biol., 43 (2001), 291–312. https://doi.org/10.1007/s002850100088 doi: 10.1007/s002850100088 |
[5] | A. Matzavinos, M. A. J. Chaplain, Travelling-wave analysis of a model of the immune response to cancer, Comput. R. Biol., 327 (2004), 995–1008. https://doi.org/10.1016/j.crvi.2004.07.016 doi: 10.1016/j.crvi.2004.07.016 |
[6] | M. A. J. Chaplain, G. Lolas, Mathematical modelling of cencer cell invasion of tissue: the role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 11 (2005), 1685–1734. https://doi.org/10.1142/S0218202505000947 doi: 10.1142/S0218202505000947 |
[7] | M. A. J. Chaplain, G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399–439. https://doi.org/10.3934/nhm.2006.1.399 doi: 10.3934/nhm.2006.1.399 |
[8] | A. Gerisch, M. A. J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion, J. Theor. Biol., 250 (2008), 684–704. https://doi.org/10.1016/j.jtbi.2007.10.026 doi: 10.1016/j.jtbi.2007.10.026 |
[9] | N. Bellomo, A. Bellouquid, E. de Angelis, The modelling of the immune competition by generalized kinetic (Boltzmann) models: review and research perspectives, Math. Comput. Model., 37 (2003), 1131–1142. https://doi.org/10.1016/S0895-7177(03)80007-9 doi: 10.1016/S0895-7177(03)80007-9 |
[10] | H. Enderling, A. R. A. Anderson, M. A. J. Chaplain, A. J. Munro, J. S. Vaidya, Mathematical modelling of radiotherapy strategies for early breast cancer, J. Theor. Biol., 241 (2006), 158–171. https://doi.org/10.1016/j.jtbi.2005.11.015 doi: 10.1016/j.jtbi.2005.11.015 |
[11] | V. Andasari, A. Gerisch, G. Lolas, A. P. South, M. A. J. Chaplain, Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation, J. Math. Biol., 63 (2011), 141–171. https://doi.org/10.1007/s00285-010-0369-1 doi: 10.1007/s00285-010-0369-1 |
[12] | M. Dehghan, V. Mohammadi, Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 204–219. https://doi.org/10.1016/j.cnsns.2016.07.024 doi: 10.1016/j.cnsns.2016.07.024 |
[13] | M. Dehghan, N. Narimani, An element-free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue, Appl. Math. Model., 59 (2018), 500–513. https://doi.org/10.1016/j.apm.2018.01.034 doi: 10.1016/j.apm.2018.01.034 |
[14] | G. Meral, I. C. Yamanlar, Mathematical analysis and numerical simulations for the cancer tissue invasion model, Commun. Fac. Sci. Univ. Ank. Ser., 68 (2019), 371–391. https://doi.org/10.31801/cfsuasmas.421546 doi: 10.31801/cfsuasmas.421546 |
[15] | G. Meral, DRBEM-FDM solution of a chemotaxis-haptotaxis model for cancer invasion, J. Comput. Appl. Math., 354 (2019), 299–309. https://doi.org/10.1016/j.cam.2018.04.047 doi: 10.1016/j.cam.2018.04.047 |
[16] | P. R. Nyarko, M. Anokye, Mathematical modeling and numerical simulation of a multiscale cancer invasion of host tissue, AIMS Math., 54 (2019), 3111–3124. https://doi.org/10.3934/math.2020200 doi: 10.3934/math.2020200 |
[17] | L. C. Franssen, T. Lorenzi, A. E. F. Burgess, M. A. J. Chaplain, A mathematical framework for modelling the metastatic spread of cancer, Bull. Math. Biol., 81 (2019), 1965–2010. https://doi.org/10.1007/s11538-019-00597-x doi: 10.1007/s11538-019-00597-x |
[18] | F. Hatami, M. B. Ghasemi, Numerical solution of model of cancer invasion with tissue, Appl. Math., 4 (2013), 1050–1058. https://doi.org/ 10.4236/am.2013.47143 doi: 10.4236/am.2013.47143 |
[19] | Y. Tao, C. Cui, A density-dependent chemotaxis-haptotaxis system modeling cancer invasion, J. Math. Anal. Appl., 367 (2010), 612–624. https://doi.org/10.1016/j.jmaa.2010.02.015 doi: 10.1016/j.jmaa.2010.02.015 |
[20] | Y. Tao, M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differ. Equations, 257 (2014), 784–815. https://doi.org/10.1016/j.jde.2014.04.014 doi: 10.1016/j.jde.2014.04.014 |
[21] | A. Amoddeo, Moving mesh partial differential equations modelling to describe oxygen induced effects on avascular tumour growth, Cogent Phys., 2 (2015), 1050080. https://doi.org/10.1080/23311940.2015.1050080 doi: 10.1080/23311940.2015.1050080 |
[22] | A. Amoddeo, A moving mesh study for diffusion induced effects in avascular tumour growth, Comput. Math. Appl., 75 (2018), 2508–2519. https://doi.org/10.1016/j.camwa.2017.12.024 doi: 10.1016/j.camwa.2017.12.024 |
[23] | A. Amoddeo, Indirect contributions to tumor dynamics in the first stage of the avascular phase, Symmetry, 12 (2020), 1546. https://doi.org/10.3390/sym12091546 doi: 10.3390/sym12091546 |
[24] | A. Amoddeo, Mathematical model and numerical simulation for electric field induced cancer cell migration, Math. Comput. Appl., 26 (2021), 4. https://doi.org/10.3390/mca26010004 doi: 10.3390/mca26010004 |
[25] | S. Ganesan, S. Lingeshwaran, Galerkin finite element method for cancer invasion mathematical model, Comput. Math. Appl., 73 (2017), 2603–2617. https://doi.org/10.1016/j.camwa.2017.04.006 doi: 10.1016/j.camwa.2017.04.006 |
[26] | S. Ganesan, S. Lingeshwaran, A biophysical model of tumor invasion, Commun. Nonlinear Sci. Numer. Simul., 46 (2017), 135–152. https://doi.org/10.1016/j.cnsns.2016.10.013 doi: 10.1016/j.cnsns.2016.10.013 |
[27] | G. Meral, C. Surulescu, Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion, J. Math. Anal. Appl., 408 (2013), 597–614. https://doi.org/10.1016/j.jmaa.2013.06.017 doi: 10.1016/j.jmaa.2013.06.017 |
[28] | E. Barbera, G. Valenti, Wave features of a hyperbolic reaction-diffusion model for chemotaxis, Wave Motion, 78 (2018), 116–131. https://doi.org/10.1016/j.wavemoti.2018.02.004 doi: 10.1016/j.wavemoti.2018.02.004 |
[29] | N. Sfakianakis, A. Madzvamuse, M. A. J. Chaplain, A hybrid multiscale model for cancer invasion of the extracellular matrix, Multiscale Model. Simul., 18 (2018), 824–850. https://doi.org/10.1137/18M11890 doi: 10.1137/18M11890 |
[30] | J. Urdal, J. O. Waldeland, S. Evje, Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present, Biomech. Model. Mechanobiol., 18 (2019), 1047–1078. https://doi.org/10.1007/s10237-019-01128-2 doi: 10.1007/s10237-019-01128-2 |
[31] | M. Los, A. Klusek, M. A. Hassaan, K. Pingali, W. Dwinel, M. Paszynski, Parallel fast isogeometric L2 projection solver with GALOIS system for 3D tumor growth simulations, Comput. Methods Appl. Meth. Eng., 343 (2001), 291–312. https://doi.org/10.1016/j.cma.2018.08.036 doi: 10.1016/j.cma.2018.08.036 |
[32] | J. J. Benito, A. Garcia, L. Gavete, M. Negreanu, F. Urena, A. M. Vargas, Solving a chemotaxis-haptotaxis system in 2D using generalized finite difference method, Comput. Math. Appl., 80 (2020), 762–777. https://doi.org/10.1016/j.camwa.2020.05.008 doi: 10.1016/j.camwa.2020.05.008 |
[33] | J. J. Benito, A. Garcia, L. Gavete, M. Negreanu, F. Urena, A. M. Vargas, Convergence and numerical solution of a model for tumor growth, Mathematics, 9 (2021), 1355. https://doi.org/10.3390/math9121355 doi: 10.3390/math9121355 |
[34] | H. Y. Hin, T. Xiang, Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model, Math. Models Methods Appl. Sci., 31 (2021), 1373–1417. https://doi.org/10.1142/S0218202521500287 doi: 10.1142/S0218202521500287 |
[35] | H. Shen, X. Wei, A parabolic-hyperbolic system modeling the tumor growth with angiogenesis, Nonlinear Anal. Real World Appl., 64 (2022), 103456. https://doi.org/10.1016/j.nonrwa.2021.103456 doi: 10.1016/j.nonrwa.2021.103456 |
[36] | Y. He, X. Liu, Z. Chen, J. Zhu, Y. Ziong, K. Li, et al., Interaction between cancer cells and stromal fibroblasts is required for activation of the uPAR-uPA-MMP-2 cascade in pancreatic cancer metastasis, Clin. Cancer Res., 13 (2007), 11. https://doi.org/10.1158/1078-0432.CCR-06-2088 doi: 10.1158/1078-0432.CCR-06-2088 |
[37] | C. Melzer, J. Ohe, H. Otterbein, H. Ungefroren, R. Hass, Changes in uPA, PAI-1, and TGF-$\beta$ production during breast cancer cell interaction with human mesenchymal stroma/stem-like cells (MSC), Int. J. Mol. Sci., 20 (2019), 2630. https://doi.org/10.3390/ijms20112630 doi: 10.3390/ijms20112630 |
[38] | J. Huang, L. Zhang, D. Wan, L. Zhou, S. Zheng, S. Lin, et al., Extracellular matrix and its therapeutic potential for cancer treatment, Signal Transduct. Target. Ther., 6 (2021), 153. https://doi.org/10.1038/s41392-021-00544-0 doi: 10.1038/s41392-021-00544-0 |
[39] | E. Henke, R. Nandigama, S. Ergun, Extracellular matrix in the tumor microenvironment and its impact on cancer therapy, Front. Mol. Biosci., 6 (2020), 160. https://doi.org/10.3389/fmolb.2019.00160 doi: 10.3389/fmolb.2019.00160 |
[40] | A. A. Shimpi, C. Fischbach, Engineered ECM models: opportunities to advance understanding of tumor heterogeneity, Curr. Opin Cell Biol., 72 (2021), 1–9. https://doi.org/10.1016/j.ceb.2021.04.001 doi: 10.1016/j.ceb.2021.04.001 |
[41] | K. Dass, A. Ahmad, A. S. Azmi, S. H. Sarkar, F. H. Sarkar, Evolving role of uPA/uPAR system in human cancers, Cancer Treat. Rev., 34 (2008), 122–136. https://doi.org/10.1016/j.ctrv.2007.10.005 doi: 10.1016/j.ctrv.2007.10.005 |
[42] | P. Pakneshan, M. Szyf, R. Farias-Eisner, S. A. Rabbani, Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis, J. Biol. Chem., 279 (2004), 31735–31744. https://doi.org/10.1074/jbc.M401669200 doi: 10.1074/jbc.M401669200 |
[43] | M. W. Pickup, J. K. Mouw, V. M. Weaver, The extracellular matrix modulates the hallmarks of cancer, EMBO Rep., 15 (2014), 1243–1253. https://doi.org/10.15252/embr.201439246 doi: 10.15252/embr.201439246 |
[44] | A. W. Holle, J. L. Young, J. P. Spatz, In vitro cancer cell-ECM interactions inform in vivo cancer treatment, Adv. Drug Deliv. Rev., 97 (2016), 270–279. https://doi.org/10.1016/j.addr.2015.10.007 doi: 10.1016/j.addr.2015.10.007 |
[45] | E. J. Kansa, Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19 (1990), 147–161. https://doi.org/10.1016/0898-1221(90)90271-K doi: 10.1016/0898-1221(90)90271-K |
[46] | G. E. Fasshauer, Meshfree approximation methods with matlab, World Scientific Publications, 2007. |
[47] | G. E. Fasshauer, M. McCourt, Kernel-based approximation methods using MATLAB, World Scientific Publications, 2015. |
[48] | L. N. Trefethen, Spectral methods in matlab, Oxford University Press, 2000. |
[49] | T. W. Chow, S. Y. Cho, Neural networks and computing, Imperial College Press, 2007. |
[50] | J. J. Friedman, Multivariate adaptive regression splines, Ann. Stat., 19 (1991), 11–67. https://doi.org/10.1214/aos/1176347963 doi: 10.1214/aos/1176347963 |
[51] | B. P. Geridonmez, Machine learning approach to the temperature gradient in the case of discontinuous temperature boundary conditions in a triangular cavity, J. Phys., 2514 (2023), 012010. https://doi.org/10.1088/1742-6596/2514/1/012010 doi: 10.1088/1742-6596/2514/1/012010 |