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Abstract: The shape and dimension of the fractal function have been significantly influenced by the scaling factor. This paper
investigated the fractional integral of the nonlinear fractal interpolation function corresponding to the iterated function systems employed
by Rakotch contraction. We demonstrated how the scaling factors affect the flexibility of fractal functions and their different fractional
orders of the Riemann fractional integral using certain numerical examples. The potentiality application of Rakotch contraction of
fractal function theory was elucidated based on a comparative analysis of the irregularity relaxation process. Moreover, a reconstitution
of epidemic curves from the perspective of a nonlinear fractal interpolation function was presented, and a comparison between the graphs
of linear and nonlinear fractal functions was discussed.
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1. Introduction

Mandelbrot coined the concept of fractal in order to
address the issues of irregular natural phenomena that cannot
be represented using Euclidean geometry. The fractal
theory provides a powerful tool for fitting experimental data
to realistic data and complicated curve data in complex
modeling [1]. Hutchinson elaborated the concept of fractal
through the iterated function system (IFS) and he showed
that IFS is one of the significant roles in proving self-
similar properties (see more details in [2]). Barnsley has
pioneered the concept of constructing a continuous function
f from [t0, tN] to R using the framework of IFS theory. This
function is the graph of the unique attractor of a special
IFS, referred as the fractal interpolation function (FIF) [3].
In recent years [4], FIF has obtained much fascination for
its ability to bring together new research disciplines such
as approximation theory, interpolation theory, functional
analysis, etc. The scaling factor has a significant impact

on the fractal characteristics, like box dimension and
flexibility of fractal function. Numerous studies on the

fractal function have employed constant scaling factors,
which produce self-similar properties. Being that there
is irregular data with moderately self-similarity, function
scaling factors have been proposed in the studies for such a
model of function rather than constant scaling factors. Many

researchers have examined the concept of IFSs in various
manners in order to develop the fractal function theory, and
their research has demonstrated that each of those has a
unique attractor and these are associated with the graph of

continuous mappings that intercalates prescribed data. They

investigated the characterization of fractal functions such as
their flexibility, fractal dimension, stability, multivariate FIF,
and operators (for more information see [5–13]). In [14], the

authors investigated the probability distributions of linear
FIF amidst different types of random noise. They introduced

a technique to approximate the distributions of linear FIF

affected by t-distribution noise and also discussed statistical

https://www.aimspress.com/journal/mmc
https://dx.doi.org/ 10.3934/mmc.2024019


231

properties, as well as offered numerical approximations for
these functions. The authors discussed identification for the
parameters of bivariate fractal interpolation surfaces using
convex hulls to bounded areas of appropriately chosen data
points, achieving a closer fit to the original data [15].

The Banach contraction theorem is the most powerful
tool for establishing and studying the convergence of the
method of iterative. This traditional theorem that has much
significance in both theoretical and real-life applications has
been studied in many ways. The Rakotch contraction is
the generalization of Banach contraction. Rakotch [16] has
proposed the Rakotch fixed point theorem, a novel fixed
point theorem that is according with the Rakotch contraction
function (sometimes referred to as the nonlinear contraction
function). The scaling factor depends on the distance
between any two points on a compact domain and the scaling
factor is defined as the family of functions, which obeys
the condition 0 ≤ α(z) < 1. In [17], the fractal space
with the IFS defined on different sorts of the fixed point
theorem has been studied by the Rakotch fixed point theorem
in place of the Banach contraction theorem. Thereafter,
on the basis of the Rakotch fixed point theorem, Song-il
Ri generated the new fractal function (known as nonlinear
fractal interpolation function (NFIF)) associated with the
nonlinear IFS [18]. In this progression, Kim’s research
team has established different sorts of nonlinear fractal
functions such as bivariate functions,and hidden variables,
and also analyzed their characterization (see more details
in [19, 20]). Thereafter [21], Navascués et al. delineated the
R- fractal function as a complete class of attractor functions
corresponding to the provided continuous map on a closed
subset in R. Moreover, they studied the properties of the R-
fractal function with the nonlinear scaling coefficients such
as smoothness, fractal operator, etc.

In [22], the box dimension of the graph of the fractal
function has been measured through the slope of scaling
coefficients. In this development, it is based on the Hölder
exponent via calculating the fractal dimension for the graph
of the fractal function with both linear and nonlinear scaling
factors in [23]. Later on, several researchers estimated
the conception fractal dimension for the various sorts of
fractal functions like affine, and non-affine (see [24–26]).
The relation between the Rakotch contraction factor and the

box dimension of the nonlinear fractal function has been
proved [27]. The fractal functions of traditional integral have
been shown on a compact set in R but have more complexity
and, consequently, they are more appropriate for modeling
irregular data or functions in [28].

In [29], research introduced the conception of the
fractional integral corresponding to the linear fractal
function f and the general connection of the fractional
integral order ζ, and

dimB Γ(Iζ f (t)) = dimB Γ( f (t)) − ζ

is studied. In numerous papers, the fractional calculus of
different kinds of fractal functions and their box dimension
have been demonstrated (for more details, see [30–32]). Few
applications of different sort of FIFs have been explored in
the field of engineering [33], and medical diseases, namely,
COVID-19 is discussed and predicated by FIF in [34].
The author in [35] has studied the fractional integral of
fractal dimension through the space of all H

..
older continuous

maps delineated on compact subset in R. The non-
affine fractal function associated with fractional integrals
has been explored for function order [36]. The fractal
operator defined for fractional integrals satisfies linearity
and boundedness [37]. Moreover, methods for solving
fractal calculus are being investigated [38]. To the best of the
authors’ knowledge, no research has been carried out related
to an analysis of the interaction between fractional calculus
and nonlinear fractal interpolation theory. The objective of
this study is to extended an approach that is appropriate,
such as geometrical approximation. This paper investigates
the nonlinear fractal function corresponding to the fractional
integral on the closed interval [t0, tN] in R. The potentiality
application of the Rakotch contraction of the fractal function
theory is elucidated based on a comparative analysis of the
irregularity relaxation process.

This paper is systematized as follows: Section 2 endows
a basic overview. In Section 3, the nonlinear FIF with
nonlinear scaling coefficients correlation of the fractional
integral on a compact subset [t0, tN] in R is investigated,
as well as a discussion about the end point conditions.
Section 4 represents the numerical simulation for the
prescribed concept of this paper. In Section 5, the
application of nonlinear FIF in the time domain of the
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COVID-19 data taken for the year 2022 is discussed, and
its fractal dimension has been calculated.

2. Preparatory facts

Definition 2.1. [16, 17] Let X denote the nonempty set. A

function f : X → X is said to be ϕ- contraction if for some

self-mapping ϕ on R+ ∪ {0} such that

ω( f (t), f (y)) ≤ ϕ(ω(t, y)), ∀ t, y ∈ X,

where 0 ≤ ϕ(z) < 1, z > 0.

Definition 2.2. [16, 17] Let X denote the complete metric

space. A function f : X → X is said to be f is a Rakotch ϕ-

contraction if there exists a self-mapping ϕ on

R+ ∪ {0} and 0 ≤ α(z)z = ϕ(z) < 1,

where z > 0 such that

ω( f (t), f (y)) ≤ α(ω(t, y))ω(t, y), ∀ t, y ∈ X,

where 0 ≤ α(z) < 1, for each z > 0.

Example 2.1. If X = R is a complete metric space. If

f1 : R→ [c, d], f2 : R→ [c, d]

defined by

f1 =
z

1 + z2 and f2 = cos(z), ∀z ∈ [0,∞).

Then fr is a Rakotch ϕr- contraction where r = 1, 2, but it is

not a Banach contraction on X.

Remark 2.1. Each Banach contraction is a Rakotch ϕ-

contraction, but the converse need not be true. If

α(z) = ϕ(z)z = αz,

where α lies between 0 and 1, then the Rakotch ϕr-

contraction is a Banach contraction.

Song-il Ri has developed the generalization of nonlinear
fractal functions. He has introduced the concept of the
Rakotch contraction in fractal interpolation theory [18].

The construction of a nonlinear fractal function follows as:
consider the interpolate points

∆ = {(tr, yr) : r ∈ N0} ⊂ R2,

where

N0 = {0, 1, 2, . . . ,N},

which is a distinct dataset of the closed interval

I = [t0, tN],

and yr ∈ [c, d] ⊂ R, r = 0, 1, 2, . . .N. Set

Ir = [tr−1, tr] and M = I × [c, d].

Let hr(t): I→ Ir be the contraction mappings and

hr(t0) = tr−1, hr(tN) = tr, ∀ r = 1, 2, . . . ,N,

such that

|hr(t) − hr(t∗)| ≤ ℓ|t − t∗|,

for some ℓ ∈ [0, 1). Let Gr: M → R be the homeomorphism
functions and

Gr(t0, y0) = yr−1,Gr(tN , yN) = yr, ∀ r = 1, 2, . . . ,N,

such that

|Gr(t, y) −Gr(t, y′)| ≤ ϕ(|y − y′|), ∀y, y′ ∈ [c, d], t ∈ I,

where

0 ≤ ϕ(|y − y′|) < 1.

Define the IFS as

{X : wr(t, y) = (hr(t),Gr(t, y)); r = 1, 2, . . . ,N},

where wr: M → Ir × [c, d] is the N- contraction functions
defined on the subset of R2. Let H(X) indicate the space
of all nonempty closed and bounded subsets of X and it
is complete with regard to the Hausdorff distance. A self-
mapping W is delineated onH(X) by

W(B∗) =
N⋃

r=1

wr(B∗)
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for any B∗ ∈ H(X). As W is the Rakotch contraction map on
H(X), then by the Rakotch fixed point theorem, W admits an
unique set G f such that

G f = W(G f ).

The compact set

G f := {(t, f (t)) : t ∈ I}

is the graph of continuous function f : I → R satisfying
f (tr) = yr for r = 0, 1, 2, . . . ,N. The graph of attractor of
the IFS

{X : wr(t, y) = (hr(t),Gr(t, y)); r = 1, 2, . . . ,N}

of a function f is associated with the prescribed data points

{(tr, yr) ∈ I × R : r = 0, 1, 2, . . . ,N}

is called the NFIF or nonlinear fractal function.
The operator T ∗ is delineated on the space of all

continuous maps on I by

T ( f (t)) = Gr

(
h−1

r (t), f (h−1
r (t))

)
,

where t ∈ Ir, r = 1, 2, . . . ,N, which is obeying that the joint-
up conditions are f (t0) = y0 and f (tN) = yN . The function f

being the attractor of T ∗ is satisfies the following functional
equation:

(T ∗ f )(t) = f (t) = Gr

(
h−1

r (t), f (h−1
r (t))

)
,

or f (hr(t)) = ℘r( f (t)) + qr(t), t ∈ Ir,
(2.1)

where ℘r, r = 1, 2, . . . ,N is the Rakotch scaling factor,
and qr(t) is Lipstchiz’s continuous function and obeys the
endpoint conditions. Based on qr(t), numerous authors
have developed different kinds of fractal functions (for more
details see [7–9]). In this paper, we study the NFIF’s both
constant and function scale factors [18, 20] delineated by

wr(t, y) =

hr(t) = brt + βr

Gr(t, y)

 , (2.2)

where ∀ (t, y) ∈ M and the coefficients in (2.2) are real
parameters described as followsbr =

tr−tr−1
tN−t0
,

βr =
tN tr−1−t0tr

tN−t0
.

(2.3)

Throughout this paper, qr(t) is chosen as linear that is

qr(t) = αrt + fr.

The following is a fundamental definition of box dimension
as:

Definition 2.3. [5] Let D be any nonempty compact subset

of Rn and let Nγ(D) be the minimum number of a set of

diameters at most γ, which can cover D. The upper and

lower box counting dimensions of D respectively, are as

follows:

dimBD = lim
γ→0

log Nγ(D)
− log γ

,

dimBD = lim
γ→0

log Nγ(D)
− log γ

.

If

dimBD = dimBD.

This value is referred to as the box dimension of D:

dimB D = lim
γ→0

log Nγ(D)
− log γ

.

The relationship between the scale factor and the
fractal dimension of a FIF yields crucial insights into the
appearance of fractals. In this context [6], the author defines
analytical techniques, such as describing the interrelation
between the box dimension of the fractal function and the
scaling factors. This exploration elucidates how variations
in the scale factors influence the refining of the quality of
FIF-generated structure.

Theorem 2.1. [6] Let

Gr(t, y) = dry + qr(t),

where |dr | < 1. If the points {(tr, yr) ∈ I×R : r = 0, 1, . . . ,N}
are noncollinear, then

dimB Γ( f ) =


1 +

log(
N∑

r=1
|dr |)

log(N) , if
N∑

r=1
|dr | > 1,

1, otherwise.

(2.4)

Suppose

d1 = d2 = · · · = dN = d,
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then
dimB Γ( f ) = 1 + logN(|d|).

In this sequel, Ri [27] has investigated the box dimension for
the NFIF as

0 = t0 ≤ t1 ≤ · · · ≤ tN = 1

and
(y0, y1, . . . , yN) ∈ [a, b]

are the given real numbers. Let

hr(t) = brt + βr and Gr(t, y) = ℘r(y) + αrt + fr,

where ℘r: [a, b] → [a, b] is a Rakotch ℘r- contraction for
all r = 1, 2, . . . ,N. The set of data points obeying the
assumptions of Theorem 2.1 have prescribed the following
Theorem 2.2.

Theorem 2.2. [27] Let

Gr(t, y) = ℘r(y) + qr(t)

with |℘r(y)| < 1. If for all ℘r are self-maps on [a, b] and

Rakotch ϕr- contractions, where ℘r is an increasing and

continuously differential function on (t0, tN). If

N∑
r=1

min
y∈[a,b]

|℘′r(y)| > 1,
N∑

r=1

max
y∈[a,b]

|℘′r(y)| > 1

and the set data points

{(tr, yr) ∈ I × R : r = 0, 1, . . . ,N}

are noncollinear, then

1 + logN

 N∑
r=1

min
y∈[a,b]

|℘′r(y)|

 ≤ dimB(Γ( f ))

≤ dimB(Γ( f )) (2.5)

≤ 1 + logN

 N∑
r=1

max
y∈[a,b]

|℘′r(y)|

 .

3. Riemann-Liouville fractional integral

This section explores the relation between the nonlinear
fractal function with various kinds of Rakotch contractions
and the fractional integral on I. The Riemann-Liouville
fractional integral (RLFI) is delineated as follows:

Definition 3.1. [37] Let f be a continuous function from I

into I, if there is a factor 0 < ζ < 1 such that

Iζt0 f (t) =
1
Γ(ζ)

∫ t

t0
(t − u)ζ−1 f (u)du. (3.1)

The above equation is said to be RLFI.

3.1. RLFI for NFIF with constant scaling factor

This section illustrates the nonlinear fractal function of
RLFI corresponding to the IFS

{X : (hr(t),Gr(t, y)); r = 1, 2, 3, . . . ,N}

that is, if f is a nonlinear fractal function on the dataset

∆ = {(tr, yr) : r ∈ N0} ⊂ R2,

where

N0 = {0, 1, 2, . . . ,N}.

Then the RLFI delineated follows as:

Iζt0℘r( f (t)) =
1
Γ(ζ)

∫ t

t0
(t − u)ζ−1 ℘r( f (u))du (3.2)

with the initial condition

Iζt0℘r( f (t0)) = 0.

Theorem 3.1. Let f be the nonlinear fractal function

correlated to the IFS

{X : (hr(t),Gr(t, y)); r = 1, 2, 3, . . . ,N}.

Then, Iζt0 f (t) is the nonlinear FIF associated with the new

IFS

{hr(t), Ĝr(t, y)}Nr=1 and ŷ0,ζ = 0,

where

Ĝr(t, y) = bζr ℘̂r(y) + q̂r(t), ∀ r = 1, 2, . . . ,N,

q̂r(t) = ŷr−1,ζ + fr,ζ(t) + bζr Iζt0 qr(t),

ŷN,ζ =

N∑
i=1

(
fi,ζ(t) + bζi Iζt0 ri(yN) + bζi Iζt0 qi(tN)

)
,

fr,ζ =
1
Γ(ζ)

∫ tr−1

t0
(hr(t) − u)ζ−1 − (tr−1 − u)ζ−1 f (u)du.
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Proof. From the functional equation given in (2.1), and thus,
for all t ∈ [t0, tr] and r = 1, 2, . . . ,N, let u = hr(v) be
employed in the following equation, which is obtained as

Iζt0 f (hr(t)) =
1
Γ(ζ)

∫ hr(t)

t0
(hr(t) − u)ζ−1 f (u)du,

Iζt0 f (hr(t)) = ŷr−1,ζ + fr,ζ(t) + bζr Iζt0℘r( f (t)) + bζr Iζt0 qr(t)

= Ĝr(t, ℘̂r(y)).

Put t = tN and hr(tN) = tr, which implies that

ŷN,ζ = ŷr−1,ζ + fr,ζ(t) + bζr Iζt0℘r(yN) + bζr Iζt0 qr(tN). (3.3)

Since

ŷr,ζ = ŷ0,ζ +

r∑
i=1

(̂
yi,ζ − ŷi−1,ζ

)
is applying the Eq (3.3), for each r = 1, 2, . . . ,N, and
substituting r = N, ŷr,ζ is obtained as follows:

ŷr,ζ =

N∑
i=1

(
fi,ζ(t) + bζi Iζt0 ri(yN) +bζi Iζt0 qi(tN)

)
.

The function Iζt0 f (t) is a nonlinear FIF, and q̂r(t) needs to
satisfy the continuity conditions. Note that

q̂r(t) = ŷr−1,ζ + fr,ζ(t) + bζr Iζt0 qr(tn), q̂r(t0) = ŷr−1,ζ ,

and

q̂r(tN) = ŷr−1,ζ + fr,ζ(tN) + bζr Iζt0 qr(tN).

Comparing the above equation with ŷr,ζ in Eq (3.3) is

q̂r(tN) = ŷr,ζ − bζr Iζt0℘r(yN).

This clearly provides that

Ĝr(t0, ŷ0) = Ĝr(t0, 0) = q̂r(t0) = ŷr−1,

and also

Ĝr(tN , ŷN) = Iζt0 f (hr(tN)) = ŷr.

Hence, the nonlinear IFS

{X : (hr(t), Ĝr(t, y)); r = 1, 2, . . . ,N}

associated the new FIF Iζt0 f with initial condition ŷ0,ζ = 0.

Remark 3.1. In Theorem 3.1, the nonlinear FIF with

Rakotch contraction factor ℘r is studied by RLFI. Suppose

the Rakotch contraction factor ℘r(y) in Theorem 3.1 is

chosen as ℘r(y) = dry, then the fractal function with Banach

contraction has been discussed through the RLFI and is

gathered as follows:

Ĝr(t, y) = bζr ŷ + q̂r(t), ∀ r = 1, 2, . . . ,N,

q̂r(t) = ŷr−1,ζ + fr,ζ(t) + bζr Iζt0 qr(t),

ŷN =

N∑
i=1

(
fi,ζ(t) + bζi dîyN + bζi Iζt0 qi(tN)

)
(1 −
∑N

i=1 bζi di)
,

fr,ζ =
1
Γ(ζ)

∫ tr−1

t0
(hr(t) − u)ζ−1 − (tr−1 − u)ζ−1 f (u)du.

Let f be a continuous function on I. It is said to be a
classical integral on I, and it is denoted as

f̂ (t) = ŷ0 +

∫ t

t0
f (x)dx.

This remark has explored the connection between the
nonlinear fractal function correlated to the nonlinear IFS

{X : wr(t, y); r = 1, 2, . . . ,N}

and the classical integral on [t0, tN].

Remark 3.2. (1) In Theorem 3.1, the nonlinear FIF with

Rakotch contraction factor ℘r is explored by RLFI. Assume

that the fractional order is taken as ζ = 1, then RLFI

becomes the classical integral on [t0, tN], provided that

Ĝr(t, y) = br℘̂r(y) + q̂r(t),

br =
tr − tr−1

tN − t0
∀ r = 1, 2, . . . ,N,

q̂r(t) = ŷr−1 + br

∫ t

t0
qr(u)du,

ŷN = ŷ0 +

N∑
i=1

bi℘̂i(yN) +
N∑

i=1

bi

∫ tN

t0
qi(u)du.

(2) Let f (t) be the nonlinear fractal function correlated to

{hr(t),Gr(t, y)}Nr=1 and

f̂ (t) = ŷN +

∫ t

tN

f (x)dx.
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Then, f̂ (t) is the new nonlinear FIF associated with

{hr(t), Ĝr(t, y)}Nr=1, where

Ĝr(t, y) = br℘̂r(y) + q̂r(t),

br =
tr − tr−1

tN − t0
, for all r = 1, 2, . . . ,N,

q̂r(t) = ŷr + br

∫ t

t0
qr(u)du,

ŷ0 = ŷN +

N∑
i=1

bi℘̂i(y0) +
N∑

i=1

bi

∫ tN

t0
qi(u)du.

Definition 3.2. [37] Let f be a continuous function from I

into I, if there is a factor 0 < ζ < 1 such that

IζtN
f (t) =

1
Γ(ζ)

∫ t

tN

(t − u)ζ−1 f (u)du. (3.4)

The Eq (3.4) is called the RLFI with end point condition

IζtN
f (tN) = 0.

Theorem 3.2. Let f be the NFIF determined by

{hr(t),Gr(t, y)}Nr=1. Then, IζtN
f (t) is the nonlinear FIF

associated with {hr(t), Ĝr(t, y)}Nr=1 and

ŷN,ζ = 0,

where

Ĝr(t, y) = bζr ℘̂r(y) + q̂r(t), for all r = 1, 2, . . . ,N,

q̂r(t) = ŷr,ζ − fr,ζ(t) + bζr Iζt0 qr(t),

ŷ0,ζ =

N∑
i=1

(
fi,ζ(t) + bζi IζtN

ri(y0) + bζi IζtN
qi(t0)

)
,

fr,ζ(t) =
1
Γ(ζ)

∫ tN

tr

(
(hr(t) − u)ζ−1 − (tr − u)ζ−1

)
f (u)du.

Proof. Let the functional equation be

f (hr(t)) = ℘r( f (t)) + qr(t).

Thus, for all t ∈ [t0, tr] and r = 1, 2, . . . ,N, and consider
u = hr(v) in the below mentioned equation, then the obtained
result is as follows:

IζtN
f (hr(t)) =

1
Γ(ζ)

∫ hr(t)

tN

(hr(t) − u)ζ−1 f (u)du,

IζtN
f (hr(t)) = ŷr,ζ − fr,ζ(t) −

br

Γ(ζ)

∫ tN

t
(t − v)ζ−1 f (hr(v))dv,

IζtN
f (hr(t)) = ŷr,ζ − fr,ζ(t) + bζr IζtN

℘r( f (t)) + bζr IζtN
qr(t)

= Ĝr(t, I
ζ
tN
℘r( f (t))).

Put t = t0 and hr(t0) = tr−1. This implies that

ŷr−1,ζ = ŷr,ζ − fr,ζ(t) + bζr IζtN
℘r( f (t0)) + bζr IζtN

qr(t0). (3.5)

Since

ŷr−1,ζ = ŷr,ζ −

N∑
i=r

(̂
yi,ζ − ŷi−1,ζ

)
,

for each r = 1, 2, . . . ,N and substituting r = 1, ŷr−1,ζ is
obtained as follows:

ŷ0,ζ =

N∑
i=1

(
fi,ζ(t) + bζi IζtN

℘i(y0) + bζi IζtN
qi(t0)

)
.

The function IζtN
f (t) is a nonlinear FIF, q̂r(t) needs to satisfy

the continuity conditions, and q̂r(t) has obeyed the joint-up
conditions, which are

q̂r(t0) = ŷr,ζ − fr,ζ(t0) + bζr IζtN
qr(t0)

and
q̂r(tN) = ŷr,ζ .

It is clearly prescribed that

Ĝr(t0, ŷ0) = Ĝr(t0, y0) = q̂r(t0) = ŷr−1,

and also

Ĝr(tN , 0) = ŷr−1,ζ + fr,ζ(tN) + bζr IζtN
℘r( f (tN)) + bζr IζtN

qr(tN)

= IζtN
f (hr(tN))

= ŷr.

Hence, the nonlinear IFS {hr(t), Ĝr(t, y)}Nr=1 corresponding to
the nonlinear FIF is Iζt0 f with ŷN,ζ = 0.

Remark 3.3. In Theorem 3.2, the nonlinear FIF with

Rakotch contraction factor ℘r is investigated by the RLFI

with the end point condition. If the Rakotch contraction

factor ℘r(y) in Theorem 3.2 is chosen as ℘r(y) = dry,

then linear FIF with Banach contraction has been discussed

through the RLFI with join-up condition and is obtained as

follows:

Ĝr(t, y) = bζr dr̂y + q̂r(t), ∀ r = 1, 2, . . . ,N,
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q̂r(t) = ŷr,ζ − fr,ζ(t) + bζr Iζt0 qr(t),

ŷ0 =

N∑
i=1

(
fi,ζ(t) + bζi dîy0 + bζi IζtN

qr(tN)
)

(1 −
N∑

i=1
bζi di)

,

fr,ζ(t) =
1
Γ(ζ)

∫ tN

tr

(
(hr(t) − u)ζ−1 − (tr − u)ζ−1

)
f (u)du.

The following theorem presents the interaction between
fractional integral order ζ, the box dimension of nonlinear
fractal functions f , and their RLFI on [t0, tN].

Theorem 3.3. Suppose f is the NFIF prescribed by the IFS

{X : (hr(t),Gr(t, y)); r = 1, 2, . . . ,N},

where

hr(t) = brt + βr and Gr(t, y) = ℘r(y) + qr(t).

If
N∑

r=1

min
y∈[c,d]

|℘′r(y)| > 1,

and

1 + logN

 N∑
r=1

min
y∈[c,d]

|℘′r(y)|

 ≤ dimB(Γ( f )), (3.6)

N∑
r=1

max
y∈[c,d]

|℘′r(y)| > 1,

dimB(Γ( f )) ≤ 1 + logN

 N∑
r=1

max
y∈[c,d]

|℘′r(y)|

 . (3.7)

Then,

dimB(Γ(Iζt0 f (t))) = dimB(Γ f (t)) − ζ.

The following section is insistent on the scaling factor
chosen as the function scaling factor. Consider the
functional equation form is delineated in [20] as

f (hr(t)) = dr(t)℘r( f (t))+qr(t), t ∈ Ir, r = 1, 2, . . . ,N, (3.8)

where
℘r(t) = max

r=1,2,...,N
max

t∈I
|dr(t)|t

is the Rakotch scaling factor, and

|dr(t)| < 1, ∀ r = 1, 2, . . . ,N.

Then, f is the nonlinear fractal function associated with the
IFS

{X : (hr(t),Gr(t, y)); r = 1, 2, . . . ,N}.

3.2. RLFI for NFIF with variable scaling factor

Theorem 3.4. Let f be the NFIF determined by the IFS

{X : (hr(t),Gr(t, y)); r = 1, 2, . . . ,N}.

Then Iζt0 f (t) is the nonlinear fractal function associated with

{hr(t), Ĝr(t, y)}Nr=1 and ŷ0,ζ = 0,

where

Ĝr(t, y) =bζr dr(t)℘̂r(y) + q̂r(t), for all r = 1, 2, . . . ,N,

q̂r(t) =̂yr−1,ζ + fr,ζ(t) +
bζrαr

Γ(ζ + 1)
(t − t0)ζ

+
bζr fr
Γ(ζ + 2)

(t − t0)ζ+1,

ŷN,ζ =

N∑
i=1

 fi,ζ(tN) + bζi di(tN)℘̂i,ζ(yN) +
bζi αi

Γ(ζ + 1)
(tN − t0)ζ

+
bζi fi
Γ(ζ + 2)

(tN − t0)ζ+1

 ,
fr,ζ =

1
Γ(ζ)

∫ tr−1

t0
(hr(t) − u)ζ−1 − (tr−1 − u)ζ−1 f (u)du.

Proof. The functional Eq (3.8) is employing the Eq (3.1).
Consider u = hr(v), then

Iζt0 f (hr(t)) =̂yr−1,ζ + fr,ζ(t) +
1
Γ(ζ)

∫ hr(t)

tr−1

(hr(t) − u)ζ−1 f (u)du

+
bζrαr

Γ(ζ + 1)
(t − t0)ζ +

bζr fr
Γ(ζ + 2)

(t − t0)ζ+1,

Iζt0 f (hr(t)) =bζr dr(t)℘̂r,ζ( f (t)) + q̂r(t).

Put t = tN and hr(tN) = tn,

ŷr,ζ =̂yr−1,ζ + fr,ζ(tN) + bζr
∞∑

k=1

ζCkDkdk(tN)Iζ+k
t0 ℘r(yN)

+
bζrαr

Γ(ζ + 1)
(tN − t0)ζ +

bζr fr
Γ(ζ + 2)

(tN − t0)ζ+1.

(3.9)

Since

ŷr,ζ = ŷ0,ζ +

r∑
i=1

(̂
yi,ζ − ŷi−1,ζ

)
,

for each r = 1, 2, . . . ,N and substituting r = N, ŷr,ζ is
obtained as follows:

ŷN,ζ =

N∑
i=1

 fi,ζ(tN) + bζi di(tN)℘̂i,ζ(yN) +
bζi αi

Γ(ζ + 1)
(tN − t0)ζ
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+
bζi fi
Γ(ζ + 2)

(tN − t0)ζ+1

 .
The function Iζt0 f (t) is a nonlinear FIF, and q̂r(t) needs to
satisfy the continuity conditions. Since q̂r(t) obeys the join
up conditions

q̂r(t0) = ŷr−1,ζ

and

q̂r(tN) =bζr
∞∑

k=1

ζCkDkdk(tN)Iζ+k
t0 ℘k( f (tN)) + ŷr−1,ζ + fr,ζ(tN)

+
bζrαr

Γ(ζ + 1)
(tN − t0)ζ +

bζr fr
Γ(ζ + 2)

(tN − t0)ζ+1.

Comparing the above equation with ŷr,ζ in Eq (3.9) becomes

q̂r(tN) = ŷr,ζ − bζr dr(tN)Iζt0℘r(yN).

This clearly describes that

Ĝr(t0, ŷ0) = Ĝr(t0, 0) = q̂r(t0) = ŷr−1

and also

Ĝr(tN , ŷN) = ŷr.

Hence the nonlinear IFS {hr(t), Ĝr(t, y)}Nr=1 determines a FIF
Iζt0 f with initial condition ŷ0,ζ = 0.

Remark 3.4. Suppose the fractional order chosen as ζ = 1,

then with the Theorem 3.4, consider the function f (t) to be

the NFIF corresponding to the IFS

{X : wr(t, y); r = 1, 2, . . . ,N}.

Then, f̂ (t) is a nonlinear FIF correlated to

{hr(t), Ĝr(t, y)}Nr=1, where

Ĝr(t, y) =brdr(t)℘̂r(y) + q̂r(t),

q̂r(t) =̂yr−1 − br

∫ t

t0
d′r(u)℘̂r( f (u))du + br

∫ t

t0
qr(u)du,

ŷN =̂y0 +

N∑
i=1

bidi(u)℘̂i(yN) − bi

∫ t

t0
d′i (u)℘̂i( f (u))du,

+

N∑
i=1

bi

∫ tN

t0
qi(u)du.

Theorem 3.5. Let f be the nonlinear FIF determined

by {hr(t),Gr(t, y)}Nr=1. Then, IζtN
f (t) is the nonlinear FIF

associated with {hr(t), Ĝr(t, y)}Nr=1 and ŷN,ζ = 0, where

Ĝr(t, y) =bζr (t)℘̂r(y) + q̂r(t),

q̂r(t) =̂yr,ζ − fr,ζ(t) − bζr dr(t)I
ζ
tN
℘r(y) −

bζrαr

Γ(ζ + 1)
(t − tN)ζ

−
bζr fr
Γ(ζ + 2)

(t − tN)ζ+1,

ŷ0,ζ =

N∑
i=1

 fi,ζ(t0) + bζi di(t0)℘̂i,ζ(y0) +
bζi αi

Γ(ζ + 1)
(t0 − tN)ζ

+
bζi fi
Γ(ζ + 2)

(t0 − tN)ζ+1

 ,
fr,ζ =

1
Γ(ζ)

∫ tN

tr
(hr(t) − u)ζ−1 (tr − u)ζ−1 f (u)du.

Proof. Once the functional Eq (3.8) is employed in Eq (3.4)
and u = hr(v), the following equation is obtained:

IζtN
f (hr(t)) =̂yr,ζ − fr,ζ(t) +

1
Γ(ζ)

∫ hr(t)

tr
(hr(t) − u)ζ−1 f (u)du

=̂yr,ζ − fr,ζ(t) − bζr dr(t)℘̂r,ζ( f (t))

−
bζrαr

Γ(ζ + 1)
(t0 − tN)ζ −

bζr fr
Γ(ζ + 2)

(t0 − tN)ζ+1,

IζtN
f (hr(t)) =Ĝr(t, ℘̂r,ζ( f (t))).

Put t = t0 and hr(t0) = tr−1, then one is obtained as

ŷr−1,ζ =̂yr,ζ − fr,ζ(t0) − bζr
∞∑

k=1

ζCkDkdr(t0)℘̂n,ζ+k(y0)

−
bζrαr

Γ(ζ + 1)
(t0 − tN)ζ −

bζr fr
Γ(ζ + 2)

(t0 − tN)ζ+1.

(3.10)

Since

ŷr−1,ζ = ŷr,ζ −

N∑
i=r

(̂
yr,ζ − ŷr−1,ζ

)
,

for each r = 1, 2, . . . ,N and substituting r = 1, ŷr−1,ζ is
obtained as follows:

ŷ0,ζ =

N∑
i=1

(
fi,ζ(t0) + bζi di(t0)℘̂i,ζ(y0)

+
bζi αi

Γ(ζ + 1)
(t0 − tN)ζ +

bζi fi
Γ(ζ + 2)

(t0 − tN)ζ+1

 .
The function IζtN

f (t) is be a nonlinear FIF, and q̂r(t) needs to
satisfy the continuity conditions. Note that

q̂r(t) = ŷr,ζ − fr,ζ(t)−
bζrαr

Γ(ζ + 1)
(t − tN)ζ −

bζr fr
Γ(ζ + 2)

(t − tN)ζ+1,
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and comparing the aforementioned equation with ŷr−1,ζ in
Eq (3.10) obeys the join up conditions as

q̂r(t0) = ŷr−1,ζ − bζr dr(t0)℘̂r,ζ(y0) and q̂r(tN) = ŷr,ζ .

This clearly provides that

Ĝr(t0, ŷ0) = ŷr−1

and also
Ĝr(tN , ŷN) = IζtN

f (hr(tN)) = ŷr.

Hence, the nonlinear IFS is

{hr(t), Ĝr(t, y)}Nr=1

associated with a new FIF IζtN
f with end point condition

ŷN,ζ = 0.

Remark 3.5. If the fractional integral order ζ = 1 in

Theorem 3.5 is prescribed the classical integral function,

f (t) is the NFIF associated with the IFS {hr(t),Gr(t, y)}Nr=1.

Then, f̂ (t) is a nonlinear FIF corresponding to the new IFS

{X : (hr(t), Ĝr(t, y)); r = 1, 2, . . . ,N},

where

Ĝr(t, y) =brdr(t)℘̂r(y) + q̂r(t), br =
tr − tr−1

tN − t0
,

q̂r(t) =̂yr − br

∫ t

tN

d′r(u)℘̂r( f (u))du + br

∫ t

tN

qr(u)du,

ŷ0 =̂yN +

N∑
i=1

bidi(u)℘̂i(yN) − bi

∫ tN

t0
d′i (u)℘̂i( f (u))du

+

N∑
i=1

bi

∫ tN

t0
qi(u)du.

The next section illustrates the shape of a nonlinear fractal
function with both constant and variable scaling factors
models of each division for the presented fractal functions
phenomenon by using the acquired numerical technique.
The numerical simulation of each part in classical integral
and RLFI associated with the fractal functions is presented.

4. Numerical simulation

Let N = 7 be the partition of interval I = [0, 1] and

tr = r/N, yr = (0, 2, 3, 0.5, 1, 3, 2, 1)

for all r = 0, 1, 2, . . . , 7 with various scaling factors

dr = (0.5, 0.3, 0.2, 0.3, 0.25, 0.6, 0.5)

(Banach contraction factors),

℘r(y) = y/1 + y2

(Rakotch contraction factors). Figure 1a portrayed the
graphical approach of the linear fractal function with
constant scaling factor, and Figure 1b illuminated the
graphical approach of nonlinear fractal function with
function scaling factors. Considering the same data points
with different scaling factors revealed that the fluctuations
observed in Figure 1a surpasses that of Figure 1b, due to the
effect exerted by the scale factor.

(a) Linear FIF with dr = (0.3, 0.2, 0.3, 0.25, 0.6)

(b) Nonlinear FIF with ℘r(y) = y
1+y2

Figure 1. Two types of FIFs with vertical scale
vector.

Consequently, the Rakotch scaling factor affords a greater
degree of flexibility than the Banach scaling factor. The
same data points with different kinds of variable scaling
factors

dr(t) = (log(10t)/5,−et/3, log(t + 1)/3, t/4, (t + 1)/7, 1.3e−t),
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℘r(y) = dr(t)y/1 + y2

are represented as in Figure 2.

(a) Linear FIF with dr(t)

(b) Nonlinear FIF with dr(t)℘r(y)

Figure 2. Two types of FIFs with variable scaling
factors are dr(t) = (log(10t)/5,−et/3, log(t +
1)/3, t/4, (t + 1)/7, 1.3e−t).

Since for all ℘r(y) are increasing, convex, and satisfy the
conditions of the Theorem 2.2, then the box dimension of
the nonlinear fractal function follows as:

min
y∈(0,3)

|℘′r(y)| =
1 − y2

(1 + y2)2 ,

6∑
r=1

min
y∈(0,3)

|℘′r(y)| =
12
25
+

12
25
+

12
25
+

12
25
+

12
25
+

12
25
,

6∑
r=1

min
y∈(0,3)

|℘′r(y)| = 2.88,

with

max
y∈(0,3)

φr(y)
y
=

1
1 + y2 ,

6∑
r=1

lim
y→0

φr(y)
y
= 1 + 1 + 1 + 1 + 1 + 1 = 6.

This implies that

1.4594 ≤ dimB(Γ( f )) ≤ dimB(Γ( f )) ≤ 1.7782.

However, the fractal dimension of linear FIF is 1.3325.
Hence, in the comparison of fractal dimension for linear FIF
and NFIF, the NFIF is more suitable to an approach that is
precise and appropriate for real-life applications, based on
irregular data points.

The visual approaches presented in Figure 3 are linear
and nonlinear fractal functions associated with the classical
integral for the same data points. The scaling factor
and fractional order are interrelated parameters that jointly
influence the behavior of a function.

(a) Linear FIF with dr

(b) Nonlinear FIF with ℘r(y) = y
1+y2

Figure 3. Two types of FIFs with constant scaling
factors of the classical integral.

As the fractional order approaches 0, the scaling factor
provides flexibility within the functions range. Conversely,
as the fractional order approaches 1, the scaling factor
affects flexibility within a different range. Their combined
effect alters both the complexity and range of the function,
with variations in one parameter impacting the behavior of
the other. For instance, the graph of linear and nonlinear
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fractal functions constituted by the fractional integral with
fractional order 0.4, 0.1, and 0.8 are illuminated in Figure 4,
respectively.

(a) I0.4 f (t)

(b) I0.1( f (t))

(c) I0.8( f (t))

Figure 4. Two types of FIFs corresponding to
the RLFI with constant scaling factors are ℘r(y) =
y/1 + y2 and dr = (0.3, 0.2, 0.3, 0.25, 0.6).

Figure 5 demonstrates the graphical approaches of NFIF
with various sorts of function scaling factors corresponding

to the RLFI with fractional order 0.6, 0.6. Hence, the linear
and nonlinear fractal functions approximate the prescribed
data points but the linear FIF shows high irregularity with the
Banach scaling factor dr and the nonlinear fractal function
provides good smoothness of the prescribed data points
with the Rakotch scaling factor ℘r(y). Therefore, the
role of scale factor and fractional integral order plays an
important characteristic in the fluctuation of fractal functions
associated with their fractional integral function.

(a) I0.6 f (t)

(b) I0.6℘r( f (t))

Figure 5. Two types of FIFs corresponding
to the RLFI with variable scaling factors are
dr(t) = (log(10t)/5,−et/3, log(t + 1)/3, t/4, (t +
1)/7, 1.3e−t), 0.5t.

5. Application in time series

Consider the set of data points

{(tr, f (tr)) ∈ [t0, tN] × R : r = 0, 1, 2, . . . ,N}.
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The first coordinate tr is denoted as the time of epidemic for
the daily confirmed positive cases occurring from January
to December 2022, where t0=0 and tr=364 denote the
initial and last day of the epidemic, since N=365 is taken
as the days-wise over the period 2022 and the second
coordinate f (tr) has been associated with the number of
people affected by COVID-19 based on daily confirmed
positive cases recorded in the year 2022. The vertical
scaling factor dr was chosen between -0.15≤ dr ≤0.15.
The COVID-19 data has been obtained by the Center
for Systems Science and Engineering (CSSE) at Johns
Hopkins University (https:\ourworldindata.org) from
the COVID-19 data repository. It’s provided the collection
of daily-updated information on COVID-19 for the world.
The Johns Hopkins University CSSE established and hosts
this data portal.

The most fluctuating number of infected populations in
COVID-19 was highest at the end of January, when it
has 4.3 × 1016, and the number of the infected people
in COVID-19 fluctuates moderately from the first of
February to the end of November. The number of infected
populations caused by COVID-19 reached its maximum
peak at the end of December 2022, which is 8 × 1016,
and it is gradually decreasing subsequently, as shown
in Figure 6a–c having been employed by three types of
fractal interpolation methods in COVID- 19 data. Among
these three methods, the linear fractal interpolation method
shows more complexities, the nonlinear fractal interpolation
method exhibits flexible fluctuations, and the resolution
of the map in Figure 6b is lower than that seen in
Figure 6a,c. In [39], the authors studied the fractal
dimension through the rescaled range analysis technique
for COVID-19 data. Consequently, we have employed the
same method for both fractal functions to determine their
fractal dimensions. This approach reliably approximates
time series data based on their fractal dimension. The
random walk is generated when the fractal dimension
is 1.5. A fractal dimension below 1.5 indicates persistent
fluctuations, while a dimension above 1.5 suggests anti-
persistent volatility. Later, the dimension of the graph
of a function is interpreted as a sampling of the intricacy
of fluctuations, representing the geometry of an object in
R2. The flexibleness aids in accurately predicting the total

number of people affected by COVID-19 and their fractal
dimension is less than 1.5 owing to its variability.

(a)

(b)

(c)

Figure 6. Fractal function associated with the
COVID-19 for daily positive cases over the period
of 2022. The world data is graphically illustrated
based on (a) nonlinear FIF, (b) linear FIF, and (c)
both FIF with the constant scaling factor over the
period 2022.
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Figure 7a shows that the fractal dimension of the graph
derived by the linear fractal interpolation approach is 1.4394
based on the number of people worldwide infected by
Covid-19.

(a)

(b)

(c)

Figure 7. COVID-19 graph of log− log plot is
depicted for (a) Worldwide affected peoples by
COVID-19 for linear FIF, (b) NFIF approaches of
the globally affected peoples by COVID-19, and
(c) NFIF implies the linear FIF over the period
2022.

By using the same data, the fractal dimension for the
graph obtained by the nonlinear FIF approach of worldwide
affected populations by COVID-19 is 1.3217, as illustrated
in Figure 7b.

With the same data, when using the nonlinear FIF in
comparison with the linear FIF approach the obtained the
fractal dimension for the graph of worldwide COVID-19-
affected populations is 1.4721, as shown in Figure 7c. The
distinction between linear and nonlinear FIF approaches can
be visualized through the complexity and irregularities of
the graph. Moreover, the fractal dimensions of linear and
nonlinear FIF are 1.44 and 1.3217, respectively. Thus, it is
observed that the dimension values of nonlinear FIF exhibit
fewer fluctuations compared to linear FIF. The analysis
findings with the Hurst exponent values span from 0.5 to 1,
signifying persistence, while the fractal dimension values
range from 1 to 1.5. This suggests a persistent degree of
fluctuations in the observed COVID-19 cases.

6. Conclusions

This paper has studied that the nonlinear fractal function
of the classical integral is again a nonlinear fractal function
and meets the end point conditions. The new approaches of
RLFI of the nonlinear FIF associated the IFS with Rakotch
contraction factor, which is again the nonlinear FIF and
its fractal dimension, have been explored. The numerical
simulation part has investigated the comparison of the fractal
function for both linear and nonlinear scaling factors and
we also discussed the graphical description for the nonlinear
scale factor replaced by the linear scale factor. Moreover,
the application of nonlinear FIF in the time domain of the
COVID-19 data taken for the year 2022 is discussed and
its fractal dimension has been calculated. The concept of
a NFIF method approach for the outbreak curve plays a key
role in the analysis and simulation of epidemic models.
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