Research article Special Issues

Pricing green financial options under the mixed fractal Brownian motions with jump diffusion environment

  • Received: 11 April 2024 Revised: 23 June 2024 Accepted: 24 June 2024 Published: 04 July 2024
  • MSC : 91G20, 91G60

  • To cope with severe climate change, traditional emission reduction and environmental protection measures must be supported by financial instruments. The paper investigates green financial options, measured by the green cryptocurrency (Solana) and carbon emissions allowances, under fractal Brownian motions with jump detection. To this purpose, after observing the dynamic price correlations between all the variables. We introduce a mixed fractional Brownian motion model for the two types of green financial assets with possible jumps driven by an independent Poisson process. Then, pricing European green crypto options and carbon options in a generalized mixed fractional Brownian Motion with jumps detection. This research aims to explore the strategy of European contingent claims written on the underlying asset of green financial assets. When the underlying asset prices follow the mixed fractional Brownian motion with jumps the valuation of European call and put green financial options can be discovered. The finding provides a meaningful and enlightening reference to avoiding green investment risk. More generally, it could be beneficial for responsible investment and risk management in green financial markets under green financial regulations to protect investors and public interests.

    Citation: Kung-Chi Chen, Kuo-Shing Chen. Pricing green financial options under the mixed fractal Brownian motions with jump diffusion environment[J]. AIMS Mathematics, 2024, 9(8): 21496-21523. doi: 10.3934/math.20241044

    Related Papers:

  • To cope with severe climate change, traditional emission reduction and environmental protection measures must be supported by financial instruments. The paper investigates green financial options, measured by the green cryptocurrency (Solana) and carbon emissions allowances, under fractal Brownian motions with jump detection. To this purpose, after observing the dynamic price correlations between all the variables. We introduce a mixed fractional Brownian motion model for the two types of green financial assets with possible jumps driven by an independent Poisson process. Then, pricing European green crypto options and carbon options in a generalized mixed fractional Brownian Motion with jumps detection. This research aims to explore the strategy of European contingent claims written on the underlying asset of green financial assets. When the underlying asset prices follow the mixed fractional Brownian motion with jumps the valuation of European call and put green financial options can be discovered. The finding provides a meaningful and enlightening reference to avoiding green investment risk. More generally, it could be beneficial for responsible investment and risk management in green financial markets under green financial regulations to protect investors and public interests.


    加载中


    [1] M. C. Udeagha, E. Muchapondwa, Green finance, fintech, and environmental sustainability: Fresh policy insights from the BRICS nations, Int. J. Sustain. Dev. World, 30 (2023), 633−649. https://doi.org/10.1080/13504509.2023.2183526 doi: 10.1080/13504509.2023.2183526
    [2] Y. Yang, X. Su, S. Yao, Nexus between green finance, fintech, and high-quality economic development: Empirical evidence from China, Resour. Policy, 74 (2021), 102445. https://doi.org/10.1016/j.resourpol.2021.102445 doi: 10.1016/j.resourpol.2021.102445
    [3] S. Yao, Y. Pan, A. Sensoy, G. S. Uddin, F. Cheng, Green credit policy and firm performance: What we learn from China, Energ. Econ., 101 (2021), 105415. https://doi.org/10.1016/j.eneco.2021.105415 doi: 10.1016/j.eneco.2021.105415
    [4] A. Zakari, I. Khan, The introduction of green finance: A curse or a benefit to environmental sustainability? Energ. Res. Lett., 3 (2022). https://doi.org/10.46557/001c.29977 doi: 10.46557/001c.29977
    [5] L. Zhang, H. B. Saydaliev, X. Ma, Does green finance investment and technological innovation improve renewable energy efficiency and sustainable development goals, Renew. Energ., 193 (2022), 991−1000. https://doi.org/10.1016/j.renene.2022.04.161 doi: 10.1016/j.renene.2022.04.161
    [6] Y. Qi, Y. Wang, Innovating and pricing carbon-offset options of Asian styles on the basis of jump diffusions and fractal Brownian motions, Mathematics, 11 (2023), 3614. https://doi.org/10.3390/math11163614 doi: 10.3390/math11163614
    [7] W. G. Zhang, Z. Li, Y. J. Liu, Y. Zhang, Pricing European option under fuzzy mixed fractional Brownian motion model with jumps, Comput. Econ., 58 (2021), 483−515. https://doi.org/10.1007/s10614-020-10043-z doi: 10.1007/s10614-020-10043-z
    [8] Y. Hu, Y. Tian, The role of green reputation, carbon trading and government intervention in determining the green bond pricing: An externality perspective, Int. Rev. Econ. Financ., 89 (2024), 46−62. https://doi.org/10.1016/j.iref.2023.10.007 doi: 10.1016/j.iref.2023.10.007
    [9] X. T. Wang, E. H. Zhu, M. M. Tang, H. G. Yan, Scaling and long-range dependence in option pricing Ⅱ: Pricing European option with transaction costs under the mixed Brownian fractional Brownian model, Physica A, 3 (2010), 445−451. https://doi.org/10.1016/j.physa.2009.09.043 doi: 10.1016/j.physa.2009.09.043
    [10] W. L. Xiao, W. G. Zhang, X. L. Zhang, Y. L. Wang, Pricing currency options in a fractional Brownian motion with jumps, Econ. Model., 27 (2010), 935−942. https://doi.org/10.1016/j.econmod.2010.05.010 doi: 10.1016/j.econmod.2010.05.010
    [11] X. T. Wang, M. Wu, Z. M. Zhou, W. S. Jing, Pricing European option with transaction costs under the fractional long memory stochastic volatility model, Physica A, 391 (2012), 1469−1480. https://doi.org/10.1016/j.physa.2011.11.014 doi: 10.1016/j.physa.2011.11.014
    [12] K. C. Lu, K. S. Chen, Uncovering Information Linkages between Bitcoin, Sustainable Finance and the Impact of COVID-19: Fractal and Entropy Analysis, Fractal Fract., 7 (2023), 424. https://doi.org/10.3390/fractalfract7060424 doi: 10.3390/fractalfract7060424
    [13] Z. Ding, C. W. J. Granger, R. F. Engle, A long memory property of stock market returns and a new model, J. Empir. Financ., 1 (1993), 83106. https://doi.org/10.1016/0927-5398(93)90006-D doi: 10.1016/0927-5398(93)90006-D
    [14] S. Rostek, R. Schobel, A note on the use of fractional Brownian motion for financial modeling, Econ. Model., 30 (2013), 3035. https://doi.org/10.1016/j.econmod.2012.09.003 doi: 10.1016/j.econmod.2012.09.003
    [15] F. Shokrollahi, A. Kılıç man, Pricing currency option in a mixed fractional Brownian motion with jumps environment, Math. Probl. Eng., 2014. https://doi.org/10.1155/2014/858210 doi: 10.1155/2014/858210
    [16] F. Shokrollahi, A. Kılıç man, Actuarial approach in a mixed fractional Brownian motion with jumps environment for pricing currency option, Adv. Differ. Equ., 2015 (2015), 1−8. https://doi.org/10.1186/s13662-015-0590-8 doi: 10.1186/s13662-015-0590-8
    [17] L. Di Persio, G. Turatta, Multi-fractional Brownian motion: Estimating the hurst exponent via variational smoothing with applications in finance, Symmetry, 14 (2022), 1657. https://doi.org/10.3390/sym14081657 doi: 10.3390/sym14081657
    [18] P. Cheridito, Mixed fractional Brownian motion, Bernoulli, 7 (2001), 913934. https://doi.org/10.2307/3318626 doi: 10.2307/3318626
    [19] M. Zili, On the mixed fractional Brownian motion, Int. J. Stoch. Anal., 2006. https://doi.org/10.1155/JAMSA/2006/32435 doi: 10.1155/JAMSA/2006/32435
    [20] Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related process, SpringerVerlag, Berlin, 2008. https://doi.org/10.1007/978-3-540-75873-0
    [21] L. V. Ballestra, G. Pacelli, D. Radi, A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion, Chaos Soliton. Fract., 87 (2016), 240248. https://doi.org/10.1016/j.chaos.2016.04.008 doi: 10.1016/j.chaos.2016.04.008
    [22] W. L. Xiao, W. G. Zhang, X. Zhang, X. Zhang, Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm, Physica A, 391 (2012), 64186431. https://doi.org/10.1016/j.physa.2012.07.041 doi: 10.1016/j.physa.2012.07.041
    [23] K. Kim, S. Yun, N. Kim, J. Ri, Pricing formula for European currency option and exchange option in a generalized jump mixed fractional Brownian motion with time-varying coefficients, Physica A, 522 (2019), 215–231. https://doi.org/10.1016/j.physa.2019.01.145 doi: 10.1016/j.physa.2019.01.145
    [24] J. Hua, L. Shancun, S. Dianyu, Pricing options in a mixed fractional double exponential jump-diffusion model with stochastic volatility and interest rates, In: 2012 International Conference on Information Management, Innovation Management and Industrial Engineering, IEEE, 2012, 1−4. https://doi.org/10.1109/ICIII.2012.6339904
    [25] C. E. Murwaningtyas, S. H. Kartiko, H. P. Suryawan, Option pricing by using a mixed fractional Brownian motion with jumps, In: Journal of Physics: Conference Series, IOP Publishing, 1180 (2019). https://doi.org/10.1088/1742-6596/1180/1/012011
    [26] B. Ji, X. Tao, Y. Ji, Barrier option pricing in the sub-mixed fractional Brownian motion with jump environment. Fractal Fract., 6 (2022), 244. https://doi.org/10.3390/fractalfract6050244 doi: 10.3390/fractalfract6050244
    [27] P. Cheng, Z. Xu, Z. Dai, Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment, Math. Financ. Econ., 17 (2023), 429−455. https://doi.org/10.1007/s11579-023-00339-7 doi: 10.1007/s11579-023-00339-7
    [28] D. Hainaut, Pricing of spread and exchange options in a rough jump-diffusion market, J. Comput. Appl. Math., 419 (2023), 114752. https://doi.org/10.1016/j.cam.2022.114752 doi: 10.1016/j.cam.2022.114752
    [29] T. H. Thao, An approximate approach to fractional analysis for finance, Nonlinear Anal.-Real, 7 (2006), 124−132. https://doi.org/10.1016/j.nonrwa.2004.08.012 doi: 10.1016/j.nonrwa.2004.08.012
    [30] Y. Chang, Y. Wang, S. Zhang, Option pricing under double Heston model with approximative fractional stochastic volatility, Math. Probl. Eng., 2021, 1−12. https://doi.org/10.1155/2021/6634779 doi: 10.1155/2021/6634779
    [31] J. E. Hilliard, J. T. Ngo, Bitcoin: Jumps, convenience yields, and option prices, Quant. Financ., 22 (2022), 2079−2091. https://doi.org/10.1080/14697688.2022.2109989 doi: 10.1080/14697688.2022.2109989
    [32] P. Chaim, M. P. Laurini, Volatility and return jumps in bitcoin, Econ. Lett., 173 (2018), 158–163. https://doi.org/10.1016/j.econlet.2018.10.011 doi: 10.1016/j.econlet.2018.10.011
    [33] O. Scaillet, A. Treccani, C. Trevisan, High-frequency jump analysis of the bitcoin market, J. Financ. Econ., 18 (2020), 209−232. https://doi.org/10.1093/jjfinec/nby013 doi: 10.1093/jjfinec/nby013
    [34] A. Charles, O. Darné, Volatility estimation for Bitcoin: Replication and robustness, Int. Econ., 157 (2019), 23−32. https://doi.org/10.1016/j.inteco.2018.06.004 doi: 10.1016/j.inteco.2018.06.004
    [35] S. Laurent, C. Lecourt, F. C. Palm, Testing for jumps in conditionally Gaussian ARMA-GARCH models, a robust approach, Comput. Stat. Data Anal., 100 (2016), 383–400. https://doi.org/10.1016/j.csda.2014.05.015 doi: 10.1016/j.csda.2014.05.015
    [36] W. H. Chan, J. M. Maheu, Conditional jump dynamics in stock market returns, J. Bus. Econ. Stat., 20 (2002), 377−389. https://doi.org/10.1198/073500102288618513 doi: 10.1198/073500102288618513
    [37] A. Cretarola, G. Figà-Talamanca, M. Patacca, Market attention and Bitcoin price modeling: Theory, estimation and option pricing, Decis. Econ. Financ., 43 (2020), 187−228. https://doi.org/10.1007/s10203-019-00262-x doi: 10.1007/s10203-019-00262-x
    [38] K. S. Chen, Y. C. Huang, Detecting jump risk and jump-diffusion model for Bitcoin options pricing and hedging, Mathematics, 9 (2021), 2567. https://doi.org/10.3390/math9202567 doi: 10.3390/math9202567
    [39] E. Bouri, D. Roubaud, S. J. H. Shahzad, Do Bitcoin and other cryptocurrencies jump together? Q. Rev. Econ. Financ., 76 (2020), 396−409. https://doi.org/10.1016/j.qref.2019.09.003 doi: 10.1016/j.qref.2019.09.003
    [40] S. Palamalai, K. K. Kumar, B. Maity, Testing the random walk hypothesis for leading cryptocurrencies, Borsa Istanb. Rev., 21 (2021), 256–268. https://doi.org/10.1016/j.bir.2020.10.006 doi: 10.1016/j.bir.2020.10.006
    [41] D. S. Bates, The crash of '87: Was it expected? The evidence from options markets, J. Financ., 46 (1991), 1009–1044. https://doi.org/10.1111/j.1540-6261.1991.tb03775.x doi: 10.1111/j.1540-6261.1991.tb03775.x
    [42] R. Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ., 3 (1976), 124–144. https://doi.org/10.1016/0304-405X(76)90022-2 doi: 10.1016/0304-405X(76)90022-2
    [43] E. G. Haug, The complete guide to option pricing formulas, 2 Eds., McGraw-Hill, 2007.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(551) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog