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Abstract: In this study, a one-dimensional chemotaxis-haptotaxis model of cancer cell invasion of tissue was numerically and
statistically investigated. In the numerical part, the time dependent, nonlinear, triplet governing dimensionless equations consisting
of cancer cell (CC) density, extracellular matrix (ECM) density, and urokinase plasminogen activator (uPA) density were solved by the
radial basis function (RBF) collocation method both in time and space discretization. In the statistical part, mean CC density, mean ECM
density, and mean uPA density were modeled by two different machine learning approaches. The datasets for modeling were originated
from the numerical results. The numerical method was performed in a set of parameter combinations by parallel computing and the data
in case of convergent combinations were stored. In this data, inputs consisted of selected time values up to a maximum time value and
converged parameter values, and outputs were mean CC, mean ECM, and mean uPA. The whole data was divided randomly into train
and test data. Trilayer neural network (TNN) and multilayer adaptive regression splines (Mars) model the train data. Then, the models
were tested on test data. TNN modeling resulting in terms of mean squared error metric was better than Mars results.
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1. Introduction

Cancer is an unexpected behavior of normal cells due
to some biological reasons changing the fundamental and
structural progress of normal cells. Abnormality in these
cells form a lump known as tumor, and invasion causes
degradation in extracellular matrix. Avascular, vascular
and metastatic stages of cancer development are known.
Avascular stage is the most interested stage in numerical
approaches due to the simplicity of the model, easiness in
validation with experimental results, and the first milestone
to understand the next stages. Mathematical models for
cancer invasion are developed to describe the evolution of
tumor in a less time with less cost comparing to laboratory
setups.

In literature, there are plenty of studies in the last decades
on mathematical models and numerical observations on
cancer cell (CC) invasion of tissue. Jackson et al. examined
the bio-distribution, pharmacokinetics, and localization

properties of monoclonal antibody (mAb)-enzyme
conjugates in cancer tissue simulating a mathematical
model which is numerically solved by the finite difference
method (FDM) [1]. Anderson and Chaplain [2] studied on
continuous and discrete mathematical models considering
solid tumors and macromolecule fibronectin. Anderson
et al. [3] performed the method of lines and FDM to
investigate behavior of tumor cells, host tissue (extracellular
matrix (ECM)), and tumor cell-associated matrix-degrading
enzymes. Sherratt and Chaplain [4] examined avascular
tumor growth utilizing wave front solutions in a novel
model incorporating a general nutrient factor together
with continuum densities of proliferative, dormant, and
necrotic cells. Matzavinos and Chaplain [5] analyzed
reaction-diffusion-chemotaxis equations of the development
of a solid tumor in the context of an immune response using
the traveling-wave method. In that study, a bifurcation
analysis of ordinary differential equations (ODE) kinetics of
the considered system is also made. A mathematical model
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that emphasizes the function of the plasminogen activation
system in the invasion of CCs into tissue (ECM) is presented
in [6]. The governing partial differential equations (PDEs)
are numerically solved using method of lines and Gear’s
method from numerical algorithm group’s (NAG) numerical
library. Chaplain and Lolas [7] solved a mathematical
model of CCs described by reaction-diffusion-taxis PDEs,
which are the combination of the interactions between CCs,
ECM, urokinase plasminogen activator (uPA), and using
backward difference and FDM. The fundamental biological
processes of cell-to-cell and cell-to-matrix adhesion are
explicitly included in the unique continuous model by
Gerish and Chaplain in [8]. They used the second order
central FDM for the second derivative in the case of constant
diffusion coefficients. In [9], mathematical models and
techniques for analyzing and simulating the dynamics of
tumors in opposition to the immune system is reviewed.
Optimization of therapeutic actions is also included in this
work. The typical scales of the phenomena are determined,
and each scale’s models and associated issues are studied
and critically analyzed in the mathematical literature.
Enderling et al. [10] presented a mathematical model for
the cancer invasion of a solid tumor into breast tissue. An
explicit FDM is used for numerical computation of the
governing dimensionless equations. They also propose a
model for surgical removal and radiation therapy. Andasari
et al. [11] analyzed a mathematical model of the uPA
system, emphasizing the function of CCs in spreading
into tissue or the ECM. Dehghan and Mohammadi [12]
used two numerical meshless approaches, multiquadric
radial basis functions (RBFs) and generalized moving least
squares (GMLS), to solve the four-species tumor-growth
model in two and three dimensions. They concerned a
constant mobility tumor-growth model and a model of
tumor growth with varying mobility. A meshless approach
is also utilized by Dehghan and Narimani in [13] to simulate
time-dependent reaction-diffusion-taxis PDEs describing
the interactions between CCs, ECM, and matrix degradation
enzymes. Meral et al. [14] applied a hybrid numerical
approach based on the finite difference scheme to observe
the CC invasion. In that study, an iterative process is also
used to demonstrate the local existence and uniqueness
of the CC invasion concept theoretically. Chemotaxis-
haptotaxis model is also simulated applying the dual

reciprocity boundary element method (DRBEM) and FDM
jointly in [15]. Nyarko et al. [16] takes into account a lag
time between the microscopic and macroscopic level in their
mathematical model. Numerical outcomes are obtained
by implicit-explicit FDM. Franssen [17] investigated the
mathematical model for metastatic cancer invasion utilizing
a hybrid numerical approach in which a five point finite
difference scheme is used. Hatami et al. [18] developed
a solution for the chemotaxis-haptotaxis model of cancer
invasion by using the new homotopy perturbation method.
The obtained solution is compared with laboratory’s results
and a good agreement is observed. Tao and Cui [19]
made a theoretical study proving the global existence of
a unique solution of the chemotaxis-haptotaxis model of
cancer tissue invasion by considering a priori estimate
technique and logistic damping. Tao and Winkler [20]
also studied the proof of the global solution of the same
model. Amoddeo [21] solved six coupled PDEs of CC
invasion into tissue considering an oxygen source term
in governing equations. Numerical simulations are done
by moving mesh PDE using the finite element method
(FEM). It is reported that the presence of oxygen in tissue
accelerates the CC proliferation. In [22], the same method
is again used to simulate the nonlinear PDE system based
on the uPA system. The same PDE system of equations
are again concerned in [23] by FEM. Amoddeo also added
an electric field term to the CC density equation in [24].
Ganesan et al. [25] numerically studied the cancer invasion
model. They used FEM with the Crank-Nicolson scheme
in time treating nonlinear terms semi-implicitly. Three
dimensional FEM simulation is also carried out in [26].
Meral and Surulescu [27] made a study in both numerical
and theoretical aspects proposing a model in the presence
of heat shock protein effect. Numerical results are found by
FDM while a local weak solution with the help of a fixed
point idea is proved. In [28], a hyperbolic reaction-diffusion
model for chemotaxis in accordance with the key concepts
of extended thermodynamics are suggested, and linear
stability analysis, Turing bifurcation, and traveling wave
solutions are also considered.

A mathematical model that explains the switch from
the mesenchymal-like cells’ (MCs) individual invasion
strategy to the epithelial like cells’ (ECs) invasion strategy
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is developed by Sfakianakis et al. [29]. In that study,
the governing equations of the considered multi-scale
and hybrid model are made up of PDEs and stochastic
differential equations that characterize the evolution of the
ECs and the MCs considering transitions. They reported
that according to traveling wave analysis, the dynamics
of cell invasion are primarily influenced by velocity and
growth rate, and the tumor enlarges to a dormant level.
Urdal et al. [30] observed the interaction of tumor cells
and fibroblasts in the presence of fluid flow and concluded
the enhancement in the invasion of tumor cells. In Los
et al. [31], three dimensional tumor growth simulation
is made by FEM based on isogeometric L2 projection
and implemented in a parallel solver. Benito et al. [32]
concerned chemotaxis-haptotaxis system in view of local
stability of the constant equilibrium solution. They utilized
generalized FDM and proved the convergence of the discrete
solution to the analytical solution. Generalized FDM
is also performed for solving the cancer invasion model
involving nutrient density, and a convergence analysis is
also made in [33]. In [34], a theoretical study is presented
to show that the haptotaxis effect can be neglected in the
chemotaxis-haptotaxis model. One more theoretical analysis
is encountered in Shen et al. [35].

Some biological studies may also be mentioned. He
et al. [36] and Melzer et al. [37] discussed the role
of stromal fibroblasts in activating the uPA-plasminogen-
matrix metalloproteinase-2 (MMP-2) cascade and regulating
the invasive behaviors of pancreatic and breast CCs,
respectively. They found that a direct interaction between
cancer cells and neighboring cells in the microenvironment
is required for activating the cascade. Huang et al. [38]
and Henke et al. [39] highlighted the importance of
ECM stiffness and its disregulation in cancer progression.
They suggest that targeting ECM components could be a
promising therapeutic approach to manage cancer. Shimpi
et al. [40] discussed how compositional and physical
changes of the ECM contribute to tumor heterogeneity,
and engineered model systems that can recapitulate both
cellular and ECM heterogeneity are critical to elucidate
the mechanisms through which ECM characteristics and
different cellular states are linked. Dass et al. [41] and
Pakneshan et al. [42] focused on the uPA system and

its involvement in tumor cell invasion and metastasis.
Pickup et al. [43] highlighted the essential need for matrix
stiffness to drive many tumor-promoting effects of the
ECM, and suggests that it is essential to determine whether
this ECM property is a correlative phenotype to tumor
progression or a causative factor driving tumor initiation.
Holle et al. [44] discussed the poor characterization of the
adhesion-mediated signaling processes between malignant
cells and the ECM and suggests that simple, low-cost, label-
free, image-analysis-based characterization of adhesion
signatures may play a role in clinical diagnostics.

In the aforementioned studies, method of lines, FDM,
DRBEM, FEM, and the meshless method are encountered.
In the current study, the RBF time-space method is first
taken into account in these equations. To begin, the time-
space global RBF method is applied on dimensionless
governing equations of CC invasion of tissue. Then, mean
CC, mean ECM and mean uPA are modeled by machine
learning approaches based on multilayer neural network and
multivariate adaptive regression splines. The train and test
datas for modeling are built from numerical results. To the
best of authors’ knowledge, the machine learning approach
is the first embedded into this type of problem.

2. Model equations

Interaction between CC density, normal cell density
(ECM), and the concentration of the matrix degrading
enzyme (uPA) is described by the following non-
dimensional equations as [7]

∂c
∂t
= Dc

∂2c
∂x2︸ ︷︷ ︸

dispersion

−
∂

∂x

(
χcc
∂u
∂x

)
︸        ︷︷        ︸

chemotaxis

−
∂

∂x

(
ξcc
∂v
∂x

)
︸       ︷︷       ︸

haptotaxis

+ µ1c(1 − c − v)︸           ︷︷           ︸
proliferation

,

(2.1a)

∂v
∂t
= − δuv︸︷︷︸

proteolysis

+ µ2v(1 − c − v)︸           ︷︷           ︸
re-establishment

, (2.1b)

∂u
∂t
= Du

∂2u
∂x2︸ ︷︷ ︸

dispersion

+ αc︸︷︷︸
production

− βu︸︷︷︸
decay

, (2.1c)

where c is the CC density, v is the ECM density, and u is the
uPA density. Basically, ECM is a structure in which cells
move, grow, communicate with each other, and function.
uPA is a plasminogen activator called urokinase. uPA
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converts the plasminogen into its active form plasmin (an
essential enzyme in blood). uPA is a serine protease, which
is an enzyme breaking peptid bonds of proteins. Chemotaxis
is the movement of an organism reacting to a chemical
stimulation. Haptotaxis is the movement of CCs from a
low concentration region to a high concentration region as
a result of their adhesive behavior in ECM. Proliferation
refers to the the rapid rise in cell division and reproduction.
Proteolysis is a process in which proteins break into small
pieces.

Further, some constants in Eq (2.1) are given in Table 1.

Table 1. Definitions and ranges of parameters [7].

Parameter Explanation Ranges

Dc coefficient of CC diffusion 10−5 − 10−3

Du coefficient of MDE/uPA diffusion 0.001 − 1
χc chemotaxis coefficient 0.001 − 1
ξc haptotaxis coefficient 0.001 − 1
µ1 proliferation rate for CCs 0.05 − 2
µ2 proliferation rate for ECM 0.15 − 2.5
α production rate for uPA 0.05 − 1
β uPA degradation rate 0.13 − 0.95
δ degradation rate for ECM 1 − 20

These parameter ranges and estimations are considered as
stated in [7].

Initial conditions are generated as [7]

c(x, 0) = e−x2/ϵ , x ∈ [0, 1], (2.2a)

v(x, 0) = 1 − 0.5e−x2/ϵ , (2.2b)

u(x, 0) = 0.5e−x2/ϵ , (2.2c)

where ϵ is taken as 0.01.

Normal gradient of all unknowns c, u are zero on the
boundary.

3. Numerical procedure

In the global RBF method, the solution is obtained in
a dense system matrix. It is based on the usage of radial
basis functions depending on radial distance between nodes.
The differentiation matrices are obtained by the coordinate
matrix formed by the chosen RBF and the matrices formed
by the derivative of the chosen RBF [45–47]. In the current

study, RBF is chosen as polyharmonic cubic spline RBF,
f = r7, because this RBF does not depend on a shape
parameter.

The time-space usage of RBF works block-wise in time
as drawn in Figure 1.

x

t

tbl1

0 1

tbl2

..

.

tblk

..

.

tblnumbl

tmax

bi

bl br

bt

Figure 1. Block-wise configuration.

In this configuration, x is kept in interval [0, 1], and tmax

is a fixed time value. bl denotes a time block and numbl is
the number of blocks.

Let N be the number of nodes on the x-axis and let L

be the number of time values in a block. tmax is divided
into equally spaced time blocks, and ∆bl is the time block
increment calculated by

∆bl = ∆t(L − 1)

considering a time increment ∆t in a block.

Inside a time block, the L number of Gauss-Chebyshev-
Lobatto (GCL) time nodes are adopted. Note that ∆t is only
used for getting the uniform time block increment. ∆t is not
used in a time block. Instead, we have GCL time values
as a time block. Each block behaves as a two dimensional
geometry.

As is shown in the first time block tbl1, bi, bl, and br are
boundary conditions in any block. bl and br correspond to
the zero gradient boundaries in related equations. bi is the

Mathematical Modelling and Control Volume 4, Issue 2, 195–207.



199

initial time at tbl1 and it is already given in the first block,
but in other blocks, bi is settled as the found values on bt.

In each block, triplet Eq (2.1) is solved iteratively until a
termination criterion

||cn+1 − cn||∞ + ||vn+1 − vn||∞ + ||un+1 − un||∞ < 10−4 (3.1)

is satisfied.
Global RBF approximates an unknown φ as

φi =

N∑
j=1

ᾱ j fi j, i = 1, . . . ,N, (3.2)

where ᾱ j’s are initially unknown coefficients, f ’s are
approximating functions formed by RBFs depending on
radial distance

r = |x − x j|

in which x is the field point, x j is the collocation point, and
N is the number of nodes on the x-axis.

In matrix-vector form, Eq (3.2) may also be written as

φ = Fᾱ ⇒ ᾱ = F−1φ, (3.3)

where the matrix F is formed by f j’s column-wise, and ᾱ is
the initially unknown vector.

The first and second order space derivatives of φ are
derived by using F and Eq (3.3) as

∂φ

∂x
=
∂F
∂x
ᾱ =
∂F
∂x

F−1φ,

∂2φ

∂x2 =
∂

∂x

(
∂φ

∂x

)
=
∂2F
∂x2 F−1φ.

(3.4)

So, letting

D′x =
∂F
∂x

F−1

and

D′xx =
∂2F
∂x2 F−1,

and using backward differentiation formula of order 2
(BDF2) in time, the iterative solution proceeds in a time
block.

Further, the differentiation matrix in time is also used. The
coordinate matrix Ft is found first by using time values in the
current time block. Then, D′t will be

D′t =
∂Ft

∂t
F−1

t .

The system as Ax = b is constructed by Kronecker
products [48] of these differentiation matrices. That is,
the differentiation matrices for the x- and t- derivatives,
respectively, used in a time block are

Dx = kron(Dx′, eye(L)), Dxx = kron(D′xx, eye(L)),

Dt = kron(eye(N),Dt′),
(3.5)

where kron is the Kronecker tensor product and eye(∗)
denotes the identity matrix of size ∗.

After getting the differentiation matrices, the
dimensionless nonlinear governing equations are iteratively
solved in a time block as(

Dt − DcDxx + χc[(Dxu)dDx + (Dxxu)d]

+ ξc[(Dxv)dDx + (Dxxv)d]
)
cn+1

= µ1cn(1 − cn − vn),

(3.6a)

(
Dt + δ(un)d − µ2(1 − cn+1 − vn)d

)
vn+1 = 0, (3.7a)(

Dt − DuDxx + βI
)
un+1 = αcn+1, (3.7b)

where subindex d denotes the diagonal which is necessary
for defined products.

4. Machine learning approaches

In this part, a short description of the machine
learning techniques, multilayer neural network (NN), and
multivariate adaptive regression splines, is given.

4.1. Multilayer NN

In multilayer NN, the layers start with an input layer and
end with an output layer. The layers between the input and
the output one are called as hidden layers. The feedforward
NN works in one direction from the input layer to the output
layer. That is, flow of information goes from the previous
layer to the next one. Each input data in this flow is
multiplied by a weight, and a bias is added. Then, these
are summed, and affected by an activation function to get an
output. Weights are randomly attained, to start. An update
on weights is performed based on the minimization of a cost
function (or loss function) by the gradient descent method.
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Mathematically, an equation between layers may be
written as [49]

ℓn̄+1 = f (W n̄ℓn̄ + bn̄), n̄ = 0, 1, 2, 3, 4. (4.1)

where n̄ is the layer number, ℓ refers to the data in layer n̄, W

is the weight matrix, b is the bias vector involving intercept
terms, and f is the activation function chosen as

f (x) = max(x, 0)

in the current study. Note that n̄ = 0 and n̄ = 4 correspond
to the input and the output layers.

It is worth it to mention here that this activation function
is the same basis function defined in multivariate adaptive
regression splines (Mars) modeling [50]. In the current
study, the trilayer neural network (TNN) based on the
feedforward NN in Matlab is utilized.

4.2. Mars

In Mars, a function f is approximated by [50]

f (x) =
mb∑
i=1

cibi(x), (4.2)

where mb is the number of basis functions, ci’s are unknown
coefficients, and bi’s are basis functions defined by

h[−(x − zi)] =

zi − x, if zi > x,

0, otherwise,

h[+(x − zi)] =

x − zi, if x > zi,

0, otherwise,

(4.3)

where zi’s are called knots coming from the dataset.
This model function is set up as [50, 51]

I +
nc∑

i=1

(
Ci

nin∏
j=1

sign(h((Input( j) − K) × D),D)
)
, (4.4)

where nc is the number of coefficients, I = c0 is the intercept
with D = 0 and K = 0, nin is the number of inputs, D is the
directions ±1, and K is the cuts (knots). The functions h and
sign are defined as

h(x) = max(x, 0), sign(x,D) =

1, if D = 0,

x, if D , 0,
(4.5)

Two stages work in Mars implementation as forward and
backward stages. An algorithm based on fast search finds
basis functions added to the model in forward step. This
results in overfitted dataset. An overfit model is pruned in
the backward step.

Mars is implemented in R-project importing “earth”
library. Inside earth, some parameter options are chosen.
The option “nk” is the maximum number of terms generated
by the forward stage, “nprune” is the maximum number
of terms generated by the backward stage, “fast.k” is the
maximum number of parent terms considered at each step
of the forward pass, “thresh” is the stopping tolerance for
forward step, and “degree” is the maximum number of
interactions.

5. Discussions on numerical and statistical results

5.1. Numerical observations

In this part, some numerical results in some parameter
variations are presented. In visualization results, since the
dimensional time scale is defined as 10−4 [7], time values in
reality of figures are calculated by ((t/10−4)/3600)/24. For
example, t = 9 means that it is approximately 1 day.

5.1.1. The choice of N and ∆t

In Table 2, absolute errors between mean CC density
(mean CC) and mean uPA (mean u) values at t = 90
at consecutive N and ∆t values are presented when the
parameters are fixed at Dc = Du = 0.001, χc = 0.03, ξc =
0.05, µ1 = 0.05, µ2 = 0.15, α = 0.05, β = 0.15, δ = 10.
According to these results in this table, ∆t = 0.0125 and
N = 101 are used at all calculations.

Table 2. The choice of N and ∆t.

∆t = 0.0125 N = 101
N mean CC mean u ∆t mean CC mean u

71 0.344 0.118 0.1 0.383 0.133
81 0.356 0.122 0.05 0.384 0.134
91 0.371 0.128 0.025 0.386 0.134
101 0.385 0.134 0.0125 0.385 0.134
111 0.399 0.139 0.01 0.385 0.134
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5.2. A validation and some numerical results

First, a comparison with [7] in different time values is
illustrated in Figure 2. As can be noted in Figure 2, present
results are in good agreement with reference’s results.
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Figure 2. A comparison in Dc = 10−4,Du =

10−2, χc = ξc = 0.05, µ1 = µ2 = 0, α = 0.05, β =
0.3, δ = 10.

In Table 3, some numerically observed cases are listed.
Figures 3–5 also present x versus CC, ECM, and uPA density
plots in these cases in some chosen time values. In these
figures, black plots denote CC, red plots show ECM, and
blue plots display uPA densities.

Table 3. Observed cases.

Case # Dc Du χc ξc µ1 µ2 α β δ

1 0.001 0.001 0.03 0.05 0.05 0.15 0.05 0.15 10
2 0.001 0.01 0.03 0.05 0.05 0.15 0.05 0.15 10
3 0.0001 0.01 0.03 0.05 0.05 0.15 0.05 0.15 10
4 0.001 0.001 0.05 0.05 0.05 0.15 0.05 0.15 10
5 0.001 0.001 0.002 0.05 0.05 0.15 0.05 0.15 10
6 0.001 0.001 0.03 0.002 0.05 0.15 0.05 0.15 10
7 0.001 0.001 0.03 0.05 0.5 0.15 0.05 0.15 10
8 0.001 0.001 0.03 0.05 0.05 0.3 0.05 0.15 10
9 0.001 0.001 0.03 0.05 0.05 0.15 0.075 0.15 10
10 0.001 0.001 0.03 0.05 0.05 0.15 0.05 0.5 10
11 0.001 0.001 0.03 0.05 0.05 0.15 0.05 0.15 1

In Figure 3, in Case 1, peak plots of CC occur in the
case of larger uPA values in each figure. That is, the more
uPA occurs, the more CC invades. In Case 2, the diffusion

coefficient of uPA density is increased. Comparing mean CC
values with Case 1, the rise in mean CC values after t = 18
is obviously seen as expected. That is, if uPA diffuses faster,
CCs occupy fast inside ECM. At t = 180(≈20 days), ECM
density almost vanishes. In Case 3, the diffusion coefficient
of CC density is decreased compared to Case 2. By the
decline in CC diffusion, mean CC values are declined in
Case 3. Also, more flattened behavior of CC plots occurs
at t = 90 and t = 180 comparing to Case 2.
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Figure 3. Cases from 1 to 4.

In Case 4, an increased value of χc comparing to Case 1
is concerned. As is noted, CCs move slowly to the right
side at t = 9(≈1 day) comparing to the behavior in Case 1,
and also mean CC values are smaller. Although a similar
attitude is seen at t = 18, CCs remain under the ECM in
case of a larger chemotaxis coefficient. After 10.5(t = 90)
or 20(t = 180) days, mean CC is reduced comparing to mean
CC values obtained in Case 1.

A decreased value of χc constant in Case 5 in Figure 4,
at t = 90 and t = 180, the system appears to be in a
pause state, with little movement observed. This may be
due to the absence of ECM at t = 90 and t = 180, which
is vital for tumor cell migration. In other words, small
chemotaxis inside tissue causes CC invasion very quick after
t = 18(≈ 2 days), and mean CC values reach to a saturated
value without changing anymore after 20 days as is noted
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in Case 5. In Case 6, haptotaxis coefficient ξc is reduced
to 0.002. Comparing to Case 1, the right side peak at CC
in Case 1 is not observed in Case 6 at t = 9(≈ 1 day).
ECM and uPA also becomes almost zero at t = 180. Case 7
demonstrates the influence of a larger value of µ1 comparing
to Case 1. Proliferation rate of CCs rises with the rise in
µ1. As is noted from mean CC values, too, mean CC density
boosts as µ1 is increased comparing to Case 1. Furthermore,
wavy peaks of CC plots occur at the same wavy peaks of
uPA plots. That is, at t = 90 and t = 180, as the leading
group of CCs invades further into the domain, a new group
of cells is formed just behind them due to the increased CC
proliferation caused by uPA-mediated signaling pathways.
Case 8 depicts the impact of a larger µ2 value comparing to
Case 1. The larger µ2 is, the larger rate of proliferation in
ECM occurs. At t = 90 and t = 180, mean CC values are
smaller than the values obtained in Case 1. This points to
the existence of the larger proliferated ECM in the cell.
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Figure 4. Cases from 5 to 8.

In Figure 5, Case 9 portrays the influence of a larger
growth rate of uPA comparing to Case 1. The growth rate of
CC density inside tissue is slower than Case 1 as is compared
with mean CC values. A little bit sharper uPA peaks are also
noticed at t = 90 and t = 180. Case 10 reveals the influence
of the larger decay rate of ECM comparing to Case 1. Since
the decay rate is larger, uPA becomes zero in Case 10 faster

than Case 1. ECM dominates over CCs at t = 9 and t = 18.
So, mean CC values are smaller than Case 1. However, since
the ECM becomes almost zero, CC dominates over ECM at
t = 90 and a peaky CC at t = 180 emerges noting that the
larger mean CC values at t = 90 and t = 180 than Case 1.
Case 11 reports the impact of a smaller value of degradation
rate for ECM comparing to Case 1. That is, ECM degrades
slower than δ = 10 now. Therefore, domination of ECM
over CC continues up to t = 90 while ECM degrades faster
in case of δ = 10 in Case 1. Mean CC values are smaller
until t = 90 than Case 1, but then at t = 180, it boosts
comparing to Case 1.

C
as

e 
9

0 0.5 1
0

0.2

0.4

0.6

0.8

1
t=9, meanCC=0.10291

0 0.5 1
0

0.5

1

1.5
t=18, meanCC=0.13793

0 0.5 1
0

0.5

1

1.5

2
t=90, meanCC=0.226

0 0.5 1
0

0.5

1

1.5

2
t=180, meanCC=0.22128

C
as

e 
10

0 0.5 1
0

0.2

0.4

0.6

0.8

1
t=9, meanCC=0.090511

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
t=18, meanCC=0.10304

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
t=90, meanCC=0.72589

0 0.5 1
0

0.5

1

1.5

2

2.5

3
t=180, meanCC=0.57737

C
as

e 
11

0 0.5 1
0

0.2

0.4

0.6

0.8

1
t=9, meanCC=0.080053

0 0.5 1
0

0.2

0.4

0.6

0.8

1
t=18, meanCC=0.082759

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6
t=90, meanCC=0.17347

0 0.5 1
0

0.5

1

1.5

2
t=180, meanCC=0.81786

Figure 5. Cases from 9 to 11.

In addition to the mean CC values given in each figure,
other mean values in each case at selected time values are
also presented in Table 4. Some comments on this table may
be done as follows:
• The rise in diffusion coefficient of uPA (Case 2) is

reflected by the larger values of mean uPA at t = 90 and
t = 180 comparing to Case 1.
• The reduction in diffusion coefficient of CC density

(Case 3) and mean ECM is a little bit larger as expected,
and mean uPA is smaller in Case 3 comparing to Case 2.
• Checking Cases 4 and 5 together and comparing to

Case 1, the less chemotaxis occurs (Case 5) , the less mean
ECM at t = 9 and t = 18, and the more mean uPA at t = 90
and t = 180 are found.
• In the case of the decrease in haptotaxis coefficient

(Case 6), mean CC was decreasing as time passes in figures
in Case 6 comparing to Case 1. This is confirmed by the
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larger values of mean ECM in Case 6 in this table.

• In Case 7, the larger the proliferation rate of CC is, the
larger the mean uPA than Case 1 is found.

• In Case 8, the larger the proliferation rate of ECM is,
the larger the mean ECM is achieved.

• In Case 9, if the production rate of uPA is larger than
Case 1, mean ECM is found smaller than in Case 1.

• In Case 10, mean uPA values support the larger
degradation rate in uPA comparing to Case 1.

• The less the degradation rate in ECM is, the more mean
ECM is found in Case 11 comparing to Case 1. Further, in
Case 11, ECM degrades and becomes closer to zero slower
than any other case, too.

Table 4. The found mean ECM (mean v) and
mean uPA (mean u) values in each cases.

Case # means t = 9 t = 18 t = 90 t = 180

1 mean ECM 0.3761 0.1089 0 0
mean uPA 0.0344 0.0356 0.1340 0.0993

2 mean ECM 0.1900 0.0197 0 0
mean uPA 0.0344 0.0375 0.2299 0.3059

3 mean ECM 0.1957 0.0274 0 0
mean uPA 0.0336 0.0357 0.0957 0.2108

4 mean ECM 0.4495 0.1821 0 0
mean uPA 0.0334 0.0363 0.0727 0.0645

5 mean ECM 0.3006 0.0675 0 0
mean uPA 0.0323 0.0315 0.2449 0.3319

6 mean ECM 0.6887 0.5697 0.0048 0
mean uPA 0.0314 0.0293 0.0762 0.0975

7 mean ECM 0.4644 0.0729 0 0
mean uPA 0.0368 0.0679 0.2774 0.2677

8 mean ECM 0.4138 0.1776 0 0
mean uPA 0.0348 0.0368 0.1450 0.0798

9 mean ECM 0.2651 0.0535 0 0
mean uPA 0.0465 0.0557 0.1107 0.1046

10 mean ECM 0.5229 0.3506 0 0
mean uPA 0.0092 0.0099 0.0704 0.0575

11 mean ECM 0.7793 0.7214 0.5293 0.00053
mean uPA 0.0320 0.0284 0.0530 0.2553

5.3. Machine learning modeling

First, 5320 number of parameter combinations are
produced. These cases are executed in Matlab by parallel
computing. In each execution, the desired data is saved in
the case of convergent results. In all of these computations,

N = 101 and ∆t = 0.0125

are fixed.
The convergent results are saved as a matrix. In the saved

data, the first column involves time values. The time values
are starting from t = 9, and are incremented 9 again until a
maximum time level,

tmax = 180.

The other columns are for Dc, Dm, χc, ξc, µ1, µ2, α, β, δ

values. The last three columns correspond to the mean
CC density, mean ECM and mean uPA density. In this
way, an input-output data is saved from numerical results.
The obtained size of the data is 53100, which means
that the number of convergent cases is 2655 inside 5320
combinations.

The data is divided into train (80%) and test data (20%)
randomly. This division or separation is done in Matlab by
using “dividerand” syntax. The divided train and test data
are saved. Since the numerical results and, therefore, the
data are saved in Matlab, TNN is implemented in Matlab
by using syntaxes which are called by means of statistics
and the machine learning toolbox. Mars implementation
is employed in R-Project because of the variety in options
existing in earth module used for Mars modeling. The same
saved train and test data in Matlab are used in the R-project.

5.3.1. TNN modeling

In Matlab, using “fitrnet” with 100 layer sizes in each
three layers and with 5-fold cross validation, models are
created. The quality of the model prediction is checked in
Table 5 with error metrics mean squared error (MSE) and R-
squared (R-Sq) error calculated on test data. These results
approve the good fit.

Table 5. TNN model results on test data.

MSE R-Sq

mean CC 9.4e-4 0.9943
mean ECM 4.6e-4 0.9968
mean uPA 0.0028 0.9985

In Figure 6, the top three subplots show the actual (true)
test data versus predicted test data results. The black line
shows the perfect prediction (true test data versus true test
data). The bottom three subplots display the residuals. The
obtained results are satisfactory in view of goodness of fit.
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1

Figure 6. True test data vs predicted test data &
true test data vs residuals plots obtained from TNN
modeling.

5.4. Mars modeling

Mars model is also created in R-project. In Mars
modeling, some of the parameters inside “earth” are
set as nk=1000, degree=10, thresh=1e-11, nprune=1000,

penalty=-1, trace=2, fast.k=1000. MSE and R-Sq metrics
on test data are presented in Table 6. Cross validation is not
used in this modeling. TNN model results are more powerful
than Mars model results.

Table 6. Mars model results on test data.

MSE R-Sq

mean CC 0.0066 0.9697
mean ECM 0.0059 0.9592
mean uPA 0.0223 0.9883

Harmony between true test data (horizontal axes) and
predicted test data is also illustrated in Figure 7.
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Figure 7. Mars model results.

6. Conclusions

In this paper, it is shown that the machine learning
process on mean CC, mean ECM, and mean uPA may
be achieved by using some of the numerical results of
the considered mathematical model of CC invasion of
tissue. In our case, one-dimensional chemotaxis-haptotaxis
model of CC invasion inside tissue is taken into account,
and the associated dimensionless governing equations are
numerically solved by the global radial basis function
method both in space and in time. The advance both in space
and in time makes the process two-dimensional. In some
parameter variations in dimensionless governing equations,
the observed behavior of CC, ECM and uPA densities are
plotted.

Moreover, in a set of problem parameter combination,
numerical method is executed by parallel computing. An
input-output data from convergent results is saved in which
the outputs are mean CC density, mean ECM density, and
mean uPA density. The data is separated into train (80%)
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and test data (20%) randomly. The trained data is used for
modeling in the TNN and Mars. The models are tested on
test data. In terms of MSE and R-Sq metrics on test data, the
TNN is a powerful tool for modeling comparing to Mars.
Although the TNN uses the same activation function with
Mars, Mars could be advanced.

As a future study, this idea may be integrated for a real
life data instead of data obtained by numerical results. The
determination of mean CC density, mean ECM, and mean
uPA may be an indication for the stage of CC invasion inside
tissue.
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