Citation: C. Kavitha, A. Gowrisankar. Fractional integral approach on nonlinear fractal function and its application[J]. Mathematical Modelling and Control, 2024, 4(3): 230-245. doi: 10.3934/mmc.2024019
[1] | B. B. Mandelbrot, The fractal geometry of nature, Times Books, 1982. |
[2] | J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747. https://doi.org/10.1512/iumj.1981.30.30055 |
[3] | M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2 (1986), 303–329. https://doi.org/10.1007/BF01893434 doi: 10.1007/BF01893434 |
[4] | P. R. Massopust, Fractal functions, fractal surfaces and wavelets, Academic Press, 2017. https://doi.org/10.1016/C2009-0-21290-6 |
[5] | K. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley & Sons, Inc., 2004. https://doi.org/10.1002/0470013850 |
[6] | M. F. Barnsley, Fractals everywhere, Academic Press, 1988. https://doi.org/10.1016/C2013-0-10335-2 |
[7] | M. F. Barnsley, J. Elton, D. Hardin, P. Massopust, Hidden variable fractal interpolation functions, SIAM J. Math. Anal., 20 (1989), 1218–1242. https://doi.org/10.1137/0520080 doi: 10.1137/0520080 |
[8] | M. F. Barnsley, A. N. Harrington, The calculus of fractal interpolation functions, J. Approx. Theory, 57 (1989), 14–34. https://doi.org/10.1016/0021-9045(89)90080-4 doi: 10.1016/0021-9045(89)90080-4 |
[9] | M. A. Navascúes, Fractal polynomial interpolation, Z. Anal. Anwend., 25 (2005), 401–418. https://doi.org/10.4171/ZAA/1248 doi: 10.4171/ZAA/1248 |
[10] | S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal functions, dimensions and signal analysis, Springer, 2021. https://doi.org/10.1007/978-3-030-62672-3 |
[11] | B. V. Prithvi, S. K. Katiyar, Revisiting fractal through nonconventional iterated function systems, Chaos Solitons Fract., 170 (2023), 113337. https://doi.org/10.1016/j.chaos.2023.113337 doi: 10.1016/j.chaos.2023.113337 |
[12] | M. A. Navascués, S. K. Katiyar, A. K. B. Chand, Multivariate affine fractal interpolation, Fractals, 28 (2020), 2050136. https://doi.org/10.1142/S0218348X20501364 doi: 10.1142/S0218348X20501364 |
[13] | R. Medhi, P. Viswanathan, The Hutchinson-Barnsley theory for iterated function system with bounded cyclic contractions, Chaos Solitons Fract., 174 (2023), 113796. https://doi.org/10.1016/j.chaos.2023.113796 doi: 10.1016/j.chaos.2023.113796 |
[14] | M. Kumar, N. S. Upadhye, A. K. B. Chand, Linear fractal interpolation function for dataset with random noise, Fractals, 30 (2022), 2250186. https://doi.org/10.1142/S0218348X22501869 doi: 10.1142/S0218348X22501869 |
[15] | V. Drakopoulos, D. Matthes, D. Sgourdos, N. Vijender, Parameter identification of bivariate fractal interpolation surfaces by using convex hulls, Mathematics, 11 (2023), 2850. https://doi.org/10.3390/math11132850 doi: 10.3390/math11132850 |
[16] | E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13 (1962), 459–465. https://doi.org/10.1090/S0002-9939-1962-0148046-1 doi: 10.1090/S0002-9939-1962-0148046-1 |
[17] | S. Ri, A new fixed point theorem in the fractal space, Indag. Math., 27 (2016), 85–93. https://doi.org/10.1016/j.indag.2015.07.006 doi: 10.1016/j.indag.2015.07.006 |
[18] | S. Ri, A new nonlinear fractal interpolation function, Fractal, 25 (2017), 1750063. https://doi.org/10.1142/S0218348X17500633 doi: 10.1142/S0218348X17500633 |
[19] | J. Kim, H. Kim, H. Mun, Construction of nonlinear hidden variable fractal interpolation functions and their stability, Fractal, 27 (2019), 1950103. https://doi.org/10.1142/S0218348X19501032 doi: 10.1142/S0218348X19501032 |
[20] | J. Kim, H. Kim, H. Mun, Nonlinear fractal interpolation curves with function vertical scaling factors, Indian J. Pure Appl. Math., 27 (2020), 483–499. https://doi.org/10.1007/s13226-020-0412-x doi: 10.1007/s13226-020-0412-x |
[21] | M. A. Navascúes, C. Pacurar, V. Drakopoulos, Scale-free fractal interpolation, Fractal Fract., 6 (2022), 602. https://doi.org/10.3390/fractalfract6100602 doi: 10.3390/fractalfract6100602 |
[22] | D. P. Hardin, P. R. Massopust, The capacity for a class of fractal functions, Commun. Math. Phys., 105 (1986), 455–460. https://doi.org/10.1007/BF01205937 doi: 10.1007/BF01205937 |
[23] | T. Bedford, Hölder exponents and box dimension for self-affine fractal functions, Constr. Approx., 5 (1916), 33–48. https://doi.org/10.1007/BF01889597 doi: 10.1007/BF01889597 |
[24] | L. Dalla, V. Darkopoulos, M. Prodromou, On the box dimension for a class of nonaffine fractal interpolation functions, Anal. Theory Appl., 19 (2003), 220–233. https://doi.org/10.1007/BF02835281 doi: 10.1007/BF02835281 |
[25] | H. Y. Wang, J. Yu, Fractal interpolation functions with variable parameters and their analytical properties, J. Approx. Theory, 17 (2013), 1–18. https://doi.org/10.1016/j.jat.2013.07.008 doi: 10.1016/j.jat.2013.07.008 |
[26] | Y. S. Liang, Approximation with fractal functions by fractal dimension, Fractals, 30 (2022), 2250151. https://doi.org/10.1142/S0218348X22501511 doi: 10.1142/S0218348X22501511 |
[27] | S. Ri, Box dimension of a nonlinear fractal interpolation curve, Fractal, 27 (2019), 1950023. https://doi.org/10.1142/S0218348X19500233 doi: 10.1142/S0218348X19500233 |
[28] | M. F. Barnsley, P. Massopust, Bilinear fractal interpolation and box dimension, J. Approx. Theory, 192 (2015), 362–378. https://doi.org/10.1016/j.jat.2014.10.014 doi: 10.1016/j.jat.2014.10.014 |
[29] | F. B. Tatom, The relationship between fractional calculus and fractals, Fractals, 3 (1995), 217–229. https://doi.org/10.1142/S0218348X95000175 doi: 10.1142/S0218348X95000175 |
[30] | Y. S. Liang, Approximation of the same box dimension in continuous functions space, Fractals, 30 (2022), 2250039. https://doi.org/10.1142/S0218348X22500396 doi: 10.1142/S0218348X22500396 |
[31] | Y. S. Liang, Q. Zhang, A type of fractal interpolation functions and their fractional calculus, Fractals, 30 (2016), 1650026. https://doi.org/10.1142/S0218348X16500262 doi: 10.1142/S0218348X16500262 |
[32] | H. J. Ruan, W. Y. Su, K. Yao, Box dimension and fractional integral of linear fractal interpolation functions, J. Approx. Theory, 161 (2016), 187–197. https://doi.org/10.1016/j.jat.2008.08.012 doi: 10.1016/j.jat.2008.08.012 |
[33] | Y. Fu, J. Kou, C. Du, Fractal characteristics of AC corrosion morphology of X80 pipeline steel in coastal soil solution, Anti Corros. Methods Mater., 66 (2016), 868–878. https://doi.org/10.1108/ACMM-01-2019-2066 doi: 10.1108/ACMM-01-2019-2066 |
[34] | C. Kavitha, A. Gowrisankar, S. Banerjee, The second and third waves in India: when will the pandemic be culminated? Eur. Phys. J. Plus, 136 (2021), 596. https://doi.org/10.1140/epjp/s13360-021-01586-7 |
[35] | J. Wu, The effects of the Riemann–Liouville fractional integral on the box dimension of fractal graphs of hölder continuous functions, Fractals, 28 (2020), 2050052. https://doi.org/10.1142/S0218348X20500528 doi: 10.1142/S0218348X20500528 |
[36] | C. Kavitha, A. Gowrisankar, On the variable order Weyl-Marchaud fractional derivative of non-affine fractal function, J. Anal., 32, (2024), 3–18. https://doi.org/10.1007/s41478-023-00566-7 |
[37] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993. |
[38] | A. K. Golmankhaneh, D. Bongiorno, Exact solutions of some fractal differential equations, Appl. Math. Comput., 472 (2024), 128633. https://doi.org/10.1016/j.amc.2024.128633 doi: 10.1016/j.amc.2024.128633 |
[39] | C. Kavitha, M. Meenakshi, A. Gowrisankar, Classification of COVID-19 time series through Hurst exponent and fractal dimension, In: S. Banerjee, A. Gowrisankar, Fractal signatures in the dynamics of an epidemiology, CRC Press, 2023,147–161. https://doi.org/10.1201/9781003316640 |