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Abstract: A novel closed-loop optimal controller for fractional nonlinear quadratic optimal control problems is introduced. By using a
new idea, the optimality conditions for the fractional nonlinear problems are derived. The linearized Riccati fractional order differential
equation is derived and a new solution method is given for the first time, which can be applied to integer order nonlinear optimal control
problems. The proposed closed-loop controller is applied to illustrative examples. Novel unprecedented processes of designing a variable
linear controller and of finding the optimal performance index for integer order nonlinear systems are presented.
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1. Introduction

The dynamic behavior of a physical system is described
by differential equations. Most physical systems are
nonlinear [1]. Many nonlinear optimal control problems
do not have solutions that can be easily computed [2].
Due to many advantages, engineers prefer the closed-
loop controllers for the optimal control problems [3]. We
know that it may not be possible to find analytically the
optimal control law for a real-world nonlinear optimal
control problem. There are some numerical methods like
the methods of [4, 5] to find the closed-loop controllers of
integer order systems. In [4], a polynomials-based method
by integrating from 0 to t for finding the feedback gain of the
linear integer control system with the quadratic performance
index was presented in which the user must solve a set
of equations. But in this work, we propose a method by
which the resulting equation is a static equation and the
terminal condition is imposed directly to the equation. In [5],
another method for finding a nonlinear closed-loop control
of linear/nonlinear integer control systems was presented in
which there are some necessary modifications for applying

the method and the controller is nonlinear. [6] extended
the Riccati theory, unifying continuous-time linear-quadratic
optimal permanent and sampled-data control problems in
finite and infinite time horizons.

Many of physical systems have been modeled by
fractional differential equations [7, 8]. Since the existence
of the fractional order systems is shown in the literature,
we need to study the fractional nonlinear optimal control
systems. For a fractional plant, finding the optimal control
law becomes more complicated than an integer plant,
because of the fractional nature of its state equation. Also,
analyzing such systems is complicated.

The stability analysis and the control of fractional-order
systems have been widely investigated [9]. There are two
different perspectives in designing the feedback controls
of the fractional systems. In the first, we design the
controller, then by adjusting some parameters we find the
elements of the controller. There are useful procedures
in designing the feedback control like, feedback controller
based on linear matrix inequalities [10], event-triggered
control [11], adaptive composite dynamic surface neural
control [12] and so on. In the second perspective, we
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are dealing with fractional optimal control [13] in which
the feedback controller must satisfy some conditions and
equations. There are many texts in the fractional optimal
control that have only researched open-loop solutions. Also,
some of the illustrative examples of these texts are not
optimal control problems.

The methods extended for the classic optimal control
problems may not be applicable to the fractional optimal
control problems. In [13], the study on the optimal control
of the fractional systems was presented. [14] presented the
control law for the fractional optimal control problem, in
which the closed-loop controller is given in terms of the
state, costate and the Mittag-Leffler function. [15] presented
new nonlinear and linear fractional order controllers based
on synergetic control theory in the Riemann–Liouville
sense. [16] presented a novel solution to the state estimation
problem for a class of nonlinear commensurate fractional-
order systems. [17] presented a method for finding a
suboptimal controller for a multi-fractional linear quadratic
regulator system in the presence of known disturbance.

In this research, we present a nonlinear suboptimal
feedback control of fractional nonlinear optimal control
problems. Its main advantages are: its generality, which
means it can be applied to a fractional system with different
values of the fractional orders; it can be applied to the integer
order nonlinear optimal control problems; for the integer
order problems, it is linear; it can be used for large scale
problems; moreover, it will be applicable in a nonlinear
problem in which the terminal cost weighted matrix is not a
zeros matrix. In this paper, we present the Riccati matrix for
all illustrative examples, while this matrix and the Kalman
gain were not presented in very few works in this research
filed.

The framework of this study is as follows. First, we
present some concepts to transform the nonlinear optimal
control problem into a sequence of linear optimal control
problems. Next, we introduce the optimality conditions
of the problem under consideration and a formulation for
the optimal control law. The fractional matrix differential
Riccati equation of the original problem is formulated and a
method for solving the equation is presented. By using the
polynomial properties, we obtain the open-loop and closed-
loop controllers. Finally, we redesign the linear optimal

control law for fractional plants and we apply it to several
problems.

2. Fractional nonlinear quadratic optimal control

Consider the general fractional nonlinear optimal control
problem as minimizing the real-valued performance index

J(u(t)) = 1
2 x⊤(t f )Tx(t f ) + 1

2

∫ t f

0

{
x⊤(t)Q(t)x(t)

+ u⊤(t)R(t)u(t)
}
dt,

(2.1)

subject to a nonlinear system

C
0 Dαt x(t) = f(x(t),u(t), t) (2.2)

with the initial condition x(0) = x0. Here, t ∈ [0, t f ], t f as
the final time is fixed, T,Q(t) ∈ Rq×q are symmetric, positive
semi-definite matrices, R(t) ∈ Rr×r is a symmetric, positive
definite matrix, C

0 Dαt is the left Caputo fractional derivative
of order α, α ∈ (0, 1], x : [0, t f ] → Rq and u : [0, t f ] → Rr

are the state and control vectors, and f ∈ Rq is a nonlinear
(differentiable) Lipschitz vector function.

2.1. Necessary conditions for fractional nonlinear optimal

control problems

Lemma 2.1. The fractional nonlinear optimal control

problem under assumptions that there are not any

undecomposed terms and that the nonlinearity satisfies a

local Lipschitz condition, can be replaced by a sequence of

fractional linear time-varying systems, which converges to a

solution as: for i ≥ 1 minimize the performance index

J(u(t)) = 1
2 x[i]⊤ (t f )Tx[i](t f ) + 1

2

∫ t f

0

{
x[i]⊤ (t)Q(t)x[i](t)

+ u[i]⊤ (t)R(t)u[i](t)
}
dt,

(2.3)

subject to the linearized system equation

C
0 Dαt x[i](t) = A(x[i−1](t))x[i](t) + B(x[i−1](t),u[i−1](t))u[i](t), (2.4)

where “[i]” represents the iteration,

x[0](t) = x0, u[0](t) = 0, A ∈ Rq×q and B ∈ Rq×r.

Proof. See [18]. □
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Lemma 2.2. The fractional nonlinear optimal control

system (2.2), under assumptions of Lemma 2.1, can be

replaced by a sequence of fractional linear time-varying

systems whose solutions converge to the solution of the

original nonlinear system. Also, the solution is bounded.

Proof. The idea of proof is similar to that given in [13]. □

Theorem 2.1. By taking

A[i−1](t) = A(x[i−1](t))

and

B[i−1](t) = B(x[i−1](t),u[i−1](t)),

the necessary optimality conditions for the fractional

nonlinear optimal control problems, in which α ∈ (0.9, 1],
are

A[i∗−1](t)x∗(t) + B[i∗−1](t)u∗(t) − C
0 Dαt x∗(t) = 0, (2.5)

Q(t)x∗(t) + A[i∗−1]⊤ (t)λ∗(t) + C
0 Dαt λ

∗(t) ≃ 0 (2.6)

and

R(t)u∗(t) + B[i∗−1]⊤ (t)λ∗(t) = 0, (2.7)

where “i∗” is the number of the iteration (in each method)

by which we have reached the final optimal solutions.

Proof. The proof is based on using Lemmas 2.1 and 2.2 in
the necessary optimality conditions, such as (2.5)–(2.7) as
derived for the fractional linear optimal control problems
in [13]. □

Remark 2.1. Here, we have a necessary condition on α;

that is, α ∈ (0.9, 1], but, as we shall see later, by using the

proposed controller we overcome this limitation and we can

choose α ∈ (0, 1].

2.2. Fractional matrix differential Riccati equation and

optimal control law for a nonlinear system

Theorem 2.2. The closed-loop optimal control for the

fractional nonlinear optimal control problem of minimizing

the performance index (2.3) subject to the dynamical

system (2.4) is obtained from

u∗(t) = −K[i∗−1](t)x∗(t),

K[i∗−1](t) = R−1(t)B[i∗−1]⊤ (t)P[i∗−1](t).
(2.8)

Also, the linearized fractional differential Riccati equation

of the nonlinear system becomes as (2.9),

C
0 D1

t (P[i∗−1](t))x∗(t) =C
0 D1−α

t [−Q(t)x∗(t) − A[i∗−1]⊤ (t)P[i∗−1](t)

× x∗(t)] − P[i∗−1](t)C
0 D1−α

t [A[i∗−1](t)x∗(t)

− B[i∗−1](t)R−1(t)B[i∗−1]⊤ (t)P[i∗−1](t)

× x∗(t)],

(2.9)

where i∗ is the same as that in Theorem 2.1.

Proof. From Lemma 2.1, by linearization of the original
system as

C
0 Dαt x[i](t) = A[i−1](t)x[i](t) + B[i−1](t)u[i](t),

when we find the final optimal solutions for which i = i∗, we
take

x[i∗] = x∗, u[i∗] = u∗ and λ[i∗] = λ∗.

Thus, we have the linear system

C
0 Dαt x∗(t) = A[i∗−1](t)x∗(t) + B[i∗−1](t)u∗(t).

Now, from Theorem 2.1 and by setting

λ∗(t) = P[i∗−1](t)x∗(t) (2.10)

and differentiating (2.10), we can obtain (2.8) and (2.9). □

Theorem 2.3. The solution of the fractional Riccati

equation for the linearized system is obtained from

C
0Dαt

X(t)
Y(t)

 = A[i∗−1](t) −B[i∗−1](t)R−1(t)B[i∗−1]⊤ (t)
−Q(t) −A[i∗−1]⊤ (t)

 X(t)
Y(t)

 (2.11)

as

P[i∗−1](t) = Y(t)X−1(t), (2.12)

where X(t f )
Y(t f )

 =  I
T

 (2.13)

and i∗ is the same as before.

Proof. The proof is like that of Theorem 2.2. When we reach
the final optimal solutions, by differentiating Y(t)X−1(t) and
right multiplying X(t), we get

C
0 D1

t (Y(t)X−1(t))X(t) = C
0 D1

t (Y(t)) − Y(t)X−1(t)C
0 D1

t (X(t)).

By setting

C
0 D1

t (Y(t)) = C
0 D1−α

t [−Q(t)X(t) − A[i∗−1]⊤ (t)Y(t)]
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and

C
0 D1

t (X(t)) =C
0 D1−α

t [A[i∗−1](t)X(t)

− B[i∗−1](t)R−1(t)B[i∗−1]⊤ (t)Y(t)]

in the latter equation, we find that a similar matrix fractional
differential equation as (2.11) is obtained. □

2.3. Open-loop and closed-loop optimal controls

As mentioned in [13], we cannot use N = 1 for the
wavelets definitions, because we return to polynomials
concepts. By choosing N = 1, we have the shifted Legendre
polynomials P̄m(t) and the shifted Chebyshev polynomials
T̄m(t) instead of Legendre and Chebyshev wavelets. By
using the symbol φm(t) for any of these polynomials, we
expand a function f (t) on [0, 1] as

f (t) = fφφ(t), (2.14)
where

fφ = [ f φ0 , f φ1 , . . . , f φM−1]

and

φ(t) = [φ0(t), φ1(t), . . . , φM−1(t)]⊤.

The coefficients { f φm} for wφ(t) as the weight function, which
is

wP̄(t) = 1
or

wT̄ (t) = 1/
√

1 − (2t − 1)2

are given by

f φm =
∫ 1

0
f (t)φm(t)wφ(t) dt.

For fφ in (2.14) and φ(t) as a vector of P̄m(t) or T̄m(t), we
have [13]

fφφ(t)φ⊤(t) � φ⊤(t)f̃φ, (2.15)∫ 1

0
φ(t)φ⊤(t) dt = Γφ, (2.16)

RL
0 Iαt φ(t) � t

0P
α
φφ(t), (2.17)

RL
t I
α
1φ(t) � 1

tP
α
φφ(t). (2.18)

RLIα denotes the Riemann-Liouville integral of order α.

2.3.1. Open-loop optimal controllers

Theorem 2.4. The open-loop optimal control for the

fractional nonlinear optimal control problem of minimizing

the performance index (2.3) subject to the dynamical

system (2.4) is obtained from: for i ≥ 1,

min 1
2

[
x[i]⊤
φ u[i]⊤

φ

]  Ξ1φ Ξ2

Ξ3 Ξ4φ

  x[i]
φ

u[i]
φ

 , (2.19)

subject to

[
Λ

[i−1]
1φ Λ

[i−1]
2φ

]  x[i]
φ

u[i]
φ

 = bφ, (2.20)

where

Ξ1φ = (φ(1)φ⊤(1) ⊗ T) + t f (Γφ ⊗ Iq)Q̃φ,

Ξ2 = 0qM×rM ,

Ξ3 = 0rM×qM , Ξ4φ = t f (Γφ ⊗ Ir)R̃φ,

(2.21)

Λ
[i−1]
1φ = tαf (t

0P
α
φ
⊤
⊗ Iq)Ã[i−1]

φ − IqM ,

Λ
[i−1]
2φ = tαf (t

0P
α
φ
⊤
⊗ Iq)B̃[i−1]

φ ,
(2.22)

bφ = −x0
φ. (2.23)

Proof. From Lemma 2.1,

A[i−1](t) B A(x[i−1](t))

and
B[i−1](t) B B(x[i−1](t),u[i−1](t)).

Since A[i−1] and B[i−1] are known, we can write

A[i−1](t) = A[i−1]
φ (φ(t) ⊗ Iq)

and
B[i−1](t) = B[i−1]

φ (φ(t) ⊗ Ir).

Also, x0, Q(t) and R(t) can be expanded as

x0 = (φ⊤(t) ⊗ Iq)x0
φ, Q(t) = Qφ(φ(t) ⊗ Iq)

and
R(t) = Rφ(φ(t) ⊗ Ir).

Now, we expand the state and control vectors of each
iteration as

x[i](t) = (φ⊤(t) ⊗ Iq)x[i]
φ
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and
u[i](t) = (φ⊤(t) ⊗ Ir)u[i]

φ ,

where x[i]
φ and u[i]

φ are unknown. Thus, using(2.15)–(2.17),
we see the original nonlinear optimization problem is
transformed into the sequence of quadratic programming
(QP) problems given in (2.19) and (2.20) until the condition
given in [18] is reached. □

Remark 2.2. We have used the subscript “φ” in the blocks

of the QP model (2.19) and (2.20) to indicate that these

blocks must be obtained from φ and they differ significantly

for each polynomial. We can also find the open-loop

solutions by using fractional derivative properies like the

method given in [7].

2.3.2. Closed-loop optimal controllers

Theorem 2.5. By

Z(t) B
[
X⊤(t) Y⊤(t)

]⊤
,

the solution of (2.11)–(2.13) in the terms of the deired

polynomials is

Zφ =
[
tαf (1

tP
α
φ
⊤
⊗ I2q)F̃[i∗−1]

φ + I2qM

]−1
Z f
φ,

where i∗ is given in Theorem 2.1 and

F[i∗−1](t) B

A[i∗−1](t) −B[i∗−1](t)R−1(t)B[i∗−1]⊤ (t)
−Q(t) −A[i∗−1]⊤ (t)

 .
Proof. Using the polynomials expansions,

Z(t) = (φ⊤(t) ⊗ I2q)Zφ,

Z(t f = 1) = (φ⊤(t) ⊗ I2q)Z f
φ,

F[i∗−1](t) = F[i∗−1]
φ (φ(t) ⊗ I2q).

Applying the right Riemann-Liouville integral on (2.11),
using (2.18), and from the procedure given in [13],

Z(1) − Z(t) = tαf
RL

t I
α
1 {F

[i∗−1]
φ (φ(t) ⊗ I2q)(φ⊤(t) ⊗ I2q)Zφ}

= tαf
RL

t I
α
1 {(φ

⊤(t) ⊗ I2q)F̃[i∗−1]
φ Zφ}

= tαf (φ⊤(t) ⊗ I2q)(1
tP
α⊤

φ ⊗ I2q)F̃[i∗−1]
φ Zφ.

Finally, by finding P[i∗−1](t) from (2.12) and using (2.8),
we are able to obtain the closed-loop optimal control of the
fractional nonlinear system. □

Remark 2.3. When A[i−1] or B[i−1] is not a function of x[i−1]

or u[i−1], we replace Ã[i−1] or B̃[i−1] by Ã or B̃, respectively.

That means the matrix remains unchanged in each iteration.

2.3.3. Redesigned closed-loop optimal control

Due to the local error of the approximation process and
in order to overcome the issue given in Remark 2.1, we
use a suboptimal controller to find an optimal control that
has many advantages. By using the idea given in [13], the
redesigned closed-loop optimal control is

u∗r (t) = −K[i∗−1](t)x∗(t) − l(t), (2.24)

where K[i∗−1](t) is the same as before and only the term l(t)
is imposed to compensate the local error.

Corollary 2.1. If α = 1, we have l(t) = 0 in (2.24); hence,

the proposed controller is linear, as shown in Figure 1b.

Also, we have

J∗ � 1
2 x∗

⊤

(0)P[i∗−1](0)x∗(0).

Theorem 2.6. Assume that for the problem given in (2.1)
and (2.2),

u∗exact(t) = −Kexact(t)x∗(t)

is the exact closed-loop controller for α , 1, then the

controlled system with the redesigned closed-loop optimal

control has the same behaviors as that with the exact

controller.

Proof. The proof consists of transforming the problem into a
number of linear problems to which the open-loop controller
can be applied and then using the results. □

Theorem 2.7. Assume that for the function f(x(t),u(t), t)
in (2.2), there exists constants ν1, ν2 ≥ 0 such that

∥f(x(t),u(t), t) − f(x̄(t),u(t), t)∥ ≤ ν1∥x(t) − x̄(t)∥

and

∥f(x(t),u(t), t) − f(x(t), ū(t), t)∥ ≤ ν2∥u(t) − ū(t)∥,

where x, x̄ ∈ Rq and u, ū ∈ Rr and the state x(t) is bounded.

For a control, x(·|u) is continuous dependence.

Proof. We have

||K(t)x(t) − K̄(t)x̄(t)|| ≤ ||K(t)||||x(t) − x̄(t)||

+||K(t) − K̄(t)||||x̄(t)||.
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Since ||K(t)|| is also bounded, we take

ν2||K(t)x(t) − K̄(t)x̄(t)|| ≤ ν′2||x(ρ) − x̄(ρ)||,

where ν′2 ≥ 0. From

x(t) = RL
0Iαt f(x(t),u(t), t),

we abtain

||x(t) − x̄(t)|| ≤
1
Γ(α)

∫ t

0
(t − ρ)α−1{||f(x(ρ),u(ρ), ρ)

− f(x̄(ρ),u(ρ), ρ) + f(x̄(ρ),u(ρ), ρ)

− f(x̄(ρ), ū(ρ), ρ)||
}
dρ

≤
1
Γ(α)

∫ t

0
(t − ρ)α−1ν1||x(ρ) − x̄(ρ)|| dρ

+
1
Γ(α)

∫ t

0
(t − ρ)α−1ν2||u(ρ) − ū(ρ)|| dρ

≤
1
Γ(α)

∫ t

0
(t − ρ)α−1(ν1 + ν′2)||x(ρ) − x̄(ρ)|| dρ

≤ exp
(

(ν1 + ν′2)tα

Γ(α + 1)

)
≤ exp

 (ν1 + ν′2)tαf
Γ(α + 1)

 .
Hence, the state of the nonlinear system depends
continuously on the functions involved. □

3. Simulation studies

In this section, we apply the proposed method for finding
the optimal control law to some fractional nonlinear optimal
control problems. First, we apply it to an example studied
in [5] for α = 1 and a nonlinear controller was obtained.
Here, by using our method, a linear controller for this
nonlinear system is obtained (see Figure 1), then we study
its fractional order plant. Also, we study the optimal control
problem of a two-stage nonlinear continuous stirred-tank
reactor as a highly nonlinear, large scale system. Finally,
an example for showing the effectiveness of the proposed
method is investigated.

3.1. Example 1

The problem is finding the optimal control law for the
(fractional order) Van der Pol oscillator problem. Consider
the system

C
0 Dαt x1(t) = x2(t),

− −
Nonlinear Plant

K′(t)

L(t) u(t) x(t)

(a) Optimal control law for α = 1, [5].

−
Nonlinear Plant

K(t)

u(t) x(t)

(b) Optimal control law for α = 1, this
work.

Figure 1. Comparison of optimal control laws,
α = 1.

C
0 Dαt x2(t) = −x1(t) + (1 − x2

1(t))x2(t) + u(t),

where x1(0) = 1 and x2(0) = 0. The performance index is

J = 1
2

∫ 5

0

{
x2

1(t) + x2
1(t) + u2(t)

}
dt.

This problem for α = 1 was studied in [5] in which the
author has proposed a nonlinear optimal control law in the
from

u∗(t) = −L(t) −K′(t)x∗(t),

see [5]. This is shown in Figure 1(a). However, in our
method, a linear optimal control law as

u∗(t) = −K(t)x∗(t)

is proposed and its block diagram is shown in Figure 1(b).
Clearly, implementation of our proposed controller is easier
due to its linear nature. We found J∗ = 1.449390; by
considering Corollary 2.1, we have

1/2 x∗
⊤

(0)P[i∗−1](0)x∗(0) = 1.449440.

The Riccati matrix coefficients and Kalman gains are
shown in Figures 2 and 3 for α = 1 and α = 0.9. Moreover,
the results for α = 0.8 are given in Figure 4.
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Figure 3. Solutions for Example 1, α = 0.9.
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Figure 4. Solutions for Example 1, α = 0.8.

3.2. Example 2

A two-stage nonlinear continuous stirred-tank reactor
(CSTR) as a highly nonlinear system described by time-
delay differential equations was used for optimal control
studies in [19]. The authors transformed the system into the
delay-free system; for more details, see [20]. Here, we use a
fractional version of the modified CSTR with the new state
equations as (3.1), where τ = 0.1,

x(0) =
[
0.15 −0.03 0.1 0

]⊤
,

r1(t) = exp
(

25x2(t)
x2(t) + 2

)
and

r2(t) = exp
(

25x4(t)
x4(t) + 2

)
.

The fractional optimal control problem consists of
determining the optimal control law, which minimizes the
performance index

J =
∫ 2

0
{x2

1(t) + x2
2(t) + x2

3(t) + x2
4(t) + 0.1u2

1(t) + 0.1u2
2(t)} dt.

First, we linearize CSTR in the form (2.4),
then by calculating the elements of the quadratic
programming (2.19) and (2.20) from (2.21)–(2.23), we
obtain the open-loop solutions. Next, by finding the Riccati
matrix P[i∗−1](t) in (2.12) from solving (2.11), (2.13) and
using (2.8) and (2.24), we find the optimal control law.
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The results are shown in Figure 5. For the Riccati matrix,
we found 16 coefficients. In order to see the symmetry of
the specific values, we used the same colors for such values.
The optimal control law is

u∗(t) = −
k11(t) k12(t) k13(t) k14(t)
k21(t) k22(t) k23(t) k24(t)

 x∗(t) −
l1(t)
l2(t)

 .
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Figure 5. Solutions for Example 2, α = 0.94.

Also, we change the performance index to verify the
effectiveness of the method as

J = 0.1x2
1(2) + 0.1x1(2)x2(2) + 0.05x1(2)x3(2)

+ 0.1x2
2(2) + 0.05x2(2)x4(2) + 0.2x2

3(2)

+ 0.15x3(2)x4(2) + 0.15x2
4(2)

+

∫ 2

0
{x2

1(t) + x2
2(t) + x2

3(t) + x2
4(t) + 0.1u2

1(t) + 0.1u2
2(t)} dt.

The new results are shown in Figure 6. The differences are
obvious. We see that the method can handle the fractional
nonlinear system with the Bolza type performance index.
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Figure 6. Solutions for Example 2 with the new
J, α = 0.94.

C
0 Dαt x1(t) = − x1(t) − r1(t)x1(t),
C
0 Dαt x2(t) =r1(t)x1(t) − 2x2(t) − u1(t)[x2(t) + 0.25],
C
0 Dαt x3(t) =x1(t) + τx1(t) + τr1(t)x1(t) − x3(t) − r2(t)x3(t),
C
0 Dαt x4(t) = − τr1(t)x1(t) + x2(t) + 2τx2(t) + r2(t)x3(t)

− 2x4(t) + u1(t)[τx2(t) + 0.25τ]

− u2(t)[x4(t) + 0.25].

(3.1)

3.3. Example 3

Finally, in order to check effectiveness of the method, we
apply it to the fractional type of an example as an unstable
zero equilibrium in [21] that its integer order for finding
the state estimate was solved by using the method of this
reference and that of [22]. Consider the system

C
0 Dαt x1(t) = x2(t),
C
0 Dαt x2(t) = −x2(t)|x2(t)|,

where x(0) = [1, 1]⊤.
However, some of the given assumptions are not satisfied,

but we apply the method. We choose the weighting matrices
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given in the text to apply the proposed method. The value of
the control weighting matrix has no effect on the solutions.
Clearly, the elements of the Kalman gain in this problem are
zeros. Hence, we just show the Riccati coefficients for α = 1
and α = 0.94 obtained by the method in Figures 7 and 8. We
can see that even for this system, the method provides the
solution for the Riccati matrix.
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Figure 7. Solutions for Example 3, α = 1.
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Figure 8. Solutions for Example 3, α = 0.94.

4. Conclusions

A new method has been introduced to find the closed-loop
optimal control, the optimal state and performance index
of a fractional nonlinear system. The optimally conditions
of fractional nonlinear optimal control problems has been
presented. By deriving the fractional linearized Riccati
equation, a new method for finding the Riccati coefficient
has been presented. A linear feedback controller for the
integer order nonlinear optimal control problem has been
introduced. As can been seen, the method can handle
highly nonlinear optimal control problems. The future
work can be: extending the proposed method to fractional
nonlinear systems having undecomposed terms and known
disturbances, extending the results of this paper to the case
where α ∈ (1, 2), and considering the fractional optimal
control problem with a Riemann-Liouville performance

index [23].
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