Citation: Kung-Chi Chen, Kuo-Shing Chen. Pricing green financial options under the mixed fractal Brownian motions with jump diffusion environment[J]. AIMS Mathematics, 2024, 9(8): 21496-21523. doi: 10.3934/math.20241044
[1] | M. C. Udeagha, E. Muchapondwa, Green finance, fintech, and environmental sustainability: Fresh policy insights from the BRICS nations, Int. J. Sustain. Dev. World, 30 (2023), 633−649. https://doi.org/10.1080/13504509.2023.2183526 doi: 10.1080/13504509.2023.2183526 |
[2] | Y. Yang, X. Su, S. Yao, Nexus between green finance, fintech, and high-quality economic development: Empirical evidence from China, Resour. Policy, 74 (2021), 102445. https://doi.org/10.1016/j.resourpol.2021.102445 doi: 10.1016/j.resourpol.2021.102445 |
[3] | S. Yao, Y. Pan, A. Sensoy, G. S. Uddin, F. Cheng, Green credit policy and firm performance: What we learn from China, Energ. Econ., 101 (2021), 105415. https://doi.org/10.1016/j.eneco.2021.105415 doi: 10.1016/j.eneco.2021.105415 |
[4] | A. Zakari, I. Khan, The introduction of green finance: A curse or a benefit to environmental sustainability? Energ. Res. Lett., 3 (2022). https://doi.org/10.46557/001c.29977 doi: 10.46557/001c.29977 |
[5] | L. Zhang, H. B. Saydaliev, X. Ma, Does green finance investment and technological innovation improve renewable energy efficiency and sustainable development goals, Renew. Energ., 193 (2022), 991−1000. https://doi.org/10.1016/j.renene.2022.04.161 doi: 10.1016/j.renene.2022.04.161 |
[6] | Y. Qi, Y. Wang, Innovating and pricing carbon-offset options of Asian styles on the basis of jump diffusions and fractal Brownian motions, Mathematics, 11 (2023), 3614. https://doi.org/10.3390/math11163614 doi: 10.3390/math11163614 |
[7] | W. G. Zhang, Z. Li, Y. J. Liu, Y. Zhang, Pricing European option under fuzzy mixed fractional Brownian motion model with jumps, Comput. Econ., 58 (2021), 483−515. https://doi.org/10.1007/s10614-020-10043-z doi: 10.1007/s10614-020-10043-z |
[8] | Y. Hu, Y. Tian, The role of green reputation, carbon trading and government intervention in determining the green bond pricing: An externality perspective, Int. Rev. Econ. Financ., 89 (2024), 46−62. https://doi.org/10.1016/j.iref.2023.10.007 doi: 10.1016/j.iref.2023.10.007 |
[9] | X. T. Wang, E. H. Zhu, M. M. Tang, H. G. Yan, Scaling and long-range dependence in option pricing Ⅱ: Pricing European option with transaction costs under the mixed Brownian fractional Brownian model, Physica A, 3 (2010), 445−451. https://doi.org/10.1016/j.physa.2009.09.043 doi: 10.1016/j.physa.2009.09.043 |
[10] | W. L. Xiao, W. G. Zhang, X. L. Zhang, Y. L. Wang, Pricing currency options in a fractional Brownian motion with jumps, Econ. Model., 27 (2010), 935−942. https://doi.org/10.1016/j.econmod.2010.05.010 doi: 10.1016/j.econmod.2010.05.010 |
[11] | X. T. Wang, M. Wu, Z. M. Zhou, W. S. Jing, Pricing European option with transaction costs under the fractional long memory stochastic volatility model, Physica A, 391 (2012), 1469−1480. https://doi.org/10.1016/j.physa.2011.11.014 doi: 10.1016/j.physa.2011.11.014 |
[12] | K. C. Lu, K. S. Chen, Uncovering Information Linkages between Bitcoin, Sustainable Finance and the Impact of COVID-19: Fractal and Entropy Analysis, Fractal Fract., 7 (2023), 424. https://doi.org/10.3390/fractalfract7060424 doi: 10.3390/fractalfract7060424 |
[13] | Z. Ding, C. W. J. Granger, R. F. Engle, A long memory property of stock market returns and a new model, J. Empir. Financ., 1 (1993), 83106. https://doi.org/10.1016/0927-5398(93)90006-D doi: 10.1016/0927-5398(93)90006-D |
[14] | S. Rostek, R. Schobel, A note on the use of fractional Brownian motion for financial modeling, Econ. Model., 30 (2013), 3035. https://doi.org/10.1016/j.econmod.2012.09.003 doi: 10.1016/j.econmod.2012.09.003 |
[15] | F. Shokrollahi, A. Kılıç man, Pricing currency option in a mixed fractional Brownian motion with jumps environment, Math. Probl. Eng., 2014. https://doi.org/10.1155/2014/858210 doi: 10.1155/2014/858210 |
[16] | F. Shokrollahi, A. Kılıç man, Actuarial approach in a mixed fractional Brownian motion with jumps environment for pricing currency option, Adv. Differ. Equ., 2015 (2015), 1−8. https://doi.org/10.1186/s13662-015-0590-8 doi: 10.1186/s13662-015-0590-8 |
[17] | L. Di Persio, G. Turatta, Multi-fractional Brownian motion: Estimating the hurst exponent via variational smoothing with applications in finance, Symmetry, 14 (2022), 1657. https://doi.org/10.3390/sym14081657 doi: 10.3390/sym14081657 |
[18] | P. Cheridito, Mixed fractional Brownian motion, Bernoulli, 7 (2001), 913934. https://doi.org/10.2307/3318626 doi: 10.2307/3318626 |
[19] | M. Zili, On the mixed fractional Brownian motion, Int. J. Stoch. Anal., 2006. https://doi.org/10.1155/JAMSA/2006/32435 doi: 10.1155/JAMSA/2006/32435 |
[20] | Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related process, SpringerVerlag, Berlin, 2008. https://doi.org/10.1007/978-3-540-75873-0 |
[21] | L. V. Ballestra, G. Pacelli, D. Radi, A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion, Chaos Soliton. Fract., 87 (2016), 240248. https://doi.org/10.1016/j.chaos.2016.04.008 doi: 10.1016/j.chaos.2016.04.008 |
[22] | W. L. Xiao, W. G. Zhang, X. Zhang, X. Zhang, Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm, Physica A, 391 (2012), 64186431. https://doi.org/10.1016/j.physa.2012.07.041 doi: 10.1016/j.physa.2012.07.041 |
[23] | K. Kim, S. Yun, N. Kim, J. Ri, Pricing formula for European currency option and exchange option in a generalized jump mixed fractional Brownian motion with time-varying coefficients, Physica A, 522 (2019), 215–231. https://doi.org/10.1016/j.physa.2019.01.145 doi: 10.1016/j.physa.2019.01.145 |
[24] | J. Hua, L. Shancun, S. Dianyu, Pricing options in a mixed fractional double exponential jump-diffusion model with stochastic volatility and interest rates, In: 2012 International Conference on Information Management, Innovation Management and Industrial Engineering, IEEE, 2012, 1−4. https://doi.org/10.1109/ICIII.2012.6339904 |
[25] | C. E. Murwaningtyas, S. H. Kartiko, H. P. Suryawan, Option pricing by using a mixed fractional Brownian motion with jumps, In: Journal of Physics: Conference Series, IOP Publishing, 1180 (2019). https://doi.org/10.1088/1742-6596/1180/1/012011 |
[26] | B. Ji, X. Tao, Y. Ji, Barrier option pricing in the sub-mixed fractional Brownian motion with jump environment. Fractal Fract., 6 (2022), 244. https://doi.org/10.3390/fractalfract6050244 doi: 10.3390/fractalfract6050244 |
[27] | P. Cheng, Z. Xu, Z. Dai, Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment, Math. Financ. Econ., 17 (2023), 429−455. https://doi.org/10.1007/s11579-023-00339-7 doi: 10.1007/s11579-023-00339-7 |
[28] | D. Hainaut, Pricing of spread and exchange options in a rough jump-diffusion market, J. Comput. Appl. Math., 419 (2023), 114752. https://doi.org/10.1016/j.cam.2022.114752 doi: 10.1016/j.cam.2022.114752 |
[29] | T. H. Thao, An approximate approach to fractional analysis for finance, Nonlinear Anal.-Real, 7 (2006), 124−132. https://doi.org/10.1016/j.nonrwa.2004.08.012 doi: 10.1016/j.nonrwa.2004.08.012 |
[30] | Y. Chang, Y. Wang, S. Zhang, Option pricing under double Heston model with approximative fractional stochastic volatility, Math. Probl. Eng., 2021, 1−12. https://doi.org/10.1155/2021/6634779 doi: 10.1155/2021/6634779 |
[31] | J. E. Hilliard, J. T. Ngo, Bitcoin: Jumps, convenience yields, and option prices, Quant. Financ., 22 (2022), 2079−2091. https://doi.org/10.1080/14697688.2022.2109989 doi: 10.1080/14697688.2022.2109989 |
[32] | P. Chaim, M. P. Laurini, Volatility and return jumps in bitcoin, Econ. Lett., 173 (2018), 158–163. https://doi.org/10.1016/j.econlet.2018.10.011 doi: 10.1016/j.econlet.2018.10.011 |
[33] | O. Scaillet, A. Treccani, C. Trevisan, High-frequency jump analysis of the bitcoin market, J. Financ. Econ., 18 (2020), 209−232. https://doi.org/10.1093/jjfinec/nby013 doi: 10.1093/jjfinec/nby013 |
[34] | A. Charles, O. Darné, Volatility estimation for Bitcoin: Replication and robustness, Int. Econ., 157 (2019), 23−32. https://doi.org/10.1016/j.inteco.2018.06.004 doi: 10.1016/j.inteco.2018.06.004 |
[35] | S. Laurent, C. Lecourt, F. C. Palm, Testing for jumps in conditionally Gaussian ARMA-GARCH models, a robust approach, Comput. Stat. Data Anal., 100 (2016), 383–400. https://doi.org/10.1016/j.csda.2014.05.015 doi: 10.1016/j.csda.2014.05.015 |
[36] | W. H. Chan, J. M. Maheu, Conditional jump dynamics in stock market returns, J. Bus. Econ. Stat., 20 (2002), 377−389. https://doi.org/10.1198/073500102288618513 doi: 10.1198/073500102288618513 |
[37] | A. Cretarola, G. Figà-Talamanca, M. Patacca, Market attention and Bitcoin price modeling: Theory, estimation and option pricing, Decis. Econ. Financ., 43 (2020), 187−228. https://doi.org/10.1007/s10203-019-00262-x doi: 10.1007/s10203-019-00262-x |
[38] | K. S. Chen, Y. C. Huang, Detecting jump risk and jump-diffusion model for Bitcoin options pricing and hedging, Mathematics, 9 (2021), 2567. https://doi.org/10.3390/math9202567 doi: 10.3390/math9202567 |
[39] | E. Bouri, D. Roubaud, S. J. H. Shahzad, Do Bitcoin and other cryptocurrencies jump together? Q. Rev. Econ. Financ., 76 (2020), 396−409. https://doi.org/10.1016/j.qref.2019.09.003 doi: 10.1016/j.qref.2019.09.003 |
[40] | S. Palamalai, K. K. Kumar, B. Maity, Testing the random walk hypothesis for leading cryptocurrencies, Borsa Istanb. Rev., 21 (2021), 256–268. https://doi.org/10.1016/j.bir.2020.10.006 doi: 10.1016/j.bir.2020.10.006 |
[41] | D. S. Bates, The crash of '87: Was it expected? The evidence from options markets, J. Financ., 46 (1991), 1009–1044. https://doi.org/10.1111/j.1540-6261.1991.tb03775.x doi: 10.1111/j.1540-6261.1991.tb03775.x |
[42] | R. Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ., 3 (1976), 124–144. https://doi.org/10.1016/0304-405X(76)90022-2 doi: 10.1016/0304-405X(76)90022-2 |
[43] | E. G. Haug, The complete guide to option pricing formulas, 2 Eds., McGraw-Hill, 2007. |