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Abstract: In this paper, the Cauchy problem for the nonlinear Schrödinger systemi∂tu1(x, t) = ∆u1(x, t) − |u1(x, t)|p−1u1(x, t) − |u2(x, t)|p−1u1(x, t),
i∂tu2(x, t) = ∆u2(x, t) − |u2(x, t)|p−1u2(x, t) − |u1(x, t)|p−1u2(x, t),

was investigated in d space dimensions. For 1 < p ≤ 1 + 2/d, the nonexistence of asymptotically
free solutions for the nonlinear Schrödinger system was proved based on mathematical analysis and
scattering theory methods. The novelty of this paper was to give the proof of pseudo-conformal identity
on the nonlinear Schrödinger system. The present results improved and complemented these of Bisognin,
Sepúlveda, and Vera(Appl. Numer. Math. 59(9)(2009): 2285–2302), in which they only proved the
nonexistence of asymptotically free solutions when d = 1, p = 3.
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1. Introduction

In this paper, we consider the following nonlinear Schrödinger systemi∂tu1(x, t) = ∆u1(x, t) − |u1(x, t)|p−1u1(x, t) − |u2(x, t)|p−1u1(x, t),
i∂tu2(x, t) = ∆u2(x, t) − |u2(x, t)|p−1u2(x, t) − |u1(x, t)|p−1u2(x, t),

(1.1)

and the corresponding free (linear) systemi∂tv1(x, t) = ∆v1(x, t),
i∂tv2(x, t) = ∆v2(x, t).

(1.2)
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Here, x ∈ Rd(d ≥ 1), t ∈ R, 1 < p ≤ 1 + 2/d.
It is well known that there are a lot of results on solutions for the nonlinear Schrödinger equation.

For instance, for nonlinear Schrödinger equation with harmonic potential

i∂tu(x, t) + ∆u(x, t) − |x|2u(x, t) + |u(x, t)|p−1u(x, t) = 0,

Shu and Zhang [1] derived a sharp criterion for blow-up and global existence of the solutions by
constructing a cross-constrained variational problem and invariant manifolds of the evolution flow. Their
results were improved by Xu and his co-authors [2, 3]. More precisely, Xu and Liu [2] pointed out the
self-contradiction. Xu and Xu [3] derived different sharp criterion and different invariant manifolds
that separate the global solutions and blow-up solutions by comparing the different cross-constrained
problems. Moreover, they illustrated that some manifolds are empty and compared the three cross-
constrained problems and the three depths of the potential wells. The potential well was also used to
study the nonlinear Schrödinger equation with more general nonlinearities in [4], in which the global
existence and nonexistence where at only the low initial energy level. It is certainly beyond the scope of
the present paper to give a comprehensive review for the nonlinear Schrödinger equation. In this regard,
we would like to give some references such as [5–12]. Barab [13] considered the perturbed (nonlinear)
Schrödinger equation

i∂tu(x, t) = ∆u(x, t) − g|u(x, t)|p−1u(x, t)

and the corresponding free (linear) equation

i∂tv(x, t) = ∆v(x, t).

He proved that for a nontrivial, smooth solution u(x, t), if d = 1 and 2 < p ≤ 3, then there does not
exist any finite energy free solution v(x, t) such that ‖u(x, t) − v(x, t)‖2 → 0 as t → +∞. This result
is an extension to that one of Strauss [14] in which the same result was proven for 1 < p ≤ 2. Both
Barab [13] and Strauss [14] applied the general idea that was originally used by Glassey [15] to prove
the analogous result for the nonlinear Klein-Gordon equation to prove their theorems. Tsutsumi and
Yajima [16] considered the nonlinear Schrödinger equation with power interactions

i∂tu(x, t) = −
1
2

∆u(x, t) + λ|u(x, t)|p−1u(x, t)

in Rd, d ≥ 2, λ > 0. They proved that for any u0(x) ∈ Σ with Σ = {u ∈ L2(Rd); ‖u‖2+‖∇u‖2+‖xu‖2 < ∞},
there exists a unique u± ∈ L2(Rd) such that the solution u(x, t) with u(x, 0) = u0(x) has the free asymptote
u± as t → ±∞:

lim
t→±∞

‖u(x, t) − e
1
2 it∆u±‖2 = 0

when 1 + 2/d < p < 1 + 4/(d − 2). Guo and Tan [17] studied the asymptotic behavior of nonlinear
Schrödinger equations with magnetic effect. By following the idea of [13, 16], they proved the nonexis-
tence of the nontrivial free asymptotic solutions for 1 < p ≤ 1 + 2/d and the existence of the nontrivial
free asymptotic solutions for 1 + 2/d < p < 1 + 4/d, d = 2, 3 under certain conditions, respectively.

For some systems of Schrödinger equations, some results were also obtained. Hayashi, Li, and
Naumkina [18] considered the following system of nonlinear Schrödinger equations with quadratic
nonlinearities in two space dimensionsi∂tu1(x, t) + 1

2m1
∆u1(x, t) = γu1(x, t)u2(x, t),

i∂tu2(x, t) + 1
2m2

∆u2(x, t) = u2
1(x, t),
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where γ is a given complex number with |γ| = 1. They obtained time decay estimates of small solutions
and nonexistence of the usual scattering states for a system. Moreover, they proved stability in time
of small solutions in the neighborhood of solutions to a suitable approximate equation. More related
results can be found in [19, 20]. Nakamura, Shimomura, and Tonegawa [21] investigated the Cauchy
problem at infinite initial time of the following coupled system of the Schrödinger equation with cubic
nonlinearities in one space dimensioni∂tu1(x, t) + 1

2m1
∂2

xu1(x, t) = F1(u1(x, t), u2(x, t)),
i∂tu2(x, t) + 1

2m2
∂2

xu2(x, t) = F2(u1(x, t), u2(x, t)).

By constructing modified wave operators for small final data, they studied the global existence and
the large time behavior. Cheng, Guo, et al. [22] addressed the global well-posedness and scattering of
the two-dimensional cubic focusing nonlinear Schrödinger system. Hayashi, Li, and Naumkin [23]
considered the nonlinear Schrödinger system−i∂tu1(x, t) + 1

2∆u1(x, t) = F(u1(x, t), u2(x, t)),
−i∂tu2(x, t) + 1

2∆u2(x, t) = F(u1(x, t), u2(x, t)),

in d space dimensions, where

F(u1(x, t), u2(x, t)) = −2−piλ|u1(x, t) − u2(x, t)|p−1 (u1(x, t) − u2(x, t))

is a p-th order local or nonlocal nonlinearity smooth up to order p, with 1 < p ≤ 1 + 2/d for d ≥ 2
and 1 < p ≤ 2 for d = 1. They proved nonexistence of asymptotically free solutions in the critical and
subcritical cases. In this paper, we will prove that there does not exist any finite energy asymptotically
free solution of the system (1.1) for d ≥ 1, 1 < p ≤ 1 + 2/d. Pseudo-conformal identity on the
nonlinear Schrödinger system for d ≥ 1, 1 < p ≤ 1 + 2/d is proven first in this paper, and based on
pseudo-conformal identity, we obtain decay estimates of perturbed solutions (see Lemma 2.4). Our
results improve and complement that of Bisognin, Sepúlveda, and Vera [24], in which they only proved
the nonexistence of asymptotically free solutions when d = 1, p = 3 for (1.1) by following an idea of
Glassey [15].

The outline of the paper is as follows. In Section 2, we shall give some useful lemmas, which
plays a pivotal role in proving the main results . In Section 3, we first give and prove nonexistence of
asymptotically free solutions for (1.1) if d ≥ 2, 1 < p ≤ 1+2/d, and d = 1, 1 < p ≤ 2(see Theorem 3.1).
Second, we present the nonexistence of asymptotically free solutions for (1.1) if d = 1, 2 < p ≤ 3(see
Theorem 3.2).

2. Preliminaries

Throughout this paper, for each q ∈ [1,∞), we denote by the norm ‖u‖q the usual spatial Lq(Rd)-norm
and the dual variable is denoted by q′ so that 1/q + 1/q′ = 1. The alphabet c is a generic positive
constant, which may be different in various positions. For convenience, denote

Lq := Lq(Rd), H1 := H1(Rd),∫
·dx :=

∫
Rd
·dx, u := u(t) = u(x, t), ‖u‖∞ := sup essx∈Rd |u(x)|.
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Definition 2.1. A solution (u1, u2) to (1.1) is asymptotically free if there exist L2-solutions (v1±, v2±),
decaying sufficiently rapidly, such that∥∥∥∥u1(t) − v1±(t)

∥∥∥∥
2

+
∥∥∥∥u2(t) − v2±(t)

∥∥∥∥
2
→ 0, as t → ±∞.

Remark 2.2. In this paper, we only focus on the solutions for t > 0. The case t < 0 can be handled
similarly.

Before going further, let us give some preliminary lemmas, which are used to prove our main results.
The first lemma is easily proved by following Lemma 2 in [13]. Here we omit the process.

Lemma 2.3. If (v1, v2) is a smooth solution to (1.2) with 0 , v1(x, 0) ∈ L1 ∩ L2, 0 , v2(x, 0) ∈
L1 ∩ L2, 2 ≤ q ≤ ∞, then

(i) there exists a constant c = c(‖v1(0)‖q′ , ‖v2(0)‖q′) such that

‖v1(t)‖q + ‖v2(t)‖q ≤ ct−d(q−2)/2q, ∀t > 0.

(ii) there exist positive constants B = B(d, q, v1(0), v2(0)) and T0 = T0(v1(0), v2(0)) such that

‖v1(t)‖q + ‖v2(t)‖q ≥ Bt−d(q−2)/2q, ∀t ≥ T0.

When q = ∞, the power of t is −d/2.

Lemma 2.4. If (u1, u2) is a smooth solution to (1.1) with 1 < p ≤ 1 + 4/d, u1(x, 0), u2(x, 0) ∈ H1∩Lp+1,
and ‖xu1(x, 0)‖2 + ‖xu2(x, 0)‖2 < ∞, then there exists c > 0 depending on initial data such that∫

(|u1|
p+1 + |u2|

p+1 + |u1|
p−1|u2|

2 + |u2|
p−1|u1|

2)dx ≤ ct−d(p−1)/2, ∀t > 0.

Proof. We borrow some ideas from Lemma 3 in [13] to prove this lemma.
First, let us prove the following pseudo-conformal identity

d
dt

∫ [
|xu1 − 2it∇u1|

2 + |xu2 − 2it∇u2|
2

+
8t2

p + 1

(
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)]

dx

=
4t[4 − d(p − 1)]

p + 1

∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dx.

(2.1)

Let r = |x|, uk
i = ∂kui = ∂ui

∂xk
with i = 1, 2, k = 1, 2, · · · , d, multiply (1.1) by 2r∂ru1, 2r∂ru2 with

∂rui = ∂ui
∂r , i = 1, 2, integrate the real part over Rd, and the use integration by parts, then

2Rei
∫ ∑

k

xk(uk
1∂tu1 + uk

2∂tu2)dx

= 2Re
∫

r(∂ru1∆u1 + ∂ru2∆u2)dx

−
2

p + 1

∫
r∂r(|u1|

p+1 + |u1|
p−1|u2|

2 + |u2|
p+1 + |u2|

p−1|u1|
2)dx

= (d − 2)
∫

(|∇u1|
2 + |∇u2|

2)dx

+
2d

p + 1

∫
(|u1|

p+1 + |u1|
p−1|u2|

2 + |u2|
p+1 + |u2|

p−1|u1|
2)dx.

(2.2)
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Note that

2Rei
∫ ∑

k

xk(uk
1∂tu1 + uk

2∂tu2)dx

= Re
[
i
∫ ∑

k

xk(uk
1∂tu1 − uk

1∂tu1 + uk
2∂tu2 − uk

2∂tu2)dx
]

=
d
dt

Re
[
i
∫ ∑

k

xk

(
∂t(uk

1u1) − ∂k(u1∂tu1) + ∂t(uk
2u2) − ∂k(u2∂tu2)

)
dx

]
=

d
dt

Re
[
i
∫

r(∂ru1u1 + ∂ru2u2)dx
]

+ Re
[
id

∫
(u1∂tu1 + u2∂tu2)dx

]
.

Substitute i∂tu1, i∂tu2 in (1.1), then the above identity can be transferred to

2Rei
∫ ∑

k

xk(uk
1∂tu1 + uk

2∂tu2)dx

=
d
dt

Im
[ ∫

r(∂ru1u1 + ∂ru2u2)dx
]

+ d
∫ (
|∇u1|

2 + |∇u2|
2 + |u1|

p+1 + |u1|
p−1|u2|

2 + |u2|
p+1 + |u2|

p−1|u1|
2
)
dx.

(2.3)

Combine (2.2) and (2.3), then

d
dt

Im
[ ∫

r(∂ru1u1 + ∂ru2u2)dx
]

= −2
∫

(|∇u1|
2 + |∇u2|

2)dx

−
d(p − 1)

p + 1

∫
(|u1|

p+1 + |u1|
p−1|u2|

2 + |u2|
p+1 + |u2|

p−1|u1|
2)dx.

(2.4)

Multiply by 2u1, 2u2 in (1.1) and take the imaginary part to obtain

d
dt

(|u1(t)|2 + |u2(t)|2) = ∇ · Im[2(u1∇u1 + u2∇u2)]. (2.5)

Multiply (2.5) by |x|2 and integrate over Rd to achieve

d
dt

(|xu1(t)|2 + |xu2(t)|2) = −4Im
[ ∫

r(∂ru1u1 + ∂ru2u2)dx
]
. (2.6)

Let us multiply (2.4) by 4t to give

d
dt

{
4tIm

[ ∫
r(∂ru1u1 + ∂ru2u2)dx

]}
− 4Im

[ ∫
r(∂ru1u1 + ∂ru2u2)dx

]
=

d
dt

[
− 4t2

∫
(|∇u1|

2 + |∇u2|
2)dx

]
+ 4t2 d

dt

∫
(|∇u1|

2 + |∇u2|
2)dx

−
4d(p − 1)

p + 1
t
∫

(|u1|
p+1 + |u1|

p−1|u2|
2 + |u2|

p+1 + |u2|
p−1|u1|

2)dx.

Communications in Analysis and Mechanics Volume 16, Issue 2, 293–306.



298

Further, make full use of (2.6) and the law of conservation of energy, then

d
dt

∫ [
|xu1(t)|2 + |xu2(t)|2 + 4t2(|∇u1|

2 + |∇u2|
2) − Re4tir(∂ru1u1 + ∂ru2u2)

]
dx

=
d
dt

[
−

8t2

p + 1

∫
(|u1|

p+1 + |u1|
p−1|u2|

2 + |u2|
p+1 + |u2|

p−1|u1|
2)dx

]
+

16t
p + 1

∫
(|u1|

p+1 + |u1|
p−1|u2|

2 + |u2|
p+1 + |u2|

p−1|u1|
2)dx

−
4d(p − 1)

p + 1
t
∫

(|u1|
p+1 + |u1|

p−1|u2|
2 + |u2|

p+1 + |u2|
p−1|u1|

2)dx,

which yields (2.1) directly.
Second, we aim to give the Gronwall argument. Integrate for (2.1) over [0, t], then

8t2

p + 1

∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dx

≤ ‖xu1(0)‖22 + ‖xu2(0)‖22 +
4[4 − d(p − 1)]

p + 1

×

∫ t

0
τ

∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dxdτ.

Therefore,

t2
∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dx

≤ λ′ +
4 − d(p − 1)

2

∫ t

1
τ

∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dxdτ,

(2.7)

where

λ′ =
p + 1

8
(‖xu1(0)‖22 + ‖xu2(0)‖22) +

4 − d(p − 1)
2

×

∫ 1

0
τ

∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dxdτ.

The law of conservation of energy implies

‖∇u1‖
2
2 + ‖∇u2‖

2
2 +

2
p + 1

∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dx

= ‖∇u1(0)‖22 + ‖∇u2(0)‖22 +
2

p + 1

×

∫ (
|u1(0)|p+1 + |u2(0)|p+1 + |u1(0)|p−1|u2(0)|2 + |u2(0)|p−1|u1(0)|2

)
dx.

It is not difficult to get that

λ′ ≤ λ := c(p)
(
‖xu1(0)‖22 + ‖xu2(0)‖22 + ‖∇u1(0)‖22 + ‖∇u2(0)‖22 + η

)
,
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where
η :=

∫ (
|u1(0)|p+1 + |u2(0)|p+1 + |u1(0)|p−1|u2(0)|2 + |u2(0)|p−1|u1(0)|2

)
dx,

and c(p) is a positive constant depending on p.
By recalling the condition in Lemma 2.4, (2.7) can be rewritten as

F(t) ≤ λ +

∫ t

1
β(τ)F(τ)dτ,

where for t ≥ 1,

F(t) = t2
∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dx,

β(t) =
4 − d(p − 1)

2t
.

Since F and β are continuous on [1,∞), Gronwall’s lemma indicates that

t2
∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dx ≤ λe

∫ t
1

4−d(p−1)
2τ dτ, ∀t > 1.

We can simplify it to get that∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dx ≤ λt−

d(p−1)
2 , ∀t > 1.

Further, for all t,
∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dx is bounded uniformly. Therefore, there

exists a constant

c = c(p, ‖xu1(0)‖2, ‖xu2(0)‖2, ‖∇u1(0)‖2, ‖∇u2(0)‖2, ‖u1(0)‖p+1, ‖u2(0)‖p+1)

such that [ ∫ (
|u1|

p+1 + |u2|
p+1 + |u1|

p−1|u2|
2 + |u2|

p−1|u1|
2
)
dx

] 1
p+1
≤ ct−d(p−1)/2(p+1), ∀t > 0.

Lemma 2.5. If 1 ≤ p < ∞, (e−it∆h1, e−it∆h2) is a nontrivial free solution, then

t
(p−1)d

2

∫
e−it∆

(
|h1|

p+1 + |h2|
p+1 + |h1|

p−1|h2|
2 + |h2|

p−1|h1|
2
)
dx

is bounded away from zero for large t.

Proof. Hölder’s inequality yields( ∫
|x|<kt

e−it∆(|h1|
2 + |h2|

2)dx
) p+1

2

≤ (kt)
d(p−1)

2

∫
e−it∆

(
|h1|

p+1 + |h2|
p+1 + |h1|

p−1|h2|
2 + |h2|

p−1|h1|
2
)
dx.
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Obviously, it suffices to bound the left side of the above inequality away from zero. Set

e−it∆h1 + e−it∆h2 = (4πit)−
d
2

∫
e|x−y|2/4ite−it∆[h1(y, 0) + h2(y, 0)]dy,

by a direct computation, then

lim
t→∞

∫
|x|<kt

(|e−it∆h1|
2 + |e−it∆h2|

2)dx =

∫
|ξ|<k/2

[
|F (e−it∆h1(ξ, 0))|2 + |F (e−it∆h2(ξ, 0))|2

]
dξ,

where F (e−it∆h1(ξ, 0)), F (e−it∆h2(ξ, 0)) are the Fourier transform of the initial datum.
It is noted that (e−it∆h1, e−it∆h2) is nontrivial and there is a k for which the limit does not vanish. This

proof is completed.

3. Proof of the main results

In this section, we prove the main results by considering the following two cases.
Case 1: d ≥ 2, 1 < p ≤ 1 + 2/d, and d = 1, 1 < p ≤ 2.
Case 2: d = 1, 2 < p ≤ 3.
First, let us prove nonexistence of asymptotically free solutions for (1.1) under case 1. The following

theorem is obtained.

Theorem 3.1. For d ≥ 2, 1 < p ≤ 1 + 2/d and d = 1, 1 < p ≤ 2, if (u1, u2) is a solution of (1.1), then
for all (h1, h2) ∈ L2 × L2, ∥∥∥∥u1(t) − e−it∆h1

∥∥∥∥
2

+
∥∥∥∥u2(t) − e−it∆h2

∥∥∥∥
2

does not go to zero as t → +∞.

Proof. Suppose that there exists (h1, h2) ∈ L2 × L2 such that∥∥∥∥u1(t) − e−it∆h1

∥∥∥∥
2

+
∥∥∥∥u2(t) − e−it∆h2

∥∥∥∥
2
→ 0, as t → +∞. (3.1)

Since the operator e−it∆ is dense and unitary in L2, we can assume h1, h2 ∈ S (Schwartz space) to get

d
dt

∫ [
(eit∆u1)h1 + (eit∆u2)h2

]
dx

=

∫ [
eit∆h1i(|u1|

p−1u1 + |u2|
p−1u1) + eit∆h2i(|u1|

p−1u2 + |u2|
p−1u2)

]
dx

=

∫ [
e−it∆h1i(|u1|

p−1u1 + |u2|
p−1u1) + e−it∆h2i(|u1|

p−1u2 + |u2|
p−1u2)

]
dx.

Therefore, ∫ T

0

∫ [
e−it∆h1i(|u1|

p−1u1 + |u2|
p−1u1) + e−it∆h2i(|u1|

p−1u2 + |u2|
p−1u2)

]
dxdt (3.2)

has a limit as T → ∞. In fact, as T → ∞, we obtain∫ [
h1eiT∆u1(T ) + h2eiT∆u2(T )

]
dx

=

∫
(h1h1 + h2h2)dx +

∫ [
h1(eiT∆u1(T ) − h1) + h2(eiT∆u2(T ) − h2)

]
dx→ 0.
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On the other hand, one has∣∣∣∣ ∫ [
i(|u1|

p−1u1 + |u2|
p−1u1)e−it∆h1 + i(|u1|

p−1u2 + |u2|
p−1u2)e−it∆h2

− ie−it∆(|h1|
p+1 + |h2|

p+1 + |h1|
p−1|h2|

2 + |h2|
p−1|h1|

2)
]
dx

∣∣∣∣
≤ (‖u1‖2 + ‖u2‖2 + ‖h1‖2 + ‖h2‖2)p−1(‖h1‖2 + ‖h2‖2)2−p

×
(
‖e−it∆h1‖∞ + ‖e−it∆h2‖∞

)p−1
(∥∥∥∥u1(t) − e−it∆h1

∥∥∥∥
2

+
∥∥∥∥u2(t) − e−it∆h2

∥∥∥∥
2

)
.

Since
‖u1‖2 + ‖u2‖2 → ‖h1‖2 + ‖h2‖2, as t → ∞,(

‖e−it∆h1‖∞ + ‖e−it∆h2‖∞

)p−1
≤ |t|−

(p−1)d
2 (‖h1‖1 + ‖h2‖1)p−1,

(3.1) combined with∫
e−it∆

(
|h1|

p+1 + |h2|
p+1 + |h1|

p−1|h2|
2 + |h2|

p−1|h1|
2
)
dx

Lemma 2.5
≥ ct−

(p−1)d
2 ,

obtains ∫ [
i(|u1|

p−1u1 + |u2|
p−1u1)e−it∆h1 + i(|u1|

p−1u2 + |u2|
p−1u2)e−it∆h2

]
dx ≥

c
2

t−
(p−1)d

2 .

The righthand side of the above inequality is not integrable, which is a contradiction since (3.2) has a
limit as T → ∞.

This completes the proof of this theorem.

In the light of Definition 2.1, we easily get the nonexistence of asymptotically free solutions for (1.1)
under case 1. In what follows, let us illustrate the nonexistence of asymptotically free solutions for (1.1)
under case 2.

Theorem 3.2. If d = 1, 2 < p ≤ 3, then the only smooth, asymptotically free solution to (1.1) is
identically zero.

Proof. Assume (u1, u2) is a smooth, asymptotically free solution to (1.1), then there exists a smooth
L2-solution (v1, v2) of (1.2) such that

‖u1(t) − v1(t)‖2 + ‖u2(t) − v2(t)‖2 → 0, as t → +∞, (3.3)

‖v1(t)‖∞ + ‖v2(t)‖∞ = O(t−1/2), as t → +∞, (3.4)

Let us combine the conservation of the L2-norm and (3.3) to show

‖u1(t)‖2 + ‖u2(t)‖2 = ‖v1(t)‖2 + ‖v2(t)‖2 ≡ A, ∀t. (3.5)

We are now in a position to prove

v1(0) = 0, v2(0) = 0.
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Let us prove by contradiction. Assume v1(0) , 0, v2(0) , 0. Using (3.4), then

‖v1(t)‖∞ + ‖v2(t)‖∞ ≤ ct−1/2, ∀t > T1 ≥ T0, (3.6)

where T0 is as in Lemma 2.3. For t > T1, define

H(t) =

∫
[u1v1 + u2v2]dx.

Differentiate H with respect to t, substitute from (1.1) and (1.2) for ∂tu1, ∂tu2, ∂tv1 and ∂tv2, respectively,
and integrate by parts to get

N(t) :=
dH(t)

dt
=

∫ [
iv1(|u1|

p−1u1 + |u2|
p−1u1) + iv2(|u1|

p−1u2 + |u2|
p−1u2)

]
dx.

Let us add and subtract

i
∫ (
|v1|

p+1 + |v1|
p−1|v2|

2 + |v2|
p+1 + |v2|

p−1|v1|
2
)

dx,

and then take the imaginary part to give

ImN(t) =

∫ (
|v1|

p+1 + |v1|
p−1|v2|

2 + |v2|
p+1 + |v2|

p−1|v1|
2
)

dx

+ Re
∫ [

v1(|u1|
p−1u1 + |u2|

p−1u1) + v2(|u1|
p−1u2 + |u2|

p−1u2)
]

dx

− Re
∫ (
|v1|

p+1 + |v1|
p−1|v2|

2 + |v2|
p+1 + |v2|

p−1|v1|
2
)

dx.

For v1, v2, apply Lemma 2.3(ii), then

ImN(t) ≥ Bt−(p−1)/2 − I, ∀t > T1. (3.7)

Here,

I =
∣∣∣∣Re

∫ [
v1(|u1|

p−1u1 + |u2|
p−1u1) + v2(|u1|

p−1u2 + |u2|
p−1u2)

]
dx

− Re
∫ (
|v1|

p+1 + |v1|
p−1|v2|

2 + |v2|
p+1 + |v2|

p−1|v1|
2
)

dx
∣∣∣∣.

Next, we need to prove that
I = o(t−(p−1)/2), as t → ∞,

so that
ImN(t) ≥ ct−(p−1)/2 > 0

for all large t.
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We use the Minkowski inequality and the mean value theorem to give

I ≤
∣∣∣∣ ∫ [(|u1|

p−1 + |u2|
p−1) − (|v1|

p−1 + |v2|
p−1)](u1v1 + u2v2)dx

∣∣∣∣
+

∣∣∣∣ ∫ (|v1|
p−1 + |v2|

p−1)[v1(u1 − v1) + v2(u2 − v2)]dx
∣∣∣∣

≤ c
∫

(|u1|
p−2 + |u2|

p−2)(|u1 − v1| + |u2 − v2|)(|u1| + |u2|)(|v1| + |v2|)dx

+ c
∫

(|v1|
p−2 + |v2|

p−2)(|u1 − v1| + |u2 − v2|)(|u1| + |u2|)(|v1| + |v2|)dx

+

∫
(|v1|

p−1 + |v2|
p−1)(|u1 − v1| + |u2 − v2|)(|v1| + |v2|)dx

:= J1 + J2 + J3.

For J3, using Hölder’s inequality, (3.6), and (3.5), one obtains

J3 ≤ c(‖v1(t)‖p−1
∞ + ‖v2(t)‖p−1

∞ )(‖u1(t) − v1(t)‖2 + ‖u2(t) − v2(t)‖2)(‖v1(t)‖2 + ‖v2(t)‖2)

≤ ct−
p−1

2 (‖u1(t) − v1(t)‖2 + ‖u2(t) − v2(t)‖2).

Recall (3.3), then
J3 = o(t−

p−1
2 ). (3.8)

For J1, using Hölder’s inequality, Lemma 2.3(i), and Lemma 2.4, we get

J1 ≤ c(‖u1(t) − v1(t)‖2 + ‖u2(t) − v2(t)‖2)

×
[ ∫ (

|u1|
p+1 + |u2|

p+1 + |u1|
p−1|u2|

2 + |u2|
p−1|u1|

2
)
dx

] p−1
p+1

× (‖v1‖2(p+1)/(3−p) + ‖v2‖2(p+1)/(3−p))
≤ c(‖u1(t) − v1(t)‖2 + ‖u2(t) − v2(t)‖2)t−(p−1)/2.

Recall (3.3), then
J1 = o(t−

p−1
2 ).

Similarly,
J2 = o(t−

p−1
2 ).

Recall (3.8), then
I ≤ J1 + J2 + J3 = o(t−

p−1
2 ), as t → ∞.

This estimate together with (3.7) implies that there exist T > max{1,T1} and a positive constant C such
that

ImN(t) ≥ Ct−(p−1)/2, ∀t ≥ T.

Let us fix C and T , let K be a positive integer, and integrate this inequality over T ≤ t ≤ KT to deduce∫ KT

T

d
dt

ImH(t)dt ≥
∫ KT

T
Ct−(p−1)/2dt ≥

∫ KT

T
Ct−1dt.
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Therefore,
ImH(KT ) − ImH(T ) ≥ C ln K,

It follows from the definition of H(t) and Schwarz’s inequality that

|ImH(t)| ≤ |H(t)| =
∣∣∣∣∣∫ [u1(t)v1(t) + u2(t)v2(t)]dx

∣∣∣∣∣
≤ (‖u1(t)‖2 + ‖u2(t)‖2)(‖v1(t)‖2 + ‖v2(t)‖2)

(3.5)
= A2, ∀t > T.

Further,
C ln K ≤ |ImH(KT )| + |ImH(T )| ≤ 2A2.

Let us choose K > e2A2/C to show contradiction. In conclusion, v1(0) = 0, v2(0) = 0. Hence, by (3.5), we
get that u1(t) = 0, u2(t) = 0 in L2 for all t. The smoothness of u1, u2 implies u1(x, t) = 0, u2(x, t) = 0.

The proof of this theorem is completed.
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