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Abstract: We mainly studied the dividend payout with a two-sided jumps risk model under random
observation. The two-sided jumps in the model represent random claims and random returns. First, we
obtained the integral differential equation of the expected dividend under the boundary conditions.
Because the equations cannot be solved directly under normal circumstances, we chose the sinc
numerical method here to approximate the solution of the equations. Then the error analysis of the
approximate solution was carried out to illustrate the rationality of the numerical method. Finally,
some concrete numerical examples were given.
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1. Introduction

The insurance company is a common financial institution in our real life. Its profit mainly comes
from two aspects: premium income and investment income, and the risks it needs to face mainly
include: compensation risk and investment risk. In the past decade, more and more scholars have
focused on building appropriate risk models (r.m.) to describe the various situations that insurance
companies may face [1–3]. At first, the r.m. studied by the researchers was a classical risk model that
only considered a company’s claims as a negative jump. For example, Zhang et al. [4] studied a new
method to estimate the Gerber-Shiu discount penalty function (p.f.) under the classical r.m., and Peng
et al. [5] studied a r.m. of dividend payment with perturbations. But in reality, an insurance company’s
random returns should also be taken into account. To better fit the actual situation, Boucheire et al. [6]
first proposed the two-sided jumps r.m., which is used to extend the r.m. of a single jump. Here, it is
considered that the company’s revenue is random, which is also a random variable, then the random
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revenue is a non-negative jump, and a negative jump is a claim. Since then, this model has been
paid much attention by many researchers. For example, E.C.K. Cheung [7] studied a renewal model
with continuous expenses and bidirectional jumps, where the amplitude of the jumps and the time
intervals of arrival time are random. From this, E.C.K. Cheung obtained the updated equation of the
discounted penalty funtion (e.d.p.f.) with defects. Zhang [8] considered the problem of e.d.p.f. for a
two-sided jumps r.m. with dividend payout and obtained some explicit expressions. Wang et al. [9]
considered the investment r.m. under the bilateral jump and tried to obtain the maximum surplus
through the appropriate investment proportion. Xu et al. [10] studied the problem of ruin probability
under bilateral jumps with random observations. For more research on two-side jump r.m., we can
refer to references [11–15].

Subsequently, some scholars put forward the dividend barrier strategy, that is, they set a threshold
value b > 0, and pay dividends to shareholders when the company’s earnings are greater than b. The
strategy was first proposed by De Finetti. Then, Gerber et al. [16] studied the threshold dividend
strategy, and Yin et al. [17] and Cossette et al. [18] put forward the horizontal barrier strategy. The
multi-tier dividend strategy can be learned from Xie and Zou [19]. To make the r.m. more realistic,
some scholars have added dividend barriers to the study of bilateral jump risk models. For example,
Bo et al. [20] studied the Lévy model with bilateral jumps under the dividend barrier strategy and
Chen et al. [21] studied the dividend payment and the reward and e.d.p.f. of the dividend strategy
with a threshold under the compound Poisson (c.p.) model. The integral differential equation (IDE) is
derived under the boundary conditions and the approximate solution (a.s.) is approximated by the sinc
numerical method. When studying the c.p. model with proportional investment, Chen and Ou [21]
added the dividend with threshold value. Inspired by the above research, we propose a bilateral jumps
model with a threshold strategy under random observation.

We introduce our work in the following parts. In the second section, we construct the two-sided
jumps risk model with investment interest under random observation, and the observational intervals
obey a same exponential distribution. In the third section, we obtain the IDE of the expected discounted
dividend payment (e.d.d.p.) function. To solve this equation, in the fourth section, we introduce an
excellent numerical method to the solution of the IDEs and get the upper boundary of the error between
the a.s. and the real solution. This numerical method is called the sinc numerical method. In the last
section, we give some numerical examples to explore the effects of the included parameters on the
e.d.d.p..

2. The model

According to the previous research on the bilateral jump r.m., we define

U(t) = u0 + ct − S 1t + S 2t = u0 + ct −
M1(t)∑
i=1

Yi +

M2(t)∑
i=1

Zi, t ≥ 0, (2.1)

where u0 represents the company’s initial surplus on the account and u0 is greater than zero. In addition,
{U(t)}t≥0 stands for the surplus process, while c represents the premium rate paid by the insured, so

obviously c > 0. Here the two stochastic processes S 1t =
M1(t)∑
i=1

Yi and S 2t =
M2(t)∑
i=1

Zi, are both c.p.

processes, representing the total claims and returns until time t, respectively, and M1(t) and M2(t) are
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homogeneous Poisson processes with parameters λ1 > 0 and λ2 > 0. The claim size is determined
by the cumulative distribution function (c.d.f.) FY(·) and the probability density function (p.d.f.) fY(·)
of independent and identically distributed (i.i.d.) positive random variables (r.v.s) {Yi}

∞
i=1. The random

return is given by the c.d.f. FZ(·) and the p.d.f. fZ(·) of the positive r.v.s {Zi}
∞
i=1. Define M1(t) = sup{ j :

S 11+S 12+ · · ·+S 1 j ≤ t} and M2(t) = sup{ j : S 21+S 22+ · · ·+S 2 j ≤ t}, where inter-claim times {S 1 j}
∞
j=1

and inter-return times {S 2 j}
∞
j=1 follow the exponential distribution of intensity λ1 and λ2, respectively.

In reality, to protect the interests of the manager and the insured, the manager needs to have a
reasonable plan for the surplus funds. Under normal circumstances, insurance companies generally
take a portfolio of risk and risk-free investments for surplus funds [22]. As investment income becomes
a larger share of insurance company’s total revenue, we need to take into account investment ratio
factors. Therefore, suppose that the manager uses part of the surplus funds for risk-free investment and
the other part for risk investment. In that way, risk-free investment {Rt}t≥0 satisfies

dRt

Rt
= rdt, (2.2)

where r is the interest rate on a risk-free asset, so obviously r should be greater than zero. Risk asset
{Qt}t≥0 is defined as

Qt = eσWt+at, (2.3)

where {Wt, t ≥ 0} is a standard Brownian motion, and σ and a represent the volatility and expected
rate of return of risk assets, respectively, both of which are greater than zero. So the risk asset process
{Qt}t≥0 satisfies

dQt

Qt
= (a +

1
2
σ2)dt + σdWt. (2.4)

Let q ∈ (0, 1) represent the proportion of the insurance company’s surplus invested in risky assets,
and then 1 − q represents the proportion invested in risk-free assets. So U(t) satisfies

dU(t) = qU(t−)
dQt

Qt
+ (1 − q)U(t−)

dRt

Rt
+ cdt − dS 1t + dS 2t

= qσU(t−)dWt + (c + ξU(t−))dt − d
M1(t)∑
i=1

Yi + d
M2(t)∑
i=1

Zi, (2.5)

where ξ = (a+ 1
2σ

2)q+ (1− q)r, U(t−) is the left limit of U(t) at t, and the loading condition to ensure
that the formula holds is c + λ2E[Z1] > λ1E[Y1].

We consider the dividend problems of the above model under the dividend strategy: when U(t) is
greater than threshold b, dividends are paid consecutively in α, where α is constant and greater than
zero; when U(t) is greater than zero and less than b > 0, no dividends are paid; and when U(t) is less
than zero, bankruptcy occurs at this time (but, in practice, the state of this moment may not be observed
and therefore is still meaningful in the short term). Combined with Eq (2.5), the surplus process with
threshold b is represented by {Ub(t), t ≥ 0}, and {Ub(t), t ≥ 0} satisfies

dUb(t) =


Ub(t−)V(Q,R, q, t) + cdt − dS 1t + dS 2t, −∞ < Ub(t−) ≤ 0,
Ub(t−)V(Q,R, q, t) + cdt − dS 1t + dS 2t, 0 < Ub(t−) ≤ b,

Ub(t−)V(Q,R, q, t) + (c − α)dt − dS 1t + dS 2t, b < Ub(t−) < ∞,
(2.6)
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where V(Q,R, q, t) = (1 − q) dRt
Rt
+ qdQt

Qt
.

Let the cumulative dividend paid until the ruin time t be D(t), and Tb = inf{t : Ub(t) ≤ 0} is the ruin
time. The present value of accumulated dividends before the ruin time Tb is Du,b, so

Du,b =

∫ Tb

0
e−δtdD(t) = α

∫ Tb

0
I(Ub(t) > b)e−δtdt, (2.7)

where δ is the interest force and is greater than zero, and I(·) stands for the indicator function.
According to the above definition, it is not difficult to derive 0 < Du,b <

α
δ
, which provides convenience

for the subsequent derivation of the boundary of the IDEs. For u ∈ R, the expectation of Du,b is
represented by

V(u; b) = E[Du,b|Ub(0) = u]. (2.8)

It should be emphasized that the surplus can be observed randomly in this paper. In practice,
however, the executive director of an insurance company randomly reviews the balance of the
company’s books to determine whether dividends are being paid or whether it is ruined (e.g., [23–25]).
Suppose {T j}

∞
j=0 is a series of discrete time points of the moments of observing surplus, where T j is the

jth observation time. In addition, we stipulate that T0 = 0 and T j∗ is the time when the company goes
to ruin, where j∗ = inf{ j ≥ 1 : M( j) ≤ 0}. Suppose {S j}

∞
j=0 is an i.i.d sequence, where S j = T j − T j−1 is

the jth observation interval and S j are positive r.v.s, which are subject to an exponential distribution of
intensity γ > 0. Suppose {Yi}

∞
i=1, {Zi}

∞
i=1, {M1(t)}t≥0, {M2(t)}t≥0, {Wt, t ≥ 0}, and {S j}

∞
j=0 are independent

of each other. Let the surplus level of the jth observation be M( j) = U(T j), and combine (2.5) to obtain

M( j) =M( j − 1) +
∫ T j

T j−1

qσM(t)dWt +

∫ Tk

Tk−1

(ξM(t) + c)dt

−

∫ T j

T j−1

d
M1(t)∑
i=1

Yi +

∫ T j

T j−1

d
M2(t)∑
i=1

Zi. (2.9)

3. IDEs of V(u; b)

In this section, our work is to give the IDEs of e.d.d.p. V(u; b). Before we begin, we need to discuss
the range of values of u, considering a time interval (0, dt]. If a claim occurred before observation, it is
possible that Ub(t) < 0 was not observed. Therefore, the range of values of u extends to the entire field
of real numbers. In addition, it is not difficult to find that for different initial surplus u, V(u; b) behaves
differently. For convenience, let us set

V(u; b) =


V1(u; b), u ∈ (−∞, 0] ,
V2(u; b), u ∈ (0, b] ,
V3(u; b), u ∈ (b,∞).

Here are the following conclusions.

Theorem 3.1. For u ∈ (−∞, 0], V1(u; b) satisfies
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1
2

q2u2σ2V
′′

1 (u; b) + (ξu + c)V
′

1(u; b) − (λ1 + λ2 + δ)V1(u; b) + λ1

∫ ∞

0
V1(u − y; b)dFY(y)

+ λ2

[∫ −u

0
V1(u + z; b)dFZ(z) +

∫ −u+b

−u
V2(u + z; b)dFZ(z) +

∫ ∞

−u+b
V3(u + z; b)dFZ(z)

]
= 0. (3.1)

For u ∈ (0, b], V2(u; b) satisfies

1
2

q2u2σ2V
′′

2 (u; b) + (ξu + c)V
′

2(u; b) − (δ + λ1 + λ2)V2(u; b) + λ1

[∫ u

0
V2(u − y; b)dFY(y)

+

∫ ∞

u
V1(u − y; b)dFY(y)

]
+ λ2

[∫ b−u

0
V2(u + z; b)dFZ(z)+

∫ ∞

b−u
V3(u + z; b)dFZ(z)

]
= 0, (3.2)

and for u ∈ (b,∞), V3(u; b) satisfies

1
2

q2u2σ2V
′′

3 (u; b) + (ξu + c − α)V
′

3(u; b) − (δ + λ1 + λ2)V3(u; b) + λ1

[∫ u−b

0
V3(u − y; b)

dFY(y) +
∫ u

u−b
V2(u − y; b)dFY(y) +

∫ ∞

u
V1(u − y; b)dFY(y)

]
+ λ2

∫ ∞

0
V3(u + z; b)dFZ(z)

+ α = 0. (3.3)

The following boundary conditions are satisfied

lim
u→−∞

V1(u; b) = 0; (3.4)

lim
u→+∞

V3(u; b) =
α

δ
; (3.5)

V2(b−; b) = V3(b+; b); (3.6)

V
′

2(b−; b) = V
′

3(b+; b). (3.7)

Proof. Consider an infinitesimal interval (0, dt], and discuss whether claims and benefits occur or not.
The cumulative distribution function of Yi and Zi is continuous. For u ∈ (−∞, 0],

V1(u, b) =e−δdt{γdtP0E[V1(h1t; b)] + (1 − γdt)P0E[V1(h1t; b)] + (1 − γdt)P1

E[E[V1(h1t + Z1; b)|0 < Z1 < −u] + E[V2(h1t + Z1; b)| − u < Z1 < b − h1t]
+ E[V3(h1t + Z1; b)|b − h1t < Z1]] + γdtP1E[V1(h1t + Z1; b)]
+ (1 − γdt)P2E[V1(h1t − Y1; b)] + γdtP2E[V1(h1t − Y1; b)]}, (3.8)

and for u ∈ (0, b],

V2(u, b) =e−δdt{γdtP0E[V2(h1t; b)] + (1 − γdt)P0E[V2(h1t; b)] + (1 − γdt)P1

E[E[V2(h1t + Z1; b)| − u < Z1 < b − h1t] + E[V3(h1t + Z1; b)|b − h1t < Z1]]
+ γdtP1E[V2(h1t + Z1; b)] + (1 − γdt)P2E[E[V2(h1t − Y1; b)|h1t − b < Y1 < u]
+ E[V1(h1t − Y1; b)|u < Y1]] + γdtP2E[V2(h1t − Y1; b)]}, (3.9)
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amd for u ∈ (b,∞),

V3(u, b) =e−δdt{αdt + γdtP0E[V3(h2t; b)] + (1 − γdt)P0E[V3(h2t; b)] + (1 − γdt)P2

E[E[V1(h1t − Y1; b)|u < Y1] + E[V2(h1t − Y1; b)|h1t − b < Y1 < u]
+ E[V3(h2t − Y1; b)|0 < Y1 < h1t − b]] + γdtE[V3(h2t − Y1; b)]
+ (1 − γdt)P1E[V3(h2t + Z1; b)] + γdtP1E[V3(h2t + Z1; b)]}, (3.10)

where

P0 = P(S 11 > dt, S 21 > dt) = 1 − (λ1 + λ2)dt + o(dt), (3.11)
P1 = P(S 11 > dt, S 21 ≤ dt) = λ2dt + o(dt), (3.12)
P2 = P(S 11 ≤ dt, S 21 > dt) = λ1dt + o(dt). (3.13)

According to the Itô formula, we get

E[V1(h1t; b)] = E[V1(u; b) + (ξu + c)V1
′

(u; b)dt +
1
2

q2u2σ2V1
′′

(u; b)dt] + o(dt), (3.14)

E[V2(h1t; b)] = E[V2(u; b) + (ξu + c)V2
′

(u; b)dt +
1
2

q2u2σ2V2
′′

(u; b)dt] + o(dt), (3.15)

E[V3(h2t; b)] = E[V3(u; b) + (ξu + c − α)V3
′

(u; b)dt +
1
2

q2u2σ2V3
′′

(u; b)dt] + o(dt), (3.16)

where

h1t =u + quσdWt + (ξu + k)dt, (3.17)
h2t =u + quσdWt + (ξu + k − α)dt, (3.18)

and o(dt) stands for the infinitesimal of higher order dt.
Substitute Eqs (3.11)–(3.14) into Eqs (3.8)–(3.10), respectively. Divide both sides of the equation

by dt and let dt approach zero infinitely. According to the properties of higher order infinitesimals and
some careful calculation, we can get the IDEs (3.1)–(3.3).

With further analysis, if the initial surplus Ub < 0, the ruin occurs immediately, at which time no
dividend is paid; then Tb = 0. If 0 < Ub < b, then the ruin did not occur and the dividend is always
paid at rate α. If Ub > b, then the shares are always paid at rates α − c, so Tb = ∞. □

Remark 3.1. Referring to the analysis of Albrecher [26], we can also find that V(u; b) is not
differentiable when u = 0 in general. Similarly, to fully describe the solution of Theorem 3.1, we also
use V1(0−; b) = V2(0+; b) and V1(b−; b) = V2(b+; b), and the boundary conditions (3.4) and (3.5).

4. Sinc asymptotic analysis

The sinc numerical method was proposed by James H. Wilkinson in the 1950s and developed by
Frank Stenger in the 1990s. Frank Stenger summarized his work results in [27], which caused a great
response in various fields (e.g., [28,29] ). The real solutions to Eqs (3.1)–(3.3) are theoretically difficult
to obtain. Therefore, we changed the angle, tried to obtain the a.s. by a numerical method, and then
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carried out an error analysis. Nowadays, the commonly used numerical methods for solving integral
differential equations include the RK-Fehlberg method, the sinc method, the Runge-Kutta method, the
Adams method, and so on. The sinc numerical method has high accuracy and good convergence when
the sampling interval is small enough, which makes it perform well in high-precision numerical results.
At the same time, the sinc method has an adaptive sampling interval. When the sampling interval is
small, the sinc method can accurately reflect the details of the original function, to achieve high-
precision numerical calculation. When the sampling interval is large, the sinc method can effectively
smooth the function and avoid the ringing effect [30] in the interpolation process. Therefore, we also
use this numerical method here.

4.1. Approximate solution of V(u; b)

Since the domain of u is the entire real axis, in order to construct approximations on R, we consider
conformal mappings. According to Algorithm 1.5.18 of Stenger [27], we define an injective mapping
from R→ R

ϕ(z) = z, (4.1)

where z ∈ R. Define the grid point zk of sinc as

zk = ϕ
−1(kh) = kh, (k = 0,±1,±2, . . . ),

where k ∈ Z, h > 0. Based on the sinc method, the basis function of z ∈ Γ on the interval (−∞,∞) is
given by the following composite function

C j(z) = C( j, h) ◦ ϕ(z) = sinc
(
ϕ(z) − jh

h

)
.

Following the steps of the sinc method, we arrange Eqs (3.1)–(3.3) into the following integral
differential

1
2

q2u2σ2V
′′

(u; b) + (ξu + c − αIu>b)V
′

(u; b) − (λ1 + λ2 + δ)V(u; b)

+

∫ ∞

0
λ1V(u − y; b)dFY(y) +

∫ ∞

0
λ2V(u + z; b)dFZ(z) + αI(u>b) = 0. (4.2)

By the nature of convolution, Eq (4.2) is rewritten as

1
2

q2u2σ2V
′′

(u; b) + (ξu + c − αIu>b)V
′

(u; b) − (λ1 + λ2 + δ)V(u; b)

+

∫ u

−∞

λ1V(y; b) fY(u − y)dy +
∫ +∞

u
λ2V(z; b) fZ(z − u)dz + αI(u>b) = 0. (4.3)

According to formulas (3.4) and (3.5), and Definition 1.5.2 in reference [27], we have

h(u; b) =
v(t1; b) + ζ(u)v(t2; b)

1 + ζ(u)
,
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where ζ(u) = eϕ(u) = eu , when t1 → −∞ , t2 → ∞. Set

W(u) = V(u; b) − h(u; b) = V(u; b) −
eu

1 + eu

α

δ
, (4.4)

and then W(u) ∈ Lα̃,β̃(δ), where Lα̃,β̃(δ) is the function space for the sinc approximation over the finite
interval (α̃, β̃) (p. 72 in [27]).

V(u; b) = h(u; b) +W(u) = W(u) +
eu

1 + eu

α

δ
, (4.5)

V
′

(u; b) = h
′

(u; b) +W(u) = W
′

(u) +
eu

(1 + eu)2

α

δ
, (4.6)

V
′′

(u; b) = h
′′

(u; b) +W(u) = W
′′

(u) +
eu(1 − eu)
(1 + eu)3

α

δ
. (4.7)

When u→ −∞, u→ ∞

lim
u→−∞

W(u) = 0;

lim
u→+∞

W(u) = 0.

Substituting (4.5)–(4.7) into (4.3), by simple calculation, we have

µ0(u)W
′′

(u) + µ1(u)W
′

(u) + µ2(u)W(u) + λ1

∫ u

−∞

W(y)K1(u − y)dy

+ λ2

∫ ∞

u
W(z)K2(z − u)dz + f (u) = 0, (4.8)

where µ0(u) = (quδ)2

2 , µ1(u) = ξu + c − αI(u>b), µ2(u) = −(δ + λ1 + λ2),

K1(u − y) = fY(u − y), (4.9)
K2(z − u) = fZ(z − u), (4.10)

f (u) = αIu>b + µ0(u)
eu(1 − eu)
(1 + eu)3

α

δ
+ µ1(u)

eu

(1 + eu)2

α

δ
+ µ2(u)

eu

1 + eu

α

δ

+ λ1

∫ u

−∞

ey

1 + ey

α

δ
K1(u − y)dy + λ2

∫ ∞

u

ez

1 + ez

α

δ
K2(z − u)dz. (4.11)

When h > 0, define the sinc grid point as

uk = kh, k = ±1,±2, . . . . (4.12)

Then consulting reference [27], according to Theorem 1.5.13, Theorem 1.5.14, and Theorem 1.5.20,
we can get ∫ u

−∞

K1(u − y)W(y)dy ≈
n1∑

j=−n2

n1∑
i=−n2

ωiAi jU j, (4.13)
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u
K2(z − u)W(z)dz ≈

n1∑
j=−n2

n1∑
i=−n2

ωiBi jU j, (4.14)

W(u) ≈ W̃(u) =
n1∑

j=−n2

U jC( j, h) ◦ ϕ(x), (4.15)

where A and B are resemble diagonal matrices Λ, with Ai j and Bi j denoting the elements at (i, j) in A
and B, respectively. The approximate value of W(u j) is expressed by U j.

Substituting (4.13)–(4.15) into Eq (4.8), replacing the integral term on the right side of Eq (4.8)
with Eqs (4.13)–(4.15), and replacing u with uk for k = n2, · · · , n1, where uk is the sinc grid point, we
have

µ0(uk)W̃
′′

(uk) + µ1(uk)W̃
′

(uk) + µ2(uk)W̃(uk) + λ1

n1∑
j=−n2

n1∑
i=−n2

ωi(uk)Ai jU j

+ λ2

n1∑
j=−n2

n1∑
i=−n2

ωi(uk)Bi jU j = − f (uk), (4.16)

where

W̃(uk) =
n1∑

j=−n2

U j[C( j, h) ◦ ϕ(uk)] =
n1∑

j=−n2

U jδ
(0)
jk , (4.17)

W̃
′

(uk) =
n1∑

j=−n2

U j[C( j, h) ◦ ϕ(uk)]
′

=

n1∑
j=−n2

U jϕ
′

(uk)δ
(1)
jk , (4.18)

W̃
′′

(uk) =
n1∑

j=−n2

U j[C( j, h) ◦ ϕ(uk)]
′′

=

n1∑
j=−n2

U j[ϕ
′′

(uk)h−1δ(1)
jk + [ϕ

′

(uk)]2h−2δ(2)
jk ]. (4.19)

Substituting (4.17)–(4.19) into Eq (4.16), we have

n1∑
j=−n2

U j

{
µ0(uk)(ϕ

′′

(uk)
δ(1)

jk

h
+ (ϕ

′

(uk))2
δ(2)

jk

h2 ) + µ1(uk)ϕ
′

(uk)
δ(1)

jk

h
+ µ2(uk)δ

(0)
jk

+ λ1

n1∑
i=−n2

ωi(uk)Ai j + λ2

n1∑
i=−n2

ωi(uk)Bi j

}
= − f (uk). (4.20)

Multiplying Eq (4.20) by h2

[ϕ′ (uk)]2 , we have

n1∑
j=−n2

U j

{
µ0(uk)δ

(2)
jk + h

[
µ0(uk)ϕ

′′

(uk)
[ϕ′(uk)]2 +

µ1(uk)
ϕ′(uk)

]
δ(1)

jk + h2 µ2(uk)
[ϕ′(uk)]2 δ

(0)
jk +

λ1
h2

[ϕ′(uk)]2

n1∑
i=−n2

ωi(uk)Ai j + λ2
h2

[ϕ′(uk)]2

n1∑
i=−n2

ωi(uk)Bi j

}
= −

f (uk)h2

[ϕ′(uk)]2 . (4.21)

Since

δ(0)
jk = δ

(0)
k j , δ

(1)
jk = −δ

(1)
k j , δ

(2)
jk = δ

(2)
k j , and

ϕ′′(xk)
ϕ′(uk)2 = −

(
1
ϕ′(uk)

)′
,
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formula (4.21) can be turned into
n1∑

j=−n2

U j

{
µ0(uk)δ

(2)
k j + h

[
µ0(uk)ϕ

′′

(uk)
[ϕ′(uk)]2 +

µ1(uk)
ϕ′(uk)

]
δ(1)

k j + h2 µ2(uk)
[ϕ′(uk)]2 δ

(0)
k j +

λ1
h2

[ϕ′(uk)]2

n1∑
i=−n2

ωi(uk)Ai j + λ2
h2

[ϕ′(uk)]2

n1∑
i=−n2

ωi(uk)Bi j

}
= −

f (uk)h2

[ϕ′(uk)]2 . (4.22)

Set I(m) = [δ(m)
k j ](n2+n1+1)×(n2+n1+1), and m = −1, 0, 1, 2. We rewrite Eq (4.22) as

GU = F, (4.23)

where

U = [U j]T =
[
U−n2 , . . . ,Un1

]T ,

F =
[
−h2 f (u−n2)
ϕ′(u−n2)2 , . . . ,−h2 f (un1)

(ϕ′(un1))2

]
,

G = µ0I(2) + hDm

(
µ0

(
1
ϕ′

)′
−
µ1

ϕ′

)
I(1) + h2Dm

(
µ2

ϕ′2

)
I(0) + λ1h2Dm

(
1

(ϕ′)2

)
Ω∗mA

+ λ2h2Dm

(
1

(ϕ′)2

)
Ω∗mB.

So solving Eq (4.23), we get the expression of the approximate solution (a.s) of (4.5):

V(u; b) = W(u) +
eu

1 + eu

α

δ
≈ W̃(u) +

eu

1 + eu

α

δ
(4.24)

=

n1∑
j=−n2

U jC( j, h) · ϕ(u) +
eu

1 + eu

α

δ
.

The meanings of the symbols mentioned in the above process are shown in Table 1.

Table 1. Symbol specification.

n1 positive integer
n2

[
n1β̃

α̃

]
Dm( f ) diag

[
f (Z−n2), . . . , f (Zn1)

]
Ω∗m (ω∗−n2

, ω−n2+1, . . . , ωn1−1, ω
∗
n1

)

ω∗−n2
(1 + e−n2h)

[
1

1+ρ −
n1∑

j=−(n2−1)

γ j

1+e jh

]
ω∗−n1

(1 + e−n1h)
[
ρ

1+ρ −
n1−1∑
j=−n2

ei jγ j

1+e jh

]
ω−n2

1
1+ρ −

n1∑
j=−(n2−1)

γ j

1+e jh

ω−n1
ρ

1+ρ −
n1−1∑
j=−n2

ei jγ j

1+e jh

ω j C( j, h) ◦ ϕ, j = −n1 + 1, . . . , n2 − 1
γ j C( j, h) ◦ ϕ, j = −n1, . . . , n2
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4.2. Error analysis

In the previous subsection, we obtained an inexact solution (e.s.) of the IDEs by using the sinc
method. Therefore, in this section, we need to analyze the discrepancy between the a.s.s and the actual
solutions. According to references [27, 31], we find an upper bound of the error. Moreover, in reality,
u is non-negative. Therefore, in this subsection, our discussion takes place under the condition u > 0.
Multiply 1

µ0(u) by both sides of Eq (4.8), and we set

G(u) = −
λ1

µ0(u)

∫ u

−∞

W(y)K1(u − y)dy −
λ2

µ0(u)

∫ ∞

u
W(z)K2(z − u)dz −

f (u)
µ0(u)

,

so we have

G(u) = µ̃2(u)W(u) + µ̃1(u)W
′

(u) +W
′′

(u), (4.25)

where µ̃1(u) = µ1(u)
µ0(u) , µ̃1(u) = µ2(u)

µ0(u) .

Assumption 4.1. Let µ̃1(u)/ζ
′

, 1/(ζ
′

)
′

, and µ̃2(u)/(ζ
′

)2 be elements of W ∞(D), and we are given that
G/(ζ

′

)2 ∈ Lα̂(D) and Eq (4.25) possess a single solution W ∈ Lα̂(D).

In the above assumption, W ∞(D) represents the family of all functions of W(u) that are analytically
and uniformly bounded by D , and Lα̂(D) = Lα̂,α̂(D).

Theorem 4.2. If the aforementioned assumption is true, W represents the e.s. of Eq (4.25), W̃
represents the a.s. of Eq (4.24), and U = (U−n2 , · · · , Un1)

T represents the e.s. of Eq (4.23). So
there is a constant c̃ > 0, and different from N, such that

sup
u∈Γ
|W(u) − W̃(u)| ⩽ c̃N5/2e−

√
πdα̂N . (4.26)

Proof. Let

ON(u) =
n1∑

k=−n2

W(uk)C(k, h) ◦ ζ(u). (4.27)

By using the triangle inequality, it is easily obtained that

|W(u) − W̃(u)| ⩽ |W(u) − ON(u)| + |ON(u) − W̃(U)|. (4.28)

Based on Theorem 4.4 in [31], there is a constant c∗ > 0, and different from N, that according to
Assumption 3.1, W ∈ Lα̂(D), and we have

sup
u∈Γ
|W(u) − ON(u)| ⩽ c∗N1/2e−

√
πdα̂N . (4.29)

For inequality (4.28), |ON(u) − W̃(u)| fulfills

|ON(u) − W̃(u)| =
∣∣∣∣∣ n1∑

j=−n2

[W(u j) − U j]C( j, h) ◦ ζ(u) −
eu

(1 + eu)
α

δ

∣∣∣∣∣
≤

n1∑
j=−n2

|W(u j) − U j||C( j, h) ◦ ζ(u)|
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≤

√√( n1∑
j=−n2

|W(u j) − U j|
2
)( n1∑

j=−n2

|C( j, h) ◦ ζ(u)|2
)

≤

√√ n1∑
j=−n2

|W(u j) − U j|
2 = ||W − U||. (4.30)

Similar to Theorem 3.8 in [31], if u ∈ Γ, then
∑

k∈ Z |C( j, h) ◦ ζ(u)|2 = 1, and we can obtain

||W − U|| = ||C−1C(W − U)|| ≤ c∗∗N5/2e−
√
πdα̂N , (4.31)

where W = (W−n2 , · · · , Wn1)
T and c∗∗ > 0 that is not dependent on N. Let us take c̃ = max{c∗, c∗∗},

and therefore, inequality (4.25) is obtained by formulas (4.27) − (4.31). □

Through formulas (4.4), (4.24), and (4.25), we get

sup
u∈Γ
|V(u; b) − Ṽ(u; b)| ⩽ c̃N5/2e−

√
πdα̂N . (4.32)

5. Numerical example

In this subsection, we provide specific numerical examples to demonstrate the effectiveness of the
sinc method, and study the effects of investment ratio q and fluctuation parameter σ on the expected
discounted dividend payout under exponential and lognormal distributions, respectively.

5.1. The exponential distribution

All numerical examples in this section are assumed to be obtained under

fY(y) = η1e−η1yIy>0,

and

fZ(z) = η2e−η2zIz>0.

Then,

fY(u − y) = η1e−η1(u−y)Iu>y, (5.1)

and

fZ(z − u) = η2e−η2(z−u)Iu<z. (5.2)

Formulas (4.8) and (4.11) are converted to

µ0(u)W
′′

(u) + µ1(u)W
′

(u) + µ2(u)W(u) + λ1

∫ u

−∞

W(y)η1e−η1(u−y)dy

+ λ2

∫ ∞

u
W(z)η2e−η2(z−u)dz + f (u) = 0, (5.3)

and
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f (u) =αIu>b + µ0(u)
eu(1 − eu)
(1 + eu)3

α

δ
+ µ1(u)

eu

(1 + eu)2

α

δ
+ µ2(u)

eu

1 + eu

α

δ

+ λ1

∫ u

−∞

ey

1 + ey

α

δ
η1e−η1(u−y)dy + λ2

∫ ∞

u

ez

1 + ez

α

δ
η2e−η2(z−u)dz. (5.4)

Next, we examine how parameters q and σ affect V(u; b). If not specified, the following example
parameters are set as follows: δ = 0.06, α̃ = π

4 , β̃ =
π
4 , a = 0.6, c = 0.3, r = 0.05, α = 0.2, d =

π
4 , N = 15, λ1 = 1, λ2 = 2, η1 = 3, η2 = 1.

Example 5.1. The effect of the investment ratio q on the e.d.d.p. is considered in the case of the
exponential distribution of claims and returns. Set parameter σ = 0.2. As depicted in Figure 1, it
becomes evident that as the proportion of surplus invested in risk assets increases, the corresponding
fluctuation of V(u; b) also increases. The value of V(u; b) when q changes is presented in Table 2
partially.

Figure 1. The change of V(u; b) with q.

Table 2. The value of V(u; b) when q changes.

q u = −1 −0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.2 3.430 3.294 3.360 3.378 3.182 3.431 3.059 3.504 3.080 3.640 3.265
0.3 3.575 3.242 3.442 3.537 3.080 3.733 2.810 3.931 2.830 4.205 3.184
0.4 3.701 3.057 3.493 3.738 2.882 4.203 2.395 4.604 2.374 5.040 2.898
0.5 3.806 2.707 3.494 3.982 2.559 4.869 1.773 5.565 1.656 66.198 2.325

Example 5.2. The effect of volatility parameter σ on the e.d.d.p. is considered in the case of the
exponential distribution of claims and returns. Set parameter q = 0.2. As depicted in Figure 2, the
greater the change of parameter σ, the greater the fluctuation of the curve corresponding to V(u; b).
Partial data is presented in Table 3.
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Figure 2. The change of V(u; b) with σ.

Table 3. The value of V(u; b) when σ changes.

σ u = −1 −0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.2 3.430 3.294 3.360 3.378 3.182 3.431 3.059 3.504 3.080 3.640 3.265
0.3 3.575 3.118 3.936 2.999 3.883 2.879 3.712 3.001 3.484 3.484 3.605
0.4 3.999 3.426 3.697 3.788 3.003 4.041 2.548 4.398 4.964 4.964 3.401
0.5 4.385 3.476 3.921 4.086 2.852 4.517 2.147 5.091 5.962 5.962 3.444

As can be seen from Examples 5.1 and 5.2, the impact of two factors on the e.d.d.p. is considered:
the proportion of risk investment q and the volatility of risk assets σ. First, when a company invests
a higher proportion of its surplus in risky assets, the dividend payout is higher, but also more volatile,
while the dividend payout is more stable when the investment ratio is lower. This means high risk, high
reward, danger, and opportunity. In addition, if the proportion of risk investment is fixed, choosing
investment products with more volatile risk assets will bring higher profits, but also bear higher risks.
On the contrary, they will earn lower profits and take lower risks. This is in line with reality.

5.2. The lognormal distribution

In this section, it is assumed that fY(y) and fZ(z) obey a lognormal distribution of parameter (η3, 2v2
1)

and (η4, 2v2
2), respectively, where η3 = ln y and η4 = ln z, and 2v2

1 and 2v2
2 represent the variance, so

that fY(y) and fZ(z) are defined as

fY(y) =
1

2πv1y
e
−

(ln y−η3)

4v2
1 Iy>0, fZ(z) =

1
2πv1z

e
−

(ln z−η4)

4v2
2 Iz>0.

Then,

fY(u − y) =
1

2πv1(u − y)
e
−

(ln(u−y)−η3)

4v2
1 Iu>y, (5.5)

and
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fZ(z − u) =
1

2πv1(z − u)
e
−

(ln(z−u)−η4)

4v2
2 Iz>u. (5.6)

Therefore, the formulas (4.8) and (4.11) can be rewritten as:

µ0(u)W
′′

(u) + µ1(u)W
′

(u) + µ2(u)W(u) + λ1

∫ u

−∞

W(y)
1

2πv1(u − y)
e
−

(ln(u−y)−η3)

4v2
1 dy

+ λ2

∫ ∞

u
W(z)

1
2πv1(z − u)

e
−

(ln(z−u)−η4)

4v2
2 dz + f (u) = 0, (5.7)

and

f (u) =αIu>b + µ0(u)
eu(1 − eu)
(1 + eu)3

α

δ
+ µ1(u)

eu

(1 + eu)2

α

δ
+ µ2(u)

eu

1 + eu

α

δ

+ λ1

∫ u

−∞

ey

1 + ey

α

δ

1
2πv1(u − y)

e
−

(ln(u−y)−η3)

4v2
1 dy

+ λ2

∫ ∞

u

ez

1 + ez

α

δ

1
2πv1(z − u)

e
−

(ln(z−u)−η4)

4v2
2 dz. (5.8)

The next example is given in real condition: δ = 0.06, α̃ = π4 , β̃ =
π
4 , a = 0.5, c = 0.4, r = 0.06, α =

0.1, d = π4 , N = 10, λ1 = 1, λ2 = 2, η3 = 3, η4 = 1, v2 = 0.03, v1 = 0.03.

Example 5.3. In the case of a lognormal distribution of claims and returns, let us discuss the effect of
investment ratio q on V(u; b). Set parameter σ = 0.2. It is not difficult to see from Figure 3 that when
a company invests more surplus into risk assets, the growth of its expected discounted dividend curve
experiences significant fluctuations. Partial data is presented in Table 4.

Figure 3. The change of V(u; b) with q.
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Table 4. The value of V(u; b) when q changes.

q u = 2 2.25 2.5 2.75 3.0 3.25 3.50 3.75 4.0 4.25 4.5
0.2 1.697 1.873 2.064 2.190 2.273 2.394 2.533 2.565 2.437 2.241 2.052
0.4 1.768 2.386 3.081 3.490 3.717 4.143 4.732 4.951 4.534 3.880 3.345
0.6 1.846 3.086 4.541 5.285 5.552 6.349 7.686 8.293 7.466 6.161 5.335
0.8 1.931 3.936 6.402 7.487 7.583 8.712 11.068 12.278 10.902 8.7263 7.734

Example 5.4. In the case of a lognormal distribution of claims and returns, let us discuss the effect of
investment ratio σ on V(u; b). Set parameter q = 0.2. It is not difficult to see from Figure 4 that when
the company chooses a product investment with greater risk fluctuation, the growth of its expected
discounted dividend curve exhibits substantial variability. Partial data is presented in Table 5.

Figure 4. The change of V(u; b) with σ.

Table 5. The value of V(u; b) when σ changes.

σ u = 2 2.25 2.5 2.75 3.0 3.25 3.50 3.75 4.0 4.25 4.5
0.2 1.697 1.873 2.064 2.190 2.273 2.394 2.533 2.565 2.437 2.241 2.052
0.4 1.809 2.505 3.263 3.761 4.091 4.577 5.145 5.297 4.810 4.053 3.334
0.6 1.968 3.487 5.156 6.226 6.915 7.981 9.280 9.671 8.626 6.996 5.493
0.8 2.134 4.735 7.612 9.393 10.475 12.291 14.632 15.427 13.677 10.929 8.521

From Examples 5.3 and 5.4, it can be seen that parameters q and σ have different effects on the
e.d.d.p. V(u; b) under a lognormal distribution of claims and returns. Other parameters being equal, the
expected discounted dividend payout curve fluctuates more when a company invests a larger proportion
of its earnings or invests in risky products with a higher freezing rate. It should be noted that when the
claim amount and income follow the lognormal distribution, V(u; b) shows a higher sensitivity to the
above parameter changes.
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6. Conclusions

We explore a model with two-sided jumps, incorporating random observations and a dividend
barrier strategy. By referring to the existing relevant literature, we find that the existing research
is the classic model with a dividend strategy or the two-sided jump risk model. We want to know
the situation of the dividend barrier strategy under double risk. According to this idea, through the
literature review, we find that the model has very important practical significance. At the same time,
we find that no scholars have introduced random observation into this model, but this is exactly what
is for random observation in real life. In the process of research, we also find that there is no closed
solution to the integral differential equation of this model after introducing random observation. To
solve this problem, we obtained an a.s. by the sinc numerical method and analyzed the upper limit of
the error. Perhaps one day in the future, we will have a better way to find the e.s. to this model.
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modulated lévy risk processes with two-sided jumps, Methodol. Comput. Appl. Probab., 24 (2022),
2779–2800. https://doi.org/10.1007/s11009-022-09954-1

13. Z. Palmowski, E. Vatamidou, Phase-type approximations perturbed by a heavy-tailed component
for the gerber-shiu function of risk processes with two-sided jumps, Stoch. Models, 36 (2020),
337–363. https://doi.org/10.1080/15326349.2020.1717344

14. E. C. K. Cheung, H. Liu, G. E. Willmot, Joint moments of the total discounted gains and losses
in the renewal risk model with two-sided jumps, Appl. Math. Comput., 331 (2018), 358–377.
https://doi.org/10.1016/j.amc.2018.03.037

15. W. Zou, J. Gao, J. Xie, On the expected discounted penalty function and optimal dividend strategy
for a risk model with random incomes and interclaimdependent claim sizes, Int. J. Comput. Appl.
Math., 255 (2014), 270–281. https://doi.org/10.1016/j.cam.2013.05.004

16. H. U. Gerber, E. S. W. Shiu, The time value of ruin in a sparre andersen model, N. Am. Actuar. J.,
9 (2005), 49–69. https://doi.org/10.1080/10920277.2005.10596197

17. C. Yin, Y. Shen, Y. Wen, Exit problems for jump processes with applications to dividend problems,
Int. J. Comput. Appl. Math., 245 (2013), 30–52. https://doi.org/10.1016/j.cam.2012.12.004

18. H. Cossette, E. Marceau, F. Marri, On a compound Poisson risk model with dependence and in
the presence of a constant dividend barrier, Appl. Stoch. Models Bus. Ind., 30 (2014), 82–98.
https://doi.org/10.1002/asmb.1928

AIMS Mathematics Volume 9, Issue 9, 24039–24057.

https://dx.doi.org/https://doi.org/10.1080/03461238.2017.1371068
https://dx.doi.org/https://doi.org/10.3934/jimo.2019038
https://dx.doi.org/https://doi.org/10.1017/S0269964800004848
https://dx.doi.org/https://doi.org/10.1007/s11134-011-9228-z
https://dx.doi.org/https://doi.org/10.1080/03610926.2020.1737712
https://dx.doi.org/https://doi.org/10.3934/math.2024101
https://dx.doi.org/https://doi.org/10.3390/math11071584
https://dx.doi.org/https://doi.org/10.12988/imf.2017.611147
https://dx.doi.org/https://doi.org/10.1007/s11009-022-09954-1
https://dx.doi.org/https://doi.org/10.1080/15326349.2020.1717344
https://dx.doi.org/https://doi.org/10.1016/j.amc.2018.03.037
https://dx.doi.org/https://doi.org/10.1016/j.cam.2013.05.004
https://dx.doi.org/https://doi.org/10.1080/10920277.2005.10596197
https://dx.doi.org/https://doi.org/10.1016/j.cam.2012.12.004
https://dx.doi.org/https://doi.org/10.1002/asmb.1928


24057

19. J. Xie, W. Zou, On the expected discounted penalty function for a risk model with dependence
under a multi-layer dividend strategy, Commun. Statist. Theory Methods, 46 (2017), 1898–1915.
https://doi.org/10.1080/03610926.2015.1030424

20. L. Bo, R. Song, D. Tang, Y. Wang, X. Yang, Lévy risk model with two-sided
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