Research article Special Issues

Fractional integral approach on nonlinear fractal function and its application

  • Received: 20 January 2024 Revised: 11 March 2024 Accepted: 07 May 2024 Published: 28 June 2024
  • The shape and dimension of the fractal function have been significantly influenced by the scaling factor. This paper investigated the fractional integral of the nonlinear fractal interpolation function corresponding to the iterated function systems employed by Rakotch contraction. We demonstrated how the scaling factors affect the flexibility of fractal functions and their different fractional orders of the Riemann fractional integral using certain numerical examples. The potentiality application of Rakotch contraction of fractal function theory was elucidated based on a comparative analysis of the irregularity relaxation process. Moreover, a reconstitution of epidemic curves from the perspective of a nonlinear fractal interpolation function was presented, and a comparison between the graphs of linear and nonlinear fractal functions was discussed.

    Citation: C. Kavitha, A. Gowrisankar. Fractional integral approach on nonlinear fractal function and its application[J]. Mathematical Modelling and Control, 2024, 4(3): 230-245. doi: 10.3934/mmc.2024019

    Related Papers:

  • The shape and dimension of the fractal function have been significantly influenced by the scaling factor. This paper investigated the fractional integral of the nonlinear fractal interpolation function corresponding to the iterated function systems employed by Rakotch contraction. We demonstrated how the scaling factors affect the flexibility of fractal functions and their different fractional orders of the Riemann fractional integral using certain numerical examples. The potentiality application of Rakotch contraction of fractal function theory was elucidated based on a comparative analysis of the irregularity relaxation process. Moreover, a reconstitution of epidemic curves from the perspective of a nonlinear fractal interpolation function was presented, and a comparison between the graphs of linear and nonlinear fractal functions was discussed.


    加载中


    [1] B. B. Mandelbrot, The fractal geometry of nature, Times Books, 1982.
    [2] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747. https://doi.org/10.1512/iumj.1981.30.30055
    [3] M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2 (1986), 303–329. https://doi.org/10.1007/BF01893434 doi: 10.1007/BF01893434
    [4] P. R. Massopust, Fractal functions, fractal surfaces and wavelets, Academic Press, 2017. https://doi.org/10.1016/C2009-0-21290-6
    [5] K. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley & Sons, Inc., 2004. https://doi.org/10.1002/0470013850
    [6] M. F. Barnsley, Fractals everywhere, Academic Press, 1988. https://doi.org/10.1016/C2013-0-10335-2
    [7] M. F. Barnsley, J. Elton, D. Hardin, P. Massopust, Hidden variable fractal interpolation functions, SIAM J. Math. Anal., 20 (1989), 1218–1242. https://doi.org/10.1137/0520080 doi: 10.1137/0520080
    [8] M. F. Barnsley, A. N. Harrington, The calculus of fractal interpolation functions, J. Approx. Theory, 57 (1989), 14–34. https://doi.org/10.1016/0021-9045(89)90080-4 doi: 10.1016/0021-9045(89)90080-4
    [9] M. A. Navascúes, Fractal polynomial interpolation, Z. Anal. Anwend., 25 (2005), 401–418. https://doi.org/10.4171/ZAA/1248 doi: 10.4171/ZAA/1248
    [10] S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal functions, dimensions and signal analysis, Springer, 2021. https://doi.org/10.1007/978-3-030-62672-3
    [11] B. V. Prithvi, S. K. Katiyar, Revisiting fractal through nonconventional iterated function systems, Chaos Solitons Fract., 170 (2023), 113337. https://doi.org/10.1016/j.chaos.2023.113337 doi: 10.1016/j.chaos.2023.113337
    [12] M. A. Navascués, S. K. Katiyar, A. K. B. Chand, Multivariate affine fractal interpolation, Fractals, 28 (2020), 2050136. https://doi.org/10.1142/S0218348X20501364 doi: 10.1142/S0218348X20501364
    [13] R. Medhi, P. Viswanathan, The Hutchinson-Barnsley theory for iterated function system with bounded cyclic contractions, Chaos Solitons Fract., 174 (2023), 113796. https://doi.org/10.1016/j.chaos.2023.113796 doi: 10.1016/j.chaos.2023.113796
    [14] M. Kumar, N. S. Upadhye, A. K. B. Chand, Linear fractal interpolation function for dataset with random noise, Fractals, 30 (2022), 2250186. https://doi.org/10.1142/S0218348X22501869 doi: 10.1142/S0218348X22501869
    [15] V. Drakopoulos, D. Matthes, D. Sgourdos, N. Vijender, Parameter identification of bivariate fractal interpolation surfaces by using convex hulls, Mathematics, 11 (2023), 2850. https://doi.org/10.3390/math11132850 doi: 10.3390/math11132850
    [16] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13 (1962), 459–465. https://doi.org/10.1090/S0002-9939-1962-0148046-1 doi: 10.1090/S0002-9939-1962-0148046-1
    [17] S. Ri, A new fixed point theorem in the fractal space, Indag. Math., 27 (2016), 85–93. https://doi.org/10.1016/j.indag.2015.07.006 doi: 10.1016/j.indag.2015.07.006
    [18] S. Ri, A new nonlinear fractal interpolation function, Fractal, 25 (2017), 1750063. https://doi.org/10.1142/S0218348X17500633 doi: 10.1142/S0218348X17500633
    [19] J. Kim, H. Kim, H. Mun, Construction of nonlinear hidden variable fractal interpolation functions and their stability, Fractal, 27 (2019), 1950103. https://doi.org/10.1142/S0218348X19501032 doi: 10.1142/S0218348X19501032
    [20] J. Kim, H. Kim, H. Mun, Nonlinear fractal interpolation curves with function vertical scaling factors, Indian J. Pure Appl. Math., 27 (2020), 483–499. https://doi.org/10.1007/s13226-020-0412-x doi: 10.1007/s13226-020-0412-x
    [21] M. A. Navascúes, C. Pacurar, V. Drakopoulos, Scale-free fractal interpolation, Fractal Fract., 6 (2022), 602. https://doi.org/10.3390/fractalfract6100602 doi: 10.3390/fractalfract6100602
    [22] D. P. Hardin, P. R. Massopust, The capacity for a class of fractal functions, Commun. Math. Phys., 105 (1986), 455–460. https://doi.org/10.1007/BF01205937 doi: 10.1007/BF01205937
    [23] T. Bedford, Hölder exponents and box dimension for self-affine fractal functions, Constr. Approx., 5 (1916), 33–48. https://doi.org/10.1007/BF01889597 doi: 10.1007/BF01889597
    [24] L. Dalla, V. Darkopoulos, M. Prodromou, On the box dimension for a class of nonaffine fractal interpolation functions, Anal. Theory Appl., 19 (2003), 220–233. https://doi.org/10.1007/BF02835281 doi: 10.1007/BF02835281
    [25] H. Y. Wang, J. Yu, Fractal interpolation functions with variable parameters and their analytical properties, J. Approx. Theory, 17 (2013), 1–18. https://doi.org/10.1016/j.jat.2013.07.008 doi: 10.1016/j.jat.2013.07.008
    [26] Y. S. Liang, Approximation with fractal functions by fractal dimension, Fractals, 30 (2022), 2250151. https://doi.org/10.1142/S0218348X22501511 doi: 10.1142/S0218348X22501511
    [27] S. Ri, Box dimension of a nonlinear fractal interpolation curve, Fractal, 27 (2019), 1950023. https://doi.org/10.1142/S0218348X19500233 doi: 10.1142/S0218348X19500233
    [28] M. F. Barnsley, P. Massopust, Bilinear fractal interpolation and box dimension, J. Approx. Theory, 192 (2015), 362–378. https://doi.org/10.1016/j.jat.2014.10.014 doi: 10.1016/j.jat.2014.10.014
    [29] F. B. Tatom, The relationship between fractional calculus and fractals, Fractals, 3 (1995), 217–229. https://doi.org/10.1142/S0218348X95000175 doi: 10.1142/S0218348X95000175
    [30] Y. S. Liang, Approximation of the same box dimension in continuous functions space, Fractals, 30 (2022), 2250039. https://doi.org/10.1142/S0218348X22500396 doi: 10.1142/S0218348X22500396
    [31] Y. S. Liang, Q. Zhang, A type of fractal interpolation functions and their fractional calculus, Fractals, 30 (2016), 1650026. https://doi.org/10.1142/S0218348X16500262 doi: 10.1142/S0218348X16500262
    [32] H. J. Ruan, W. Y. Su, K. Yao, Box dimension and fractional integral of linear fractal interpolation functions, J. Approx. Theory, 161 (2016), 187–197. https://doi.org/10.1016/j.jat.2008.08.012 doi: 10.1016/j.jat.2008.08.012
    [33] Y. Fu, J. Kou, C. Du, Fractal characteristics of AC corrosion morphology of X80 pipeline steel in coastal soil solution, Anti Corros. Methods Mater., 66 (2016), 868–878. https://doi.org/10.1108/ACMM-01-2019-2066 doi: 10.1108/ACMM-01-2019-2066
    [34] C. Kavitha, A. Gowrisankar, S. Banerjee, The second and third waves in India: when will the pandemic be culminated? Eur. Phys. J. Plus, 136 (2021), 596. https://doi.org/10.1140/epjp/s13360-021-01586-7
    [35] J. Wu, The effects of the Riemann–Liouville fractional integral on the box dimension of fractal graphs of hölder continuous functions, Fractals, 28 (2020), 2050052. https://doi.org/10.1142/S0218348X20500528 doi: 10.1142/S0218348X20500528
    [36] C. Kavitha, A. Gowrisankar, On the variable order Weyl-Marchaud fractional derivative of non-affine fractal function, J. Anal., 32, (2024), 3–18. https://doi.org/10.1007/s41478-023-00566-7
    [37] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993.
    [38] A. K. Golmankhaneh, D. Bongiorno, Exact solutions of some fractal differential equations, Appl. Math. Comput., 472 (2024), 128633. https://doi.org/10.1016/j.amc.2024.128633 doi: 10.1016/j.amc.2024.128633
    [39] C. Kavitha, M. Meenakshi, A. Gowrisankar, Classification of COVID-19 time series through Hurst exponent and fractal dimension, In: S. Banerjee, A. Gowrisankar, Fractal signatures in the dynamics of an epidemiology, CRC Press, 2023,147–161. https://doi.org/10.1201/9781003316640
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1125) PDF downloads(163) Cited by(1)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog