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Abstract: From the perspective of ecological control, harvesting behavior plays a crucial role in
the ecosystem natural cycle. This paper proposes a diffusive predator-prey system with predator
harvesting to explore the impact of harvesting on predatory ecological relationships. First, the existence
and boundedness of system solutions were investigated and the non-existence and existence of non-
constant steady states were obtained. Second, the conditions for Turing instability were given to further
investigate the Turing patterns. Based on these conditions, the amplitude equations at the threshold
of instability were established using weakly nonlinear analysis. Finally, the existence, direction, and
stability of Hopf bifurcation were proven. Furthermore, numerical simulations were used to confirm the
correctness of the theoretical analysis and show that harvesting has a strong influence on the dynamical
behaviors of the predator-prey systems. In summary, the results of this study contribute to promoting
the research and development of predatory ecosystems.
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1. Introduction

The study of predator-prey systems is increasingly becoming an important topic in biology and
mathematics because it helps us to better understand the connections between populations. Turing
pointed out in 1952 that stable homogeneous states in reaction-diffusion systems can destabilize under
certain conditions and spontaneously generate a wide variety of ordered and disordered patterns [1].
Populations do not remain in a fixed space for a variety of reasons, so it is relevant to introduce diffusion
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into the predator-prey systems. Many scholars have begun to study the effect of diffusion terms on
system patterns (see [2–6]).

Among many ecological systems, the Leslie-Gower system has the following form du
dt = ru(1 − u

K ) − vQ(u),
dv
dt = sv(1 − v

hu ),
(1.1)

where v and u denote the densities of predators and prey, respectively; Q(u) denotes the functional
response; K stands for the environmental capacity; h measures the translation of prey food quality into
predator birth rates; and s and r represent the intrinsic growth rate of predator and prey populations,
respectively. This system has been studied by many researchers, such as the simplified Holling IV
Q(u) = αu

u2+b [7]. Meanwhile, the generalized Holling IV functional response can describe an ecological
phenomenon: When the density of the prey population exceeds a critical value, the group defense
capability of the prey population can increase, which not only does not promote the increase of the
predator population, but also inhibits its increase [8, 9]. Thus, we use the generalized Holling IV
functional response function Q(u) = αu

u2+cu+b to describe the interaction between predators and prey,
where α, c, b are biologically meaningful positive numbers.

At the same time, according to experiments [10], it is known that the fear effect in prey cannot
be ignored. The fear effect can have an important impact on the dynamical behavior of the system
(see [11–15]). Also the harvesting of predators is often of great practical importance (see [16, 17]).
Thus, we can continue to add these factors to the system (1.1), and a new system can be represented
as follows  du

dt =
ru(1− u

K )
1+av −

αuv
u2+cu+b ,

dv
dt = sv(1 − v

hu ) − qmEv,
(1.2)

where a, q, m(0 < m < 1), and E are biologically meaningful positive numbers. Due to the inevitability
of the diffusion effect, by adding the diffusion to the system (1.2), we can obtain the system (1.3)∂u

dt =
ru(1− u

K )
1+av −

αuv
u2+cu+b + d1∆u,

∂v
dt = sv(1 − v

hu ) − qmEv + d2∆v,
(1.3)

where ∆ indicates the Laplacian operator, and d1 and d2 represent the diffusion rates of the prey and
predators, respectively.

For simplicity, by taking the following transformations:

u
K
7→ u,

αv
rK2 7→ v, rt 7→ t,

arK2

α
7→ k,

c
K
7→ d,

b
K2 7→ e,

sK
αh
7→ δ,

αh
rK
7→ β,

qmE
r
7→ λ,

d1

r
7→ d1,

d2

r
7→ d2.

One can attain a new diffusive predator-prey system as follows
∂u
dt =

u(1−u)
1+kv −

uv
u2+du+e + d1∆u, x ∈ Ω, t > 0,

∂v
dt = δv(β − v

u ) − λv + d2∆v, x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.4)
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where Ω ⊂ RN(N ≥ 1) denotes a smooth bounded domain and ∂Ω is its boundary; n and ∂n denote
outward unit normal vector and directional derivative, respectively; and u0(x) and v0(x) stand for non-
negative smooth initial conditions.

Its ODE system is as follows:  du
dt =

u(1−u)
1+kv −

uv
u2+du+e ,

dv
dt = δv(β − v

u ) − λv,
(1.5)

whose dynamic behaviors have been studied by us [18]. It is obvious that the positive equilibrium
points of the system (1.5) are the intersection of two intersecting curves 1−u

1+kv −
v

u2+du+e = 0 and the
straight line δ(β − v

u ) = λ in the first quadrant. That is, they are the positive roots of the following
cubic equation:

f (u) = u3 +

[
(β −

λ

δ
)2k + d − 1

]
u2 + (β −

λ

δ
− d + e)u − e.

Let Γ = p2 − 4qr, q = m2 − 3n, p = mn + 9e, r = n2 + 3em,
where m = (β − λ

δ
)2k + d − 1, n = β − λ

δ
− d + e.

The conditions for the number of positive equilibrium points have been obtained in detail in [18],
so they are not given here, but they are the basis for subsequent numerical simulations in this paper.

The Jacobi matrix of the system (1.5) at the internal equilibrium point is not difficult to obtain

JE∗i =

−u∗i
3u∗2i +(2d−2)u∗i +e−d
(1+kv∗i )(u∗2i +du∗i +e) −u∗i

1+2kv∗i
(1+kv∗i )(u∗2i +du∗i +e)

δ(β − λ
δ
)2 −δ(β − λ

δ
)

 .
It is easy to find that the equilibrium point E∗5 is always a saddle for the reason that Det(JE∗5

) < 0.
However, Det(JE∗i ) > 0 at the other equilibrium point E∗i . Therefore, the equilibrium point E∗i is locally
asymptotically stable if the condition a11 + a22 < 0 is satisfied, where

a11 =
∂F(u,v)
∂u

∣∣∣∣∣∣
(u,v)=(u∗i ,v

∗
i )

, a22 =
∂G(u,v)
∂v

∣∣∣∣∣∣
(u,v)=(u∗i ,v

∗
i )

,

and F(u, v) =
u(1−u)
1+kv −

uv
u2+du+e , G(u, v) = δv(β − v

u ) − λv.
The framework of the article is organized as follows. In Section 2, the boundedness and

existence conditions for solutions of the system (1.4) are given. Then, we analyze the existence and
non-existence of non-constant steady states of the elliptic system corresponding to the system (1.4) in
Section 3, which facilitates the determination of the existence of Turing patterns. In Section 4, we give
the conditions for Turing instability and the amplitude equations at the neighborhood of the threshold
of Turing instability. The existence and direction of the Hopf bifurcation are explored in Section 5.
Finally, numerical simulations and short conclusions are presented in Sections 6 and 7, respectively.

2. Boundedness and existence of solutions

In this section, the existence and boundedness conditions for solutions of the system (1.4) will
be given.
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Theorem 2.1. Suppose that k, d, e, δ, β, λ, u0(x) ≥ 0, v0(x) ≥ 0, and d1 > 0, d2 > 0 in Ω ⊂ RN(N ≥ 1),
then solutions of the system (1.4) are unique and positive, i.e., u > 0 and v > 0 for (u, v) ∈ Λ, t ≥ 0 and
x ∈ Ω̄, where Λ =

{
(u, v) : k(1 − u)(u2 + du + e) + (1 + kv)2 ≥ 0

}
. Also, if kc2 + c − e < 0 holds, where

c = β − λ
δ
, we have

(i) lim
t→∞

supmax
x∈Ω̄

u(·, t) ≤ 1, lim
t→∞

supmax
x∈Ω̄

v(·, t) ≤ c,

(ii) lim
t→∞

in f min
x∈Ω̄

u(·, t) ≥ 1 − c
e (1 + kc), lim

t→∞
in f min

x∈Ω̄
v(·, t) ≥ c[1 − c

e (1 + kc)].

Proof. Let (ū, v̄) = (ũ(t), ṽ(t)) and (u, v) = (0, 0), where (ũ(t), ṽ(t)) is the unique solution to the
following system 

du
dt =

u(1−u)
1+kv ,

dv
dt = δv(β − v

u ) − λv,

u(0) = ũ = supx∈Ωu0(x), v(0) = ṽ = supx∈Ωv0(x).

Then

∂ū
∂t
−

ū(1 − ū)
1 + kv̄

− d1∆ū +
ūv

ū2 + dū + e
≥
∂u
∂t
−

u(1 − u)
1 + kv

− d1∆u +
uv̄

u2 + du + e
,

and
∂v̄
∂t
− δv̄(β −

v̄
ū

) + λv̄ − d2∆v̄ ≥
∂v
∂t
− δv(β −

v
u

) + λv − d2∆v.

This shows that (ū, v̄) = (ũ(t), ṽ(t)) and (u, v) = (0, 0) are the upper and lower solutions of
the system (1.4), respectively. Furthermore, we have 0 ≤ u0(x) ≤ ũ and 0 ≤ v0(x) ≤ ṽ. By a
simple calculation, we can easily find Fv(u, v) = −u k(1−u)(u2+du+e)+(1+kv)2

(1+kv)2(u2+du+e) ≤ 0, Gu(u, v) = δv2

u2 for

(u, v) ∈ Λ, where Λ is written as Λ =
{
(u, v) : k(1 − u)(u2 + du + e) + (1 + kv)2 ≥ 0

}
. By the well-

known conclusion in [19], we find that the system (1.4) is a mixed quasi-monotone system, which
owns a globally defined unique solution (u, v) that satisfies 0 ≤ u(x, t) ≤ ũ(t) and 0 ≤ v(x, t) ≤ ṽ(t).
Furthermore, we have u(x, t) > 0 and v(x, t) > 0 for t ≥ 0 and x ∈ Ω̄ by the strong maximum principle.

Next, we begin to explore the boundedness of the solutions u(x, t) and v(x, t). We find that (i)
is easily obtained by comparison principle. However, (ii) is the one that needs to be worked out.
Observing the first equation of the system (1.4), we have

∂u
∂t − d1∆u ≥ u

1+kc [1 − c
e (1 + kc) − u], x ∈ Ω,t>0,

∂u
∂n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

where c = β − λ
δ
. Using the comparison principle again, there exists T1 > 0 and ε1 > 0 such that

u(x, t) ≥ 1 − c
e (1 + kc) + ε1 holds for t > T1 and x ∈ Ω̄. Similarly, we still have

∂v
∂t − d2∆v ≥ δv(c − v

1− c
e (1+kc)+ε1

), x ∈ Ω,t>0,
∂v
∂n = 0, x ∈ ∂Ω, t > 0,
v(x, 0) = v0(x) ≥ 0, x ∈ Ω,
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where c = β − λ
δ
. Thus, the comparison principle helps us to obtain that there exists T2 > 0 and ε2 > 0

such that v(x, t) ≥ c[1 − c
e (1 + kc) + ε1] + ε2 holds for t > T2 and x ∈ Ω̄. By the arbitrariness of ε1 and

ε2, we complete the proof. �

3. Non-existence and existence of non-constant steady states

In this section, we will focus on the elliptic equations of the system (1.4):
−d1∆u =

u(1−u)
1+kv −

uv
u2+du+e , x ∈ Ω,

−d2∆v = δv(β − v
u ) − λv, x ∈ Ω,

∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω.

(3.1)

Next, the conditions for the existence and non-existence of the steady states of the system (3.1) will
be given.

3.1. A priori estimates

Theorem 3.1. Assume that k, d, e, δ, β, λ, d1, d2 > 0 and λ > −δ(−1+
√

1+4ke
2k − β) holds, we have

1 − c
e (1 + kc) ≤ u(x) ≤ 1, c[1 − c

e (1 + kc)] ≤ v(x) ≤ c, where c = β − λ
δ
.

Proof. Let (u(x), v(x)) be a non-negative solution of the system (3.1), and

u(x0) = max
x∈Ω̄

u(x), v(y0) = max
x∈Ω̄

v(x), u(x1) = min
x∈Ω̄

u(x), v(y1) = min
x∈Ω̄

v(x).

By maximum principle [20], the system (3.1) follows

0 ≤
u(x0)(1 − u(x0))

1 + kv(x0)
−

u(x0)v(x0)
u(x0)2 + du(x0) + e

≤ u(x0)(1 − u(x0)),

and
0 ≤ −λ + δβ − δ

v(y0)
u(y0)

≤ −λ + δβ − δ
v(y0)
u(x0)

.

Thus, we obtain a set of upper bounds for u, v

0 < u(x) ≤ 1, 0 < v(x) ≤ β −
λ

δ
.

Similarly, using maximum principle again, we can derive

1 − u(x1)
1 + kv(y0)

−
v(y0)

e
≤

1 − u(x1)
1 + kv(x1)

−
v(x1)

u(x1)2 + du(x1) + e
≤ 0,

and
−λ − δ(

v(y1)
u(x1)

− β) ≤ −λ − δ(
v(y1)
u(y1)

− β) ≤ 0.

The above two inequalities indicate that

u(x) ≥ 1 −
c
e

(1 + kc), v(x) ≥ c[1 −
c
e

(1 + kc)] hold.
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Next, we would like to explore whether an unrestricted positive lower bound exists in the priori
estimates for positive solutions.

Theorem 3.2. Let ď be a given positive constant; then, there exists a positive constant Ĉ, which depends
on k, d, e, δ, β, λ, ď, such that the solution (u, v) of the system (3.1) for d1, d2 ≥ ď satisfies

Ĉ < u(x) < 1, Ĉ(β −
λ

δ
) < v(x) < β −

λ

δ
.

Proof. It is clear that 0 < u(x) ≤ 1, 0 < v(x) ≤ β − λ
δ

with the help of the maximum principle.
Denote

u(x1) = min
x∈Ω̄

u(x), v(y1) = min
x∈Ω̄

v(x).

We have
1 − u(x1)
1 + kv(x1)

−
v(x1)

u(x1)2 + du(x1) + e
≤ 0, −λ − δ(

v(y1)
u(y1)

− β) ≤ 0.

Then

1 ≤ u(x1) +
max v(x)(1 + k max v(x))

du(x1)
≤ u(x1) +

max v(x)(1 + k max v(x))
d

D1 max u(x)

= min u(x) +
c(1 + kc)

d
D1 max u(x),

where c = β − λ
δ

and D1 is a positive constant.
Define

z(x) =
1
d1

(
1 − u
1 + kv

−
v

u2 + du + e
),

then, u satisfies the condition

∆u + z(x)u = 0 in Ω,
∂u
∂n

= 0 on ∂Ω.

Using Harnack inequality [21], it can be easily pointed out that

max u(x) ≤ D∗min u(x),

where D∗ depends on |z|∞.
Therefore, we can get

1 ≤ (1 +
c(1 + kc)

d
D1D∗) min u(x) ,

1
Ĉ

min u(x),

which means u(x1) ≥ Ĉ.
Furthermore,

v(y1) ≥ (β −
λ

δ
)u(x1),

which means v(y1) ≥ Ĉ(β − λ
δ
). �

Next, we will prove the non-existence of non-constant steady states of the system (3.1).
We assume that all eigenvalues of the operator −∆ with zero-flux boundary conditions in Ω are
0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µ j < ∞ and lim

j→∞
µ j = ∞.
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3.2. The non-existence

Now, we set ū = 1
|Ω|

∫
Ω

u(x)dx, v̄ = 1
|Ω|

∫
Ω

v(x)dx, where (u(x), v(x)) is a solution of the system (3.1),
and if φ = u − ū, ψ = v − v̄, then we have

∫
Ω
φdx =

∫
Ω
ψdx = 0. Thus, we have Theorems 3.3 and 3.4.

Theorem 3.3. Assume λ > −δ(−1+
√

1+4ke
2k − β), for φ and ψ, the following inequalities hold

(i)
∫

Ω
φ2dx +

∫
Ω
|5φ|2 dx ≤ (1+µ1)e2 |Ω|

16d2
1(1+kc)2(e−kc2)2µ2

1
,

(ii)
∫

Ω
ψ2dx +

∫
Ω
|5ψ|2 dx ≤ (1+µ1)δ2c4 |Ω|

d2
2µ

2
1

,

where µ1 denotes the first positive eigenvalue of the operator −∆ and c = β − λ
δ
.

Proof. Using the first equation of the system (3.1) and Cauchy-Schwarz inequality, there holds

d1

∫
Ω

|5φ|2 dx =

∫
Ω

φ(
u(1 − u)
1 + kv

−
uv

u2 + du + e
)dx

≤
e

(1 + kc)(e − kc2)

∫
Ω

φu(1 − u)dx

≤
e

4(1 + kc)(e − kc2)

∫
Ω

|φ| dx

≤
e
√
|Ω|

4(1 + kc)(e − kc2)
(
∫

Ω

|φ|2 dx)
1
2 ,

and

d2

∫
Ω

|5ψ|2 dx =

∫
Ω

ψ(δcv − δ
v2

u
)dx

≤ δc
∫

Ω

ψvdx ≤ δc2
∫

Ω

ψdx ≤ δc2
√
|Ω|(

∫
Ω

|ψ|2 dx)
1
2 .

Through Poincaré’s inequality, we have

d1

∫
Ω

|5φ|2 dx ≤
e
√
|Ω|

4(1 + kc)(e − kc2)
(
∫

Ω

|φ|2 dx)
1
2 ≤

e
4(1 + kc)(e − kc2)

√
|Ω|

µ1
(
∫

Ω

|5φ|2 dx)
1
2 ,

d2

∫
Ω

|5ψ|2 dx ≤ δc2
√
|Ω|(

∫
Ω

|ψ|2 dx)
1
2 ≤ δc2

√
|Ω|

µ1
(
∫

Ω

|5ψ|2 dx)
1
2 .

This means ∫
Ω

|5φ|2 dx ≤
e2 |Ω|

16d2
1(1 + kc)2(e − kc2)2µ1

,

∫
Ω

|5ψ|2 dx ≤
δ2c4 |Ω|

d2
2µ1

.

Again with the help of Poincaré’s inequality, we have∫
Ω
φ2dx +

∫
Ω
|5φ|2 dx ≤ (1+µ1)e2 |Ω|

16d2
1(1+kc)2(e−kc2)2µ2

1
,∫

Ω
ψ2dx +

∫
Ω
|5ψ|2 dx ≤ (1+µ1)δ2c4 |Ω|

d2
2µ

2
1

. �
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Theorem 3.4. Assume that k, d, e, δ, β, λ, d1, d2 > 0, then the system (3.1) has no non-constant steady
states if d1 > d̄1, d2 > d̄2, where

d̄1 =
1
µ1

(
δc2

2Ĉ2
+

(k + 24)e2 + 4e(1 + 2c) + 4d + 4 + 8c
8e2 ), d̄2 =

1
µ1

(δc +
δc2

2Ĉ2
+

ke2 + 4e + 4d + 4
8e2 ).

Proof. Multiplying the first equation for the system (3.1) by φ and integrating it by parts

d1

∫
Ω

|5φ|2 dx =

∫
Ω

φ(
u(1 − u)
1 + kv

−
uv

u2 + du + e
)dx

=

∫
Ω

φ(
u(1 − u)
1 + kv

−
uv

u2 + du + e
)dx −

∫
Ω

φ(
ū(1 − ū)
1 + kv̄

−
ūv̄

ū2 + dū + e
)dx

=

∫
Ω

φ
u(1 − u)
1 + kv

dx −
∫

Ω

φ
uv

u2 + du + e
dx

= W1 + W2,

where W1 :=
∫

Ω
φ u(1−u)

1+kv dx, W2 := −
∫

Ω
φ uv

u2+du+edx.
Through Theorem 3.2, we get

W1 =

∫
Ω

φ
u(1 − u)
1 + kv

dx −
∫

Ω

φ
ū(1 − ū)
1 + kv̄

dx

=

∫
Ω

φ(1 + kv)(1 − (u + ū)) + kψu(u − 1)
(1 + kv)(1 + kv̄)

φdx

≤

∫
Ω

|1 − (u + ū)|
1 + kv̄

φ2dx +

∫
Ω

k |u(u − 1)|
(1 + kv)(1 + kv̄)

|φ| |ψ| dx

≤ 3
∫

Ω

φ2dx +
k
4

∫
Ω

|φ| |ψ| dx,

and

W2 =

∫
Ω

(
ūv̄

ū2 + dū + e
−

uv
u2 + du + e

)φdx

=

∫
Ω

φ(uvū − ev̄) − ψ(eu + u2ū + duū)
(u2 + du + e)(ū2 + dū + e)

φdx

≤

∫
Ω

|uvū − ev̄|
(u2 + du + e)(ū2 + dū + e)

φ2dx +

∫
Ω

eu + u2ū + duū
(u2 + du + e)(ū2 + dū + e)

|φ| |ψ| dx

≤
c(1 + e)

e2

∫
Ω

φ2dx +
e + d + 1

e2

∫
Ω

|φ| |ψ| dx.

Therefore,

d1

∫
Ω

|5φ|2 dx ≤ (3 +
c(1 + e)

e2 )
∫

Ω

φ2dx + (
k
4

+
e + d + 1

e2 )
∫

Ω

|φ| |ψ| dx

≤
(k + 24)e2 + 4e(1 + 2c) + 4d + 4 + 8c

8e2

∫
Ω

φ2dx +
ke2 + 4e + 4d + 4

8e2

∫
Ω

ψ2dx.
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Similarly, multiplying the last equation of the system (3.1) by ψ and integrating it by parts

d2

∫
Ω

|5ψ|2 dx =

∫
Ω

ψ(δcv − δ
v2

u
)dx

= δ

∫
Ω

ψ(cv −
v2

u
− cv̄ +

v̄2

ū
)dx

= δ

∫
Ω

ψ(cψ +
φv2 − ψu(v̄ + v)

uū
)dx

≤ δc
∫

Ω

ψ2dx + δ

∫
Ω

v2

uū
|φ| |ψ| dx

≤ (δc +
δc2

2Ĉ2
)
∫

Ω

ψ2dx +
δc2

2Ĉ2

∫
Ω

φ2dx.

With the help of Poincaré’s inequality, we finally have

d1

∫
Ω

|5φ|2 dx + d2

∫
Ω

|5ψ|2 dx ≤ d̄1

∫
Ω

|5φ|2 dx + d̄2

∫
Ω

|5ψ|2 dx,

where d̄1 = 1
µ1

( δc
2

2Ĉ2 +
(k+24)e2+4e(1+2c)+4d+4+8c

8e2 ), d̄2 = 1
µ1

(δc + δc2

2Ĉ2 + ke2+4e+4d+4
8e2 ) and c = β − λ

δ
.

Clearly, as soon as d1 > d̄1 and d2 > d̄2 are satisfied, there is 5φ = 5ψ = 0, which means that all
solutions of the system (3.1) are constant steady states. �

3.3. The existence

To simplify the calculation process, we set z = (u, v) and

D =

(
d1 0
0 d2

)
, L(z) =

(u(1−u)
1+kv −

uv
u2+du+e

δv(β − v
u ) − λv

)
, Lz(E∗i ) =

(
τi −ρi

δc2 −δc

)
,

where τi = −u∗i
3u∗2i +(2d−2)u∗i +e−d
(1+kv∗i )(u∗2i +du∗i +e) , ρi = u∗i

1+2kv∗i
(1+kv∗i )(u∗2i +du∗i +e) and c = β − λ

δ
.

Let T (µ j) be the eigensubspace generated by eigenfunctions corresponding to the eigenvalue µ j,
j = 0, 1, 2.... Set

(i) X :=
{
z ∈ [C1(Ω̄)] × [C1(Ω̄)]| ∂u

∂n = ∂v
∂n = 0 on ∂Ω

}
,

(ii) X js :=
{
hφ js|h ∈ R2

}
, where

{
φ js : s = 1, ..., n(µ j)

}
is an orthonormal basis of T (µ j), and n(µ j) =

dimT (µ j).
Then, X =

⊕∞

j=1 X j and X j =
⊕n(µ j)

s=1 X js.
In addition, the system (3.1) can be re-represented as

−D∆z = L(z).

Therefore, finding a positive solution to the above system if and only if z satisfies

g(d1, d2; z) := z − (I − ∆)−1
{
D−1L(z) + z

}
= 0,

where (I − ∆)−1 is the inverse of I − ∆. Obviously, simple calculations show that

Dzg(d1, d2; E∗i ) = I − (I − ∆)−1
{
D−1Lz(E∗i ) + I

}
.
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Furthermore, it is easy to know that ζ is an eigenvalue of Dzg(d1, d2; E∗i ) on X j, which is equivalent
to ζ(1 + µ j), which is an eigenvalue of the following matrix

Υ j = µ jI − D−1Lz(E∗i ) =

µ j −
τi
d1

ρi
d1

− δc
2

d2
µ j + δc

d2

 .
If we set

Mi(d1, d2; µ j) := d1d2Det(µ jI − D−1Lz(E∗i )) = d1d2µ
2
j + (d1δc − d2τi)µ j + ρiδc2 − τiδc,

then we can get the following equation

index(g(d1, d2; ·), E∗i ) = (−1)σ, σ =
∑

j≥0,Mi(d1,d2;µ j)<0

n(µ j),

where n(µ j) denotes the multiplicity of µ j.
Therefore, we only need to discuss the sign of Mi(d1, d2; µ j) to obtain the index of g(d1, d2; ·) at

the internal equilibrium point E∗i . Suppose that

(d1δc − d2τi)2 > 4d1d2δc(ρic − τi),

then, Mi(d1, d2; µ j) has two real roots,

µ(i)
+ (d1, d2) =

τid2 − δcd1 +
√

(τid2 − δcd1)2 − 4d1d2δc(ρic − τi)
2d1d2

,

µ(i)
− (d1, d2) =

τid2 − δcd1 −
√

(τid2 − δcd1)2 − 4d1d2δc(ρic − τi)
2d1d2

.

Next, we will discuss the existence of non-constant steady states of the system (3.1) based on the
number of internal equilibrium points.

First, we consider the case when the number of internal equilibrium points is one.

Theorem 3.5. Suppose that Γ > 0 and 3u∗21 + (2d − 2)u∗1 + e − d > 0, then the unique equilibrium point
E∗1(u∗1, v

∗
1) is locally asymptotically stable, which implies that no non-constant steady states exist near

the neighborhood of E∗1.
Proof. Let

J =

(
d1∆ + τ1 −ρ1

δc2 d2∆ − δc

)
,

ζ being an eigenvalue of J in X j is equivalent to ζ being an eigenvalue of the following matrix

J =

(
−d1µ j + τ1 −ρ1

δc2 −d2µ j − δc

)
.

Thus, the characteristic equation of the above matrix is given as follows

ζ2 + ζ(d1µ j + d2µ j − τ1 + δc) + M1(d1, d2; µ j) = 0.
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Since 3u∗21 + (2d − 2)u∗1 + e − d > 0, then τ1 < 0, which means M1(d1, d2; µ j) > 0 and
d1µ j + d2µ j − τ1 + δc > 0. By the Routh-Hurwitz criterion, both roots ζ j1, ζ j2 of the characteristic
equation have negative real parts and Reζ j1,Reζ j2 < −γ, where γ is a positive constant. This assertion
is valid. �

Clearly, for a sufficiently large d2, we define lim
d2→∞

µ(1)
+ (d1, d2) = τ1

d1
:= µ1

∗ and lim
d2→∞

µ(1)
− (d1, d2) = 0.

Theorem 3.6. Suppose that Γ > 0 and 3u∗21 + (2d − 2)u∗1 + e − d < 0. If µ1
∗ ∈ (µq, µq+1) for some q ≥ 1,

and σq =
∑q

j=1 n(µ j) is odd, then there is a positive constant d̃ such that the system (3.1) has at least
one non-constant positive steady state solution when d2 > d̃.
Proof. It is easily found that there exists a sufficiently large d̃

′

such that τ1d2 − δcd1 > 0 holds for
d2 > d̃

′

. Thus, we get µ(1)
+ (d1, d2) > 0, µ(1)

− (d1, d2) > 0. By µ(1)
+ (d1, d2)→ µ1

∗, µ
(1)
− (d1, d2)→ 0, then there

exist two positive constants d̃ > d̃
′

and q ≥ 1, and we have

0 < µ(1)
− (d1, d2) < µ1, µq < µ

(1)
+ (d1, d2) < µq+1

when d2 > d̃. In addition, there exists d?2 > d̃, which can satisfy

0 < µ(1)
− (d1, d?2 ) < µ(1)

+ (d1, d?2 ) < µ1
∗ + ε.

Therefore, it is valid that there exists d?1 > d?2 such that τ1
d?1
< µ1; we get

0 < µ(1)
− (d?1 , d

?
2 ) < µ(1)

+ (d?1 , d
?
2 ) < µ1.

Next, we will assume that the assertion is not valid and introduce the contradiction by means of a
homotopy argument.

We define

D(t) =

(
(1 − t)d?1 + td1 0

0 (1 − t)d?2 + td2

)
,

for t ∈ [0, 1], and consider the problem

−D(t)∆z = L(z).

Therefore, z is a solution to the above problem if and only if z needs to satisfy the following equation

f (z; t) := z − (I − ∆)−1
{
D−1(t)L(z) + z

}
= 0, z ∈ X.

By Theorem 3.2, we set

Θ =

{
(u, v)T ∈ X : Ĉ < u(x) < 1, Ĉ(β −

λ

δ
) < v(x) < β −

λ

δ
, x ∈ Ω̄

}
.

Then, we can get f (z; t) , 0 when z ∈ ∂Θ and 0 ≤ t ≤ 1. Homotopy invariance of the Leray-Schauder
degree indicates

deg( f (·; 0),Θ, 0) = deg( f (·; 1),Θ, 0).
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So we have {
deg( f (·; 0),Θ, 0) = index( f (·; 0), E∗1) = (−1)0 = 1,

deg( f (·; 1),Θ, 0) = index( f (·; 1), E∗1) = (−1)σq = −1.

This gets the contradiction, which shows that the assertion is correct. �

We now proceed to explore the existence of non-constant steady state solutions for the
system (3.1) when the number of internal equilibrium points is three. Therefore, it is always guaranteed
that Γ < 0, (β − λ

δ
)2k + d − 1 < 0, β − λ

δ
− d + e > 0 . Next, we give different conditions to prove it. At

the same time, assume that e < d is valid, in order to better distinguish the sign of τi.
There are three cases that need to be considered: (1)u? < u∗4, (2)u∗4 < u? < u∗6, (3)u? > u∗6 where

u? =
1−d+
√

(d−1)2−3(e−d)
3 .

Theorem 3.7. Suppose that u? < u∗4 holds, if µ5
+(d1, d2) ∈ (µm, µm+1) and σm =

∑m
j=0 n(µ j) is even for

m ≥ 1, then the system (3.1) has at least one non-constant positive steady state solution.
Proof. Since u? < u∗4, we get τ4, τ5, τ6 < 0. In addition, since ρ4δc2 − τ4δc > 0, ρ6δc2 − τ6δc >

0, ρ5δc2 − τ5δc < 0, we have {
µ5
−(d1, d2) < 0, µ5

+(d1, d2) ∈ (µm, µm+1),
M4(d1, d2; µ j) > 0,M6(d1, d2; µ j) > 0.

Next, assume that the assertion is not valid. We still use the homotopy argument to introduce a
contradiction. For 0 ≤ t ≤ 1, we set

L(z; t) =

(u(1−u)
1+kv −

tuv
u2+du+e

δv(β − v
u ) − λv

)
,

and think about the problem
−D∆z = L(z; t).

Therefore, z is a solution to the above problem if and only if z needs to satisfy the following equation

p(z; t) := z − (I − ∆)−1
{
D−1L(z; t) + z

}
= 0, z ∈ X.

Similarly to Theorem 3.6, we set

Ξ =

{
(u, v)T ∈ X : Ĉ < u(x) < 1, Ĉ(β −

λ

δ
) < v(x) < β −

λ

δ
, x ∈ Ω̄

}
.

Then, we get p(z; t) , 0 when z ∈ ∂Ξ and t ∈ [0, 1]. Homotopy invariance of the Leray-Schauder
degree shows

deg(p(·; 0),Ξ, 0) = deg(p(·; 1),Ξ, 0).

Therefore,

deg(p(·; 1),Ξ, 0) =

6∑
i=4

index(p(·; 1), E∗i ) = (−1)σm + 2 = 3.
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Moreover, if t = 0, p(z; 0) = 0 only owns a positive solution z∗(1, β − λ
δ
), by repeating the previous

work, we get
deg(p(·; 0),Ξ, 0) = index(p(·; 0), z∗) = (−1)0 = 1.

This gets the contradiction, which shows that the assertion is correct. �

Theorem 3.8. Suppose that u? > u∗6 holds, if µ5
+(d1, d2) ∈ (µm, µm+1), µ4

−(d1, d2) ∈ (µp, µp+1), µ4
+(d1, d2)∈

(µq, µq+1), µ6
−(d1, d2) ∈ (µs, µs+1), µ6

+(d1, d2) ∈ (µg, µg+1) and σm =
∑m

j=0 n(µ j), σq =
∑q

j=p+1 n(µ j),σg =∑g
j=s+1 n(µ j) as long as there are at least two odd numbers or all even numbers, then there exists

a positive constant d∗ such that the system (3.1) has at least one non-constant positive steady state
solution for d2 > d∗.
Proof. Since u? > u∗6, we get τ4, τ5, τ6 > 0. In addition, since ρ4δc2 − τ4δc > 0, ρ6δc2 − τ6δc >

0, ρ5δc2 − τ5δc < 0, we have that there exists a positive constant d∗ such that there is µi
−(d1, d2) >

0, µi
+(d1, d2) > 0 (i = 4, 6) when d2 > d∗.

In addition, we have 
µ5
−(d1, d2) < 0, µ5

+(d1, d2) ∈ (µm, µm+1),
µ4
−(d1, d2) ∈ (µp, µp+1), µ4

+(d1, d2) ∈ (µq, µq+1),
µ6
−(d1, d2) ∈ (µs, µs+1), µ6

+(d1, d2) ∈ (µg, µg+1).

Repeating the proof of Theorem 3.7, we have

deg(p(·; 1),Ξ, 0) =

6∑
i=4

index(p(·; 1), E∗i ) = (−1)σm + (−1)σq + (−1)σg = 3or − 1or − 3.

Obviously,
deg(p(·; 0),Ξ, 0) = index(p(·; 0), z∗) = (−1)0 = 1.

Our assertion is ultimately proven correct. �

Theorem 3.9. Suppose that u∗4 < u? < u∗6 holds, if µ5
+(d1, d2) ∈ (µm, µm+1), µ4

−(d1, d2) ∈ (µp, µp+1),
µ4

+(d1, d2) ∈ (µq, µq+1) and σm =
∑m

j=0 n(µ j), σq =
∑q

j=p+1 n(µ j), then when σm + σq is even, there exists
a positive constant d∗ such that the system (3.1) has at least one non-constant positive steady state
solution for d2 > d∗.
Proof. Since u∗4 < u? < u∗6, we get τ4 > 0, τ6 < 0. Regardless of whether the sign of τ5 is positive or
negative, we have {

µ5
−(d1, d2) < 0, µ5

+(d1, d2) ∈ (µm, µm+1),
M6(d1, d2; µ j) > 0.

Moreover, there exists a positive constant d∗ such that there is µ4
−(d1, d2) > 0, µ4

+(d1, d2) > 0 when
d2 > d∗. Then, we get

µ4
−(d1, d2) ∈ (µp, µp+1), µ4

+(d1, d2) ∈ (µq, µq+1).

Repeating the proof of Theorem 3.7, we have

deg(p(·; 1),Ξ, 0) =

6∑
i=4

index(p(·; 1), E∗i ) = (−1)σm + (−1)σq + (−1)0 = 3 or − 1.

AIMS Mathematics Volume 9, Issue 9, 24058–24088.



24071

Obviously,
deg(p(·; 0),Ξ, 0) = index(p(·; 0), z∗) = (−1)0 = 1.

The assertion is valid. �

4. Turing instability and weakly nonlinear analysis

In this section, we derive the conditions for Turing instability. At the same time, the amplitude
equation derived from the weak linear analysis [22–26] facilitates the differentiation of different
patterns. For simplicity, we first set the spatial region Ω as a one-dimensional interval (0, π), then
the system (1.4) becomes the following system

∂u
dt =

u(1−u)
1+kv −

uv
u2+du+e + d1uxx, x ∈ (0, π), t > 0,

∂v
dt = δv(β − v

u ) − λv + d2vxx, x ∈ (0, π), t > 0,
ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t), t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, π).

Now we can consider the following eigenvalue problem

ωxx + µω = 0, ωx(0) = ωx(π) = 0, x ∈ (0, π),

which has eigenvalue µ j = j2 and eigenfunction ω j(x) = cos( jx) for j ∈ {0, 1, 2 . . . }.

Suppose that
(
σ

η

)
=

∑∞
j=0

(
A j

B j

)
cos( jx) is the eigenfunction corresponding to the eigenvalue ξ j of

the matrix J j, thus we have
∞∑
j=0

(J j − ξ jI)
(
A j

B j

)
cos( jx) = 0,

where I is the identity matrix and J j =

(
τi − j2d1 −ρi

δc2 −δc − j2d2

)
, τi = −u∗i

3u∗2i +(2d−2)u∗i +e−d
(1+kv∗i )(u∗2i +du∗i +e) , ρi =

u∗i
1+2kv∗i

(1+kv∗i )(u∗2i +du∗i +e) , c = β − λ
δ
.

Clearly, the characteristic equation has the form

χ(ξ) = ξ2 − T jξ + D j = 0, j ∈ {0, 1, 2 . . . } ,

where {
T j = τi − δc − j2(d1 + d2),
D j = d1d2 j4 − (τid2 − δcd1) j2 + δc(ρic − τi).

The roots of the above equation are

ξ j =
T j ±

√
T 2

j − 4D j

2
, j ∈ {0, 1, 2 . . . } .

Based on the characteristic equation, we quickly have the following theorem.
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Theorem 4.1. If 3u∗2i + (2d − 2)u∗i + e − d > 0, then the positive equilibrium point E∗i (u∗i , v
∗
i ) is locally

asymptotically stable, expect for E∗5.
Proof. Since 3u∗2i + (2d − 2)u∗i + e − d > 0, then τi < 0 holds. In addition, we have ρic − τi > 0,
expect for i = 5, thus it is easy to find that T j < 0 and D j > 0 hold, which means E∗i is locally
asymptotically stable. �

4.1. Existence of Turing instability

Theorem 4.2. Suppose that 3u∗2i + (2d − 2)u∗i + e − d < 0, τi − δc < 0 and d2 > σ1d1 are valid, where

σ1 = δc
−τi+2ρic+2

√
ρic(ρic−τi)

τ2
i

, then E∗i is unstable for the reaction-diffusion system apart from E∗5, which

implies that the system suffers Turing instability at λ = λT with the wave number j2 = j2
T =

√
δc(ρic−τi)

d1d2
,

where λT is a root that can satisfy the equation
(
−δ2d2

1 + 4d1d2δρi

)
(β− λ

δ
)2−2d1d2τi(βδ−λ)−d2

2τ
2
i = 0.

Proof. Since ρiδc2 − τiδc > 0, expect for i = 5, we can get that the internal equilibrium point E∗i of the
ODE system is locally asymptotically stable if τi − δc < 0, i.e., a11 + a22 < 0. Next, we will explore the
conditions for Turing instability under the assumption that 3u∗2i + (2d−2)u∗i + e−d < 0 and τi−δc < 0,
i.e., a11 > 0 and a11 + a22 < 0. It is well known that we only need to ensure that there exists j ≥ 1 such
that D j < 0, which causes the equation χ(ξ) to have a positive real root and a negative real root.

Obviously, if
F(d1, d2) := τid2 − δcd1 > 0,

then D j will reach a minimum value

min D j = D j∗ = δc(ρic − τi) −
(τid2 − δcd1)2

4d1d2
,

where j∗2 = τid2−δcd1
2d1d2

> 0.
Let σ = d2

d1
and

Π(d1, d2) := δc(ρic − τi) −
(τid2 − δcd1)2

4d1d2
,

we have the following equivalent condition{
F(d1, d2) > 0⇔ σ > δc

τi
,

Π(d1, d2) > 0⇔ G(σ) = τ2
iσ

2 + 2δc(−2ρic + τi)σ + δ2c2 > 0.

It is not difficult to find that

4δ2c2(−2ρic + τi)2 − 4τ2
i δ

2c2 = 16ρiδ
2c3(ρic − τi) > 0, δc

2ρic − τi

τ2
i

> 0,

because ρic − τi > 0 and ρi > 0.
Therefore, G(σ) has two positive real roots, which are

σ1 = δc
−τi+2ρic+2

√
ρic(ρic−τi)

τ2
i

,

σ2 = δc
−τi+2ρic−2

√
ρic(ρic−τi)

τ2
i

.
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In addition, we have G( δc
τi

) < 0, which means σ2 < δc
τi
< σ1. So, from the above analysis, d2 > σ1d1

can be obtained. �

Remark 4.1. To verify the validity of the Theorem 4.2, the relation between Re(ξ j) and wave number
j is described in Figure 1. It is easy to find that there exists a threshold λ = λT = 0.4004 for Turing
instability when k = 0.63, d = 9, e = 0.01, δ = 0.1, β = 9, d1 = 0.118, d2 = 0.6. This means that we
should control λ < λT to induce the Turing instability.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

j

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

R
e
(

j)

=0.43

=0.4004

=0.35

Figure 1. The relation between Re(ξ j) and wave number j .

Remark 4.2. We fix the parameters k = 0.8, d = 0.8, e = 0.2, δ = 0.4, β = 6, λ = 1.6, d1 = 0.15
to explore the effect of the diffusion coefficient d2 on Turing instability; then, we can obtain 3u∗2i +

(2d − 2)u∗i + e − d = −0.6066 < 0 and τi − δc = −0.6078 < 0, which means that the positive
equilibrium point E∗i is locally asymptotically stable in ODE system (1.5). Furthermore, if d2 = 7 is
valid, then σ1 = 66.3106 and d2 − σ

1d1 = −2.9466 < 0, so the positive equilibrium point E∗i remains
locallyasymptotically stable in PDE system (see Figure 2). If d2 increases to 20, then σ1 = 66.3106
and d2−σ

1d1 = 10.0534 > 0, so the positive equilibrium point E∗i will become unstable in PDE system
(see Figure 3).
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Figure 2. Stable state of PDE system with d2 = 7.

Figure 3. Turing instability state of PDE system with d2 = 20.

4.2. Weakly nonlinear analysis for Turing pattern

In this subsection, in order to distinguish the different patterns, multiple-scale analysis will be
used to obtain the amplitude equation near λ = λT .

Since the weak linear analysis method will be used next, we need to rewrite the system at the
positive equilibrium point E∗i (u∗i , v

∗
i ) and still use (u, v)T to represent the perturbation solution (u −
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u∗i , v − v∗i )T of the system (1.4){
∂u
∂t = τiu − ρiv + Fvv

2 v2 + Fuvuv + Fuu
2 u2 + Fvvv

3! v3 + Fuvv
2 uv2 + Fuuv

2 u2v + Fuuu
3! u3 + ϑ(4) + d1∆u,

∂v
∂t = δc2u − δcv + Gvv

2 v2 + Guvuv + Guu
2 u2 + Gvvv

3! v3 + Guvv
2 uv2 + Guuv

2 u2v + Guuu
3! u3 + ϑ(4) + d2∆v,

where
Fvv =

2k2u∗i (1−u∗i )
(1+kv∗i )3 , Fuv =

2ku∗i −k
(1+kv∗i )2 +

u∗2i −e
(u∗2i +du∗i +e)2 , Fuu = − 2

1+kv∗i
+ 2 1−u∗i

1+kv∗i

u∗3i −3eu∗i −de
(u∗2i +du∗i +e)2 ,

Fvvv = −
6k3u∗i (1−u∗i )

(1+kv∗i )4 , Fuvv = −
2k2(2u∗i −1)

(1+kv∗i )3 , Fuuv = 2k
(1+kv∗i )2 − 4 u∗3i −3eu∗i −de

(u∗2i +du∗i +e)3 ,

Fuuu = 6 1−u∗i
1+kv∗i

[
−7u∗2i −5du∗i +e−d2

(u∗2i +du∗i +e)2 +
u∗i (2u∗i +d)3

(u∗2i +du∗i +e)3

]
,Gvv = −2δ

u∗i
,Guv =

2(βδ−λ)
u∗i

,

Guu = −
2δ(β− λδ )2

u∗i
,Gvvv = 0,Guvv = 2δ

u∗2i
,Guuv =

4(λ−δβ)
u∗2i

,Guuu =
6δ(β− λδ )2

u∗2i
.

Let U =

(
u
v

)
, then the above system can be equivalently written as

∂U
∂t

= PU + Q,

where P and Q are linear and nonlinear operators, respectively,

P = PT + (λT − λ)N =

(
τi(λT ) + d1∆ −ρi(λT )
δc2(λT ) −δc(λT ) + d2∆

)
+ (λT − λ)

(
n11 n12

2c(λT ) −1

)
,

Q =

( Fvv
2 v2 + Fuvuv + Fuu

2 u2 + Fvvv
3! v3 + Fuvv

2 uv2 + Fuuv
2 u2v + Fuuu

3! u3

Gvv
2 v2 + Guvuv + Guu

2 u2 + Gvvv
3! v3 + Guvv

2 uv2 + Guuv
2 u2v + Guuu

3! u3

)
+ ϑ(4),

with n11 = −dτi
dλ

∣∣∣∣∣
λ=λT

and n12 =
dρi
dλ

∣∣∣∣∣
λ=λT

.

Then, the variables are expanded using the small parameter ε:

λT − λ = ελ1 + ε2λ2 + ε3λ3 + ϑ(ε4),

U = ε

(
u1

v1

)
+ ε2

(
u2

v2

)
+ ε3

(
u3

v3

)
+ ϑ(ε4),

∂
∂t = ∂

∂t + ε ∂
∂(εt) + ε2 ∂

∂(ε2t) + ε3 ∂
∂(ε3t) + ϑ(ε4),

Q = ε2Q2 + ε3Q3 + ϑ(ε4),

where

Q2 =

( Fvv
2 v2

1 + Fuvu1v1 + Fuu
2 u2

1
Gvv

2 v2
1 + Guvu1v1 + Guu

2 u2
1

)
,

Q3 =

( Fuuu
3! u3

1 + Fuuv
2! u2

1v1 + Fuvv
2! u1v2

1 + Fvvv
3! v3

1 + Fuuu1u2 + Fuv (u1v2 + u2v1) + Fvvv1v2
Guuu

3! u3
1 + Guuv

2! u2
1v1 + Guvv

2! u1v2
1 + Gvvv

3! v3
1 + Guuu1u2 + Guv (u1v2 + u2v1) + Gvvv1v2

)
.

Substituting the variables from the above expansion into the equation and combining the terms
about ε, for the order ε, ε2 and ε3, we have

PT

(
u1

v1

)
= 0,

PT

(
u2

v2

)
= ∂

∂(εt)

(
u1

v1

)
− λ1N

(
u1

v1

)
− Q2,

PT

(
u3

v3

)
= ∂

∂(εt)

(
u2

v2

)
+ ∂

∂(ε2t)

(
u1

v1

)
− λ1N

(
u2

v2

)
− λ2N

(
u1

v1

)
− Q3.
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By solving the equation, we obtain that:
(
u1

v1

)
=

(
φ

1

)
(
∑3

j=1 W jexp(ikj · r) + c.c) where φ =
ρi(λT )

d1 j2T−τi(λT ) ,

W j denotes the amplitude of exp(ikj · r) under first-order perturbation, and its form is controlled by the
higher-order perturbation term.

According to the Fredholm solvability condition, the vector function at the right end of the
equation needs to be orthogonal to the zero eigenvectors of the operator L+

T , which can guarantee
the existence of nontrivial solutions. A simple calculation gives the zero eigenvector of L+

T as

(
1
ϕ

)
exp(−ikj · r) + c.c, j = 1, 2, 3,

where ϕ =
d1 j2T−τi(λT )
δc2(λT ) . Applying again the Fredholm solvability condition, one has

(φ + ϕ) ∂W1
∂(εt) = λ1[φn11 + n12 + ϕ(2c(λT )φ − 1)]W1 + 2(s1 + ϕs2)W2 ·W3,

(φ + ϕ) ∂W2
∂(εt) = λ1[φn11 + n12 + ϕ(2c(λT )φ − 1)]W2 + 2(s1 + ϕs2)W1 ·W3,

(φ + ϕ) ∂W3
∂(εt) = λ1[φn11 + n12 + ϕ(2c(λT )φ − 1)]W3 + 2(s1 + ϕs2)W1 ·W2,

with s1 = Fuu
2 φ

2 + Fuvφ + Fvv
2 , s2 = Guu

2 φ
2 + Guvφ + Gvv

2 , and

(
u2

v2

)
=

(
U0

V0

)
+

∑3
j=1

(
Uj

Vj

)
exp(ikj · r) +

∑3
j=1

(
Ujj

Vjj

)
exp(2ikj · r) +

(
U12

V12

)
exp(i(k1 − k2) · r)

+

(
U23

V23

)
exp(i(k2 − k3) · r) +

(
U31

V31

)
exp(i(k3 − k1) · r) + c.c,

where (
U0

V0

)
=

(
u00

v00

)
(|W1|

2 + |W2|
2 + |W3|

2),
(
Ujj

Vjj

)
=

(
u11

v11

)
W2

j ,

Uj = φVj,

(
Uab

Vab

)
=

(
u22

v22

)
Wa ·Wb,(

u00

v00

)
= 2

δc(λT )(ρi(λT )c(λT )−τi(λT ))

(
s1δc(λT ) − ρi(λT )s2

s1δc2(λT ) − τi(λT )s2

)
,(

u11

v11

)
= 1

(τi(λT )−4d1 j2T )(−δc(λT )−4d2 j2T )+ρi(λT )δc2(λT )

(
s1(δc(λT ) + 4d2 j2

T ) − ρi(λT )s2

s1δc2(λT ) − (τi(λT ) − 4d1 j2
T )s2

)
,(

u22

v22

)
= 2

(τi(λT )−3d1 j2T )(−δc(λT )−3d2 j2T )+ρi(λT )δc2(λT )

(
s1(δc(λT ) + 3d2 j2

T ) − ρi(λT )s2

s1δc2(λT ) − (τi(λT ) − 3d1 j2
T )s2

)
.

Substituting
(
u2

v2

)
into the equation, the Freudian solvability condition shows

(φ + ϕ)( ∂V1
∂(εt) + ∂W1

∂(ε2t) ) = [φn11 + n12 + ϕ(2c(λT )φ − 1)](λ1V1 + λ2W1)
+2(s1 + ϕs2)(W2 · V3 + W3 · V2) + [Z1 |W1|

2 + Z2(|W2|
2 + |W3|

2)]W1,
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where
Z1 = R1 + ϕR3, Z2 = R2 + ϕR4,

R1 = (u00 + u11)(φFuu + Fuv) + (v00 + v11)(φFuv + Fvv) +
φ3Fuuu

2

+
3φ2Fuuv

2 +
3φFuvv

2 + Fvvv
2 ,

R2 = (u00 + u22)(φFuu + Fuv) + (v00 + v22)(φFuv + Fvv) + φ3Fuuu

+3φ2Fuuv + 3φFuvv + Fvvv,

R3 = (u00 + u11)(φGuu + Guv) + (v00 + v11)(φGuv + Gvv) +
φ3Guuu

2

+
3φ2Guuv

2 +
3φGuvv

2 + Gvvv
2 ,

R4 = (u00 + u22)(φGuu + Guv) + (v00 + v22)(φGuv + Gvv) + φ3Guuu

+3φ2Guuv + 3φGuvv + Gvvv,

and the other two equations can be obtained by transforming the subscripts of V and W.
Since the amplitude can be expressed as follows

D j = εW j + ε2V j + ϑ(ε3),

we obtain the amplitude equation by combining the variables

κ0
∂D1
∂t = ξD1 + sD2 · D3 − [I1 |D1|

2 + I2(|D2|
2 + |D3|

2)]D1,

κ0
∂D2
∂t = ξD2 + sD1 · D3 − [I1 |D2|

2 + I2(|D1|
2 + |D3|

2)]D2,

κ0
∂D3
∂t = ξD3 + sD1 · D2 − [I1 |D3|

2 + I2(|D2|
2 + |D1|

2)]D3.

with
κ0 =

φ+ϕ

λT [φn11+n12+ϕ(2c(λT )φ−1)] , ξ = λT−λ
λT
, s =

2(s1+ϕs2)
λT [φn11+n12+ϕ(2c(λT )φ−1)] ,

I1 = −
R1+ϕR3

λT [φn11+n12+ϕ(2c(λT )φ−1)] , I2 = −
R2+ϕR4

λT [φn11+n12+ϕ(2c(λT )φ−1)] .

Next, we can decompose the amplitude into D j = % jexp(iθ j)( j = 1, 2, 3), where % j and θ j denote the
mode length and phase angle, respectively. Then, we will substitute it into the amplitude equation, and
separate the real and imaginary parts of the equation; thus, we can yield the following result

κ0
∂θ
∂t = −s %

2
1%

2
2+%2

1%
2
3+%2

2%
2
3

%1%2%3
sin θ,

κ0
∂%1
∂t = ξ%1 + s%2%3 cos θ − I1%

3
1 − I2%1

(
|%2|

2 + |%3|
2
)
,

κ0
∂%2
∂t = ξρ2 + s%1%3 cos θ − I1%

3
2 − I2%2

(
|%1|

2 + |%3|
2
)
,

κ0
∂%3
∂t = ξ%3 + s%2%1 cos θ − I1%

3
3 − I2%3

(
|%1|

2 + |%2|
2
)
,

with θ = θ1 + θ2 + θ3. Meanwhile, we are only interested in the stable solutions of equations, then we
get the following equations

κ0
∂%1
∂t = ξ%1 + |s|%2%3 − I1%

3
1 − I2%1

(
|%2|

2 + |%3|
2
)
,

κ0
∂%2
∂t = ξ%2 + |s|%1%3 − I1%

3
2 − I2%2

(
|%1|

2 + |%3|
2
)
,

κ0
∂%3
∂t = ξ%3 + |s|%2%1 − I1%

3
3 − I2%3

(
|%1|

2 + |%2|
2
)
.

On the basis of the theory of [23], the above amplitude equations have four solutions, which will imply
four different patterns.

(i) Spotted pattern:
%1 = %2 = %3 = 0.
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It always exists and is stable if ξ < ξ2 = 0 and unstable if ξ > ξ2 = 0.
(ii) Stripe pattern:

%1 =

√
ξ

I1
, 0, %2 = %3 = 0.

It exists when ξ > 0 and is stable if ξ > ξ3 = s2I1
(I2−I1)2 and unstable if ξ < ξ3 = s2I1

(I2−I1)2 .
(iii) Hexagonal pattern (H0,Hπ):

%1 = %2 = %3 =
|s| ±

√
s2 + 4ξ(I1 + 2I2)

2(I1 + 2I2)
.

It exists when ξ > ξ1 = −s2

4(I1+2I2) . Furthermore, solution %+ =
|s|+
√

s2+4ξ(I1+2I2)
2(I1+2I2) is stable if ξ < ξ4 =

s2(2I1+I2)
(I2−I1)2

and solution %− =
|s|−
√

s2+4ξ(I1+2I2)
2(I1+2I2) is always unstable.

(iv) Mixed pattern:

%1 =
|s|

I2 − I1
, %2 = %3 =

√
ξ − I1%

2
1

I1 + I2
.

It exists when I2 > I1, ξ > ξ3 = s2I1
(I2−I1)2 and is always unstable .

5. Existence, direction, and stability of the Hopf bifurcation

In this section, we will explore the existence of spatial Hopf bifurcation of the system (1.4) with
Ω ∈ (0, π) and further derive the stability and direction of the Hopf bifurcation.

5.1. The existence

In the previous discussion of Turing instability, we have obtained the characteristic equation of
the PDE system as

χ(ξ) = ξ2 − T jξ + D j = 0, j ∈ {0, 1, 2 . . . } ,

where {
T j = τi − δc − j2(d1 + d2),
D j = d1d2 j4 − (τid2 − δcd1) j2 + δc(ρic − τi).

In order to find the Hopf bifurcation value λH and verify the transversality conditions, we need to
explore whether the PDE system satisfies the following conditions [27], i.e., there exists j ≥ 0 such that:

T j(λH) = 0, D j(λH) > 0, Tl(λH) , 0, Dl(λH) , 0 f or l , j

and η
′

(λH) , 0 for complex eigenvalues η(λ) ± iγ(λ).
For the existence of T j(λH) = 0, it is only necessary to satisfy τi(λH) − δc(λH) − j2(d1 + d2) = 0,

i.e., λH = λ
j
H =

τi(λH)− j2(d1+d2)
δ

> 0. Obviously, we must make it valid so that τi > 0, i.e., 3u∗2i + (2d −
2)u∗i + e − d < 0.

Therefore, there exists a positive integer j∗ ≥ 1 such that

λ
j
H > 0, j = 0, 1, 2 . . . j∗ − 1, λ

j
H ≤ 0, j = j∗, j∗ + 1, . . .
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and it is clear that there is Tl(λH) , 0. Furthermore, η
′

(λH) =
τ
′

i (λH)+1
2 , 0 can be verified by numerical

simulations. With the expression for D j(λH), we can easily find out that

D j(λ
j
H) > d1d2 j4 − (τid2 − δcd1) j2( j ≥ 1), D0(λ0

H) = δc(ρic − τi) > 0,

where E∗5 is not considered.
Thus, if the following inequality holds

d1d2 − (τid2 − δcd1) > 0,

then D j(λH) > 0. Similarly, we have Dl(λH) > 0.
Therefore, assuming 3u∗2i + (2d − 2)u∗i + e − d < 0 and d1d2 − (τid2 − δcd1) > 0, we know that all

roots of the characteristic equation for λ = λ0
H = λ0 have negative real parts except for the imaginary

roots ±i
√

D0(λ0
H). However, at least one of the roots of the equation for λ = λl

H (l = 1, . . . , j∗ − 1)
has a positive real part.

Theorem 5.1. Assuming that 3u∗2i + (2d − 2)u∗i + e − d < 0 and d1d2 − (τid2 − δcd1) > 0 are valid,
then the system (1.4) undergoes Hopf bifurcation at E∗i except E∗5 with λ = λ

j
H ( j = 0, . . . j∗ − 1).

Furthermore, for λ = λ
j
H ( j = 1, . . . j∗ − 1), the bifurcating periodic solutions are non-homogeneous,

and for λ = λ0
H = λ0, the bifurcating periodic solutions are homogeneous, which means that it can

coincide with the periodic solution of the ODE system.

5.2. The direction and stability

First, make the following definition: Ut = RU, where U = (u, v)T ,R = D∆ + J(E∗i ), J(E∗i ) =(
τi −ρi

δc2 −δc

)
,D = diag(d1, d2). Meanwhile, we set R∗ as the conjugate operator of R, which is defined as

R∗U := D∆U + JT U.

We let $(λ) be the imaginary part of the roots of the characteristic equation

ξ2 − (τi − δc)ξ + δc(ρic − τi) = 0,

which has the following form

$(λ) =
1
2

√
4δρic2 − (τi + δc)2.

Meanwhile, we set

q :=
(
A1

B1

)
=

 1
δc2

0(δc0−i$0)
ζ

 , q∗ :=
(
A∗1
B∗1

)
=

1
2π$0

$0 + iδc0
−iζ
δc2

0

 ,
where $0 = $(λ0), ζ = δ2c2

0 +$2
0, c0 = β − λ0

δ
.

It is easy to get that 〈R∗ν, µ〉 = 〈ν,Rµ〉 ,R(λ0)q = i$0q,R∗(λ0)q∗ = −i$0q∗, 〈q∗, q̄〉 = 0, 〈q∗, q〉 = 1,
where 〈ν, µ〉 =

∫ π

0
ν̄Tµdx indicates the inner product. From [28], the complex space is decomposed into

X = Xc ⊕ Xs, where Xc = {zq + z̄q̄|z ∈ C} and Xs = {w ∈ X| 〈q∗,w〉 = 0}.
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For any U = (u0, v0)T , we have that there exist z ∈ C and w ∈ (w0,w1) such that(
u0

v0

)
= zq + z̄q̄ +

(
w0

w1

)
.

Apparently,  u0 = z + z̄ + w0,

v0 = z δc
2
0(δc0−i$0)

ζ
+ z̄ δc

2
0(δc0+i$0)

ζ
+ w1.

Thus, the system (1.4) is represented as{ dz
dt = i$0z + 〈q∗, g̃〉 ,
dw
dt = Rw + G(z, z̄,w),

where
g̃ = g̃(zq + z̄q̄ + w), G(z, z̄,w) = g̃ − q 〈q∗, g̃〉 − q̄ 〈q̄∗, g̃〉 .

From [28], g̃ can be written as

g̃(U) =
1
2

H(U,U) +
1
6

P(U,U,U) + O(|U |4),

where H, P have a complex symmetrical form, and direct calculations show that
g̃ = 1

2 H(q, q)z2 + H(q, q̄)zz̄ + 1
2 H(q̄, q̄)z̄2 + O(|z|3 , |z| · |w| , |w|2),

〈q∗, g̃〉 = 1
2 〈q

∗,H(q, q)〉 z2 + 〈q∗,H(q, q̄)〉 zz̄ + 1
2 〈q

∗,H(q̄, q̄)〉 z̄2 + O(|z|3 , |z| · |w| , |w|2),
〈q̄∗, g̃〉 = 1

2 〈q̄
∗,H(q, q)〉 z2 + 〈q̄∗,H(q, q̄)〉 zz̄ + 1

2 〈q̄
∗,H(q̄, q̄)〉 z̄2 + O(|z|3 , |z| · |w| , |w|2).

Thus,

G(z, z̄,w) =
1
2

z2G20 + zz̄G11 +
1
2

z̄2G02 + O
(
|z|3, |z| · |w|, |w|2

)
,

where
G20 = H(q, q) − 〈q∗,H(q, q)〉 q − 〈q̄∗,H(q, q)〉 q̄,
G11 = H(q, q̄) − 〈q∗,H(q, q̄)〉 q − 〈q̄∗,H(q, q̄)〉 q̄,
G02 = H(q̄, q̄) − 〈q∗,H(q̄, q̄)〉 q − 〈q̄∗,H(q̄, q̄)〉 q̄.

Meanwhile, we get G20 = G11 = G02 = (0, 0)T and G(z, z̄,w) = O(|z|3 , |z| · |w| , |w|2). From [28], it is
clear that the system has a center manifold, and we can write it as

w =
1
2

w20z2 +
1
2

w02z̄2 + z̄zw11 + O(|z|3).

Then, we have
w20 = (2i$0I − R)−1G20 = 0,
w11 = −R−1G11 = 0,
w02 = (−2i$0I − R)−1G02 = 0.

Thus, the system that is confined to the center manifold can be represented as

dz
dt

= i$0z +
1
2
ð21z2z̄ +

1
2
ð02z̄2 +

1
2
ð20z2 + ð11zz̄,
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where
ð21 =

〈
q∗, (E,K)T

〉
, ð20 =

〈
q∗, (A, B)T

〉
, ð11 =

〈
q∗, (C,D)T

〉
,

and

A = FuuA2
1 + 2FuvA1B1 + FvvB2

1,

B = GuuA2
1 + 2GuvA1B1 + GvvB2

1,

C = Fuu |A1|
2 + Fuv(A1B1 + B1A1) + Fvv |B1|

2 ,

D = Guu |A1|
2 + Guv(A1B1 + B1A1) + Gvv |B1|

2 ,

E = Fuuu |A1|
2 A1 + Fuuv(2 |A1|

2 B1 + A2
1B1) + Fuvv(2 |B1|

2 A1 + B2
1A1) + Fvvv |B1|

2 B1,

K = Guuu |A1|
2 A1 + Guuv(2 |A1|

2 B1 + A2
1B1) + Guvv(2 |B1|

2 A1 + B2
1A1) + Gvvv |B1|

2 B1.

A straightforward calculation demonstrates

ð21 =
1

2$0

[
E$0 + i(

ζK
δc2

0

− δc0E)
]
, ð20 =

1
2$0

[
A$0 + i(

ζB
δc2

0

− δc0A)
]
,

ð11 =
1

2$0

[
C$0 + i(

ζD
δc2

0

− δc0C)
]
.

Therefore,

Re(c1(λ0)) = −
1

2$0
[Re(ð20)Im(ð11) + Re(ð11)Im(ð20)] +

1
2

Re(ð21).

Based on the above analysis, we have the following conclusion.

Theorem 5.2. Assuming that 3u∗2i + (2d − 2)u∗i + e − d < 0 and d1d2 − (τid2 − δcd1) > 0 are valid, then
the system (1.4) undergoes Hopf bifurcation at λ = λ0

H = λ0 for E∗i except E∗5.
(i) The direction of the Hopf bifurcation is supercritical (resp. subcritical) if

1
η′(λ0

H)
Re(c1(λ0

H)) < 0 (resp. > 0).

(ii) The bifurcating periodic solutions are unstable (resp. stable) if Re(c1(λ0
H)) > 0 (resp. < 0).

6. Numerical simulations

In this section, in order to verify the correctness of the previous theoretical derivations and explore
the impact characteristics of harvest on the ecological relationship of predator populations, we will
perform numerical experiments.

6.1. Turing pattern

In this subsection, we set the bounded region Ω = [0, 200]×[0, 200], while the time step is limited
to 4t = 0.01 and the spatial step is determined to be 4h = 0.8. The initial condition is set as a random
perturbation at the positive equilibrium point E∗i . Moreover, we only give different spatiotemporal
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pattern formations for prey u, since the spatiotemporal patterns of v are similar to u. Now we will fix
the following parameters

k = 0.63, d = 9, e = 0.01, δ = 0.1, β = 9, d1 = 0.118, d2 = 0.6,

then, we have

λT = 0.40036,
I1

I2
= 1.9039 ≈ 2, ξ1 = −0.0042, ξ2 = 0, ξ3 = 0.0985, ξ4 = 0.3847.

Now it is not very difficult to get λ = 0.39 < λT and ξ = 0.02588 ∈ (ξ2, ξ3). Thus, it is easy to
find from Figure 4 that the pattern formation of prey u is spot patterns and stripe patterns coexisting
with each other when time is short. As time continues to increase, the spot patterns dominate until the
stripe patterns disappear; the spot patterns are the final form and no other structures appear. This result
suggests that the prey populations ultimately form a high-density interconnected spatial distribution
trend, while the predator populations have its own capture space and are not interconnected, which
means that they have a separate capture space.
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Figure 4. Spot patterns appearing in the system (1.4) with λ = 0.39.

If we choose the parameter λ = 0.35 and ξ = 0.12579 ∈ (ξ3, ξ4), it is obvious from Figure 5 that the
whole region appears as an irregular patterns, in which the spot and stripe patterns are in competition
with each other. Thereafter, as time grows, the spot and stripe patterns have a stable distribution until
both coexist; finally, mixed patterns are presented in Figure 5.
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Figure 5. Mixed patterns appearing in the system (1.4) with λ = 0.35.
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Furthermore, we similarly give the formation of spot patterns of prey u with the parameter λ =

0.21 and ξ = 0.4755 > ξ4 in Figure 6. As the number of iterations increases, we can clearly observe
that eventually, only spot patterns exist , which is not consistent with the theoretical analysis. This
phenomenon occurs for the following reasons. In the relationship of ξ > ξ4 > ξ3 > ξ2 > ξ1, the value
of λ is far away from the threshold λT , which means that some active modes will dominate compared
with the primary slave modes. Consequently, they are very difficult to be adiabatically eliminated in
the derivation of the amplitude equation. In addition, during the transition from uniform state modes
to active modes, the amplitude equation of D1 has an extra third-order term D0D2 · D3. Similarly, the
amplitude equations of D2 and D3 have extra terms D0D1 · D3 and D0D1 · D2. The inclusion of these
terms leads to the re-stabilization of the spot patterns, which is why the numerical simulations do not
match the theoretical analysis. Similar numerical simulation results can be found in [29, 30]. More
details of the theory can be found in [23].
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Figure 6. Spot patterns appearing in the system (1.4) with λ = 0.21.

By comparing and analyzing the results of Figures 4–6, it can be concluded that the spatial
distribution of prey and predator populations undergoes essential changes as the predator harvesting
parameter values decrease, and the spatial distribution density of the prey populations gradually
decreases. Furthermore, the final spatial pattern transitions from a spot pattern to stripe and spot mixed
patterns, which means that, as the spatial distribution density of the prey populations decreases, the
predator populations must spread to the predation domain in order to survive. Therefore, it is worth
emphasizing that the size of the predator harvesting not only affects the predation dynamics between
predatory populations, but also affects the density spatial distribution characteristics of the populations.

6.2. Hopf bifurcation

In this subsection, we will fix the following parameters

k = 0.2, d = 2, e = 0.24, δ = 0.1, β = 3, d1 = 0.3, d2 = 2.5.

By a simple calculation, we can get λ0
H = 0.1346, and the parameters can satisfy the conditions

in Theorem 5.2. In addition, we can get Re(c1(λ0
H)) ≈ −1.3526 < 0 and η

′

(λ0
H) > 0, thus it is

worth pointing out that the PDE system undergoes a supercritical Hopf bifurcation at λ = λ0
H and

produces stable bifurcated periodic solutions (see Figure 7). This result means that appropriate predator
harvesting behavior can promote the formation of a stable periodic growth coexistence mode between
prey and predator populations, which is beneficial for their sustainable survival.
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Figure 7. Stable bifurcated periodic solutions of PDE system with λ = λ0
H = 0.1346.

7. Conclusions

This paper mainly proposed a predator-prey system with harvesting and diffusion to explore how
harvesting affects predatory ecological relationships. Within the framework of theoretical analysis, we
first give the existence of solutions of the system (1.4) by using the methods in [19] and boundedness
by using the comparison principle, and prove that the solutions of the elliptic system (3.1) are upper
and lower bounded. Second, with the help of Poincaré’s inequality, the non-existence conditions for
the non-constant steady states of the elliptic system (3.1) are investigated. At the same time, the
existence of the non-constant steady states is analyzed by homotopy invariance of the Leray-Schauder
degree. Moreover, we obtain the condition for Turing instability, and derive the amplitude equation at
the threshold of Turing instability by weak linear analysis, which gives different patterns such as spot
patterns, mixed patterns, and so on. Finally, the existence, direction, and stability of Hopf bifurcation
are analyzed through theories like central manifolds. Under the framework of numerical simulation,
we first validate the effectiveness and feasibility of the theoretical analysis results and dynamically
display the trend of spatial distribution changes in population density. Second, through comparative
analysis of numerical simulation results, the impact characteristics of harvesting behavior on predatory
ecological relationships and spatial changes in population density are pointed out. Finally, based on the
numerical simulation results, it is clear that appropriate harvesting behavior can promote the formation
of a stable periodic growth coexistence mode between the predator and prey populations. Based on
the above results, it can be clearly emphasized that harvesting has a significant impact on predatory
ecological relationships.

One innovation of this paper is the introduction of the generalized Holling IV functional response
to describe the interaction between predator and prey, which can not only enrich the dynamic properties
of the system (1.4) but also make it more suitable for exploring the spatial distribution trends of prey
and predator in natural ecosystems. Another innovation of this paper is to reveal the spatial coexistence
mode of prey and predator during the gradual enhancement of group defense in the prey populations
from the perspective of the dynamic evolution process of Turing patterns. Furthermore, it is also worth
emphasizing that prey and predator populations have a stable periodic oscillation growth coexistence
mode, which can indicate that appropriate harvesting behavior can not only effectively control the

AIMS Mathematics Volume 9, Issue 9, 24058–24088.



24085

growth of prey populations but also maintain sustainable survival between prey and predator. This
research result can be applied to the control of Microcystis aeruginosa bloom outbreaks by monitoring
the its population density and of filter-feeding fish. If the dynamic change law of Microcystis
aeruginosa population density is a stable periodic oscillation mode under low density, and the dynamic
change law of filter-feeding fish population density is a stable periodic oscillation mode, this can
indicate that filter-feeding fish can effectively control the outbreak of Microcystis aeruginosa blooms.

To emphasize the feasibility of the theoretical and numerical results in this paper, we conducted
comparative analysis on the published papers separately. The paper [18] has thoroughly explored the
bifurcation dynamics behaviors of the system (1.5), and we have compared and analyzed the research
results of this paper with those of [18]. It is worth pointing out that the systems (1.4) and (1.5) have
stable periodic solutions, which means that the predator and prey populations can eventually form a
stable periodic oscillation growth coexistence mode with time. This indicates that the system (1.4)
continues some of the dynamic characteristics of the system (1.5) in the time state. Furthermore, these
papers [2, 31–33] have obtained some excellent research results on steady states and spatiotemporal
patterns of predator-prey system with generalized Holling IV functional response, Holling type I
functional, and Beddington-DeAngelis functional response. Under the same theoretical analysis and
numerical simulation framework, we have investigated all possible stationary distributions of prey
and predator in two dimension habitats (for example, spots and mixture of spots and stripes). These
research results are similar to those presented in the papers [2, 31–33]. Based on the above, it is
necessary to demonstrate that the theoretical and numerical results of this paper are reliable.

In summary, although this paper obtained some theoretical and numerical results in steady states
and spatiotemporal patterns, there is still much to be explored in subsequent work, such as using
laboratory or field monitoring data to calibrate the values of system parameters, investigating the impact
of population migration behavior on the dynamic relationship between prey and predator, etc. Finally,
we hope that the research results of this paper can provide some theoretical support for the control of
Microcystis aeruginosa blooms.
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