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Abstract: To cope with severe climate change, traditional emission reduction and environmental 

protection measures must be supported by financial instruments. The paper investigates green financial 

options, measured by the green cryptocurrency (Solana) and carbon emissions allowances, under 

fractal Brownian motions with jump detection. To this purpose, after observing the dynamic price 

correlations between all the variables. We introduce a mixed fractional Brownian motion model for the 

two types of green financial assets with possible jumps driven by an independent Poisson process. 

Then, pricing European green crypto options and carbon options in a generalized mixed fractional 

Brownian Motion with jumps detection. This research aims to explore the strategy of European 

contingent claims written on the underlying asset of green financial assets. When the underlying asset 

prices follow the mixed fractional Brownian motion with jumps the valuation of European call and put 

green financial options can be discovered. The finding provides a meaningful and enlightening 

reference to avoiding green investment risk. More generally, it could be beneficial for responsible 

investment and risk management in green financial markets under green financial regulations to protect 

investors and public interests. 
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1. Introduction 

Over the past five years, the world economy had a great deal to face some challenges: The 

COVID-19 epidemic shock has caused economic depression due to the great losses, unexpected 

inflation, and the more acute influence of global climate change. The potential digitization of the 

economy and net-zero economy may serve as a pivotal way to increase challenges posed by climate 

change to the environment and sustainable development [1]. In recent years, the green and digital 

transformation from integrating green and digital economy is the most critical climate-related issue 
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opened at the prime agenda of sustainable development and net-zero environmental goals. In this study, 

the integration between the digital currency (Solana, hereafter SOL) and the carbon emission futures, 

thus, results in new models and produces instruments for digital and green economies (transformation). 

Consequently, scholars are looking at several specialized contributors such as green finance (GF) 

and financial technology (fintech) to seek ways to achieve an environmentally friendly and sustainable 

economy in the world [1–3]. There exist three distinct types of eco-friendly investment funds: carbon 

emissions trading, green credit, and green bonds. To be specific, carbon emissions trading plays an 

important role and has been treated as a green finance instrument [4–5]. Carbon emissions trading also 

is a crucial strategy for international cooperation in struggling with global warming. With the rapid 

growth of carbon trading and the evolvement of carbon financial derivatives products such as carbon 

options, green futures have become inescapable [6]. GF also requires financial institutions to consider 

pollution management and ecological conservation when providing credit to recover loans already 

granted to such projects [7,8]. 

Wang et al.’s (2010) [9] study suggested that investors either unwittingly overreact to news or 

continually overreact to information due to investors’ sentiment. The reactional behavior may result in 

the properties of “leptokurtic” and long-memory processes in the returns of financial assets. Fractional 

Brownian motion can be a valuable instrument for describing these natural phenomena [7,10]. 

Although, a variety of models has been employed for pricing European options, using jump fractional 

Brownian motion to the valuation of green financial options has not been explored. To fill this gap, 

then we demonstrate how to price European green financial options utilizing the identifying jumps in 

a GARCH-type model incorporated into a jump-mixed fractional Brownian environment. The 

numerical and empirical results of our valuation models and other available estimated models suggest 

that our model is reasonable and easy to perform. 

To the best of our knowledge, this is the first study that specifically analyzes the study’s 

implications and could be useful to the pricing of green financial options under the mixed fractal 

Brownian motions with jump diffusion environment. From the theoretical viewpoint, our study did 

some pioneering work, we contribute to the recently emerging literature in two ways: 

First, to capture the long memory features in time series and the jump of financial asset price 

behavior, we conduct a mixed fractional Brownian motion model (mfBm, hereafter) with identifying 

jumps. Afterward, we establish a risk-neutral valuation for pricing European options under the 

consideration that the underlying carbon price, the volatility, the risk-free interest rate, the jump 

intensity and the mean value and variance of jump magnitudes are all calculated values from market data. 

Secondly, empirical results are conducted by applying the underlying carbon returns and European 

options written on ICE EUA Futures prices. 

The aforementioned model is proven to elaborate on how green assets can be captured using the 

GARCH-type model with the affine jump-diffusion process. We also construct an in-depth theoretical 

analysis with perfect replication of a contingent claim. The paper empirically analyzes the behavior of 

green financial prices, thereby contributing to the literature by fitting the suggested model to market 

data including both the estimated parameters and price jumps. Motivated by the aforementioned 

insights, the purpose of this study is to focus on the theoretical features of the jump fractional Brownian 

motion model. The most appropriate model parameters are selected with respect to historical volatility 

filtered from underlying asset prices, driven by both the mfBm process and Poisson jumps. 

The remainder of this paper is organized as follows. In Section 2, we briefly review relevant 

studies. We describe the theoretical model for the green financial option and explain their properties 

in Section 3. In Section 4, we derive a European-style derivative for green financial option prices and 
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show empirical results of green financial assets, and outline a numerical application and several fresh 

empirical results. Finally, Section 5 concludes with some remarks. 

2. Related literature 

Fractional Brownian motion (fBm hereafter) has been widely utilized in financial modeling as 

well as in other fields since an fBm has two prominent properties of long-range dependence and self-

similarity to capture these abnormal phenomena [11]. Furthermore, as proposed by some prior research, 

the return distributions of financial assets are generally influenced by long memory (or long-range 

dependence) and self-similarity [12]. To deal with this problem, some authors have used to model them 

by utilizing the fractional Brownian motion (fBm) with Hurst exponent H∈(1/2,1), see, e.g., [13−17]. 

However, owing to the nature fact that fBm is neither a Markov process nor a semi-martingale, one 

should not apply the prevailing stochastic calculus to capture it. To deal with these problems, the long 

memory property is concerned and analyzed these fluctuations from financial markets. As natural 

extensions to this strand, several scholars [18−20] offered plausible explanations and have introduced 

to utilization of the so-called mixed fractional Brownian motion (mfBm), i.e., a linear compound of 

Wiener process and fractional Brownian motion (fBm). While the Hurst exponent of the fBm is larger 

than 1/2, then mfBm leads to a long-memory Gaussian process appropriate for modeling the financial 

return time series. Therefore, the mfBm has been commonly used in pricing different kinds of financial 

derivatives, including stock options [9,21], equity warrants [22], and currency options [15,23], and credit 

derivatives [24]. The extensive usage of fractional Brownian motion can be synthesized as follows: 

The first methodology is to use the mfBm as an alternative approach. Cheridito (2001) [18] has proven 

that if the Hurst coefficient is located on a specific scale, it is equal to Brownian motion. Several studies 

also have constructed option pricing models with the mixed fractional Brownian motion [9,24−27], it also 

is widely used in developing foreign exchange (FX) option pricing models [10,23,28]. The second 

methodology is to use approximative fractional Brownian motion developed by Thao (2006) [29] as 

an alternative approach. Chang et al. (2021) [30] introduced a pricing stock option model by modeling 

the dynamics of stock and the variance is governed by an approximative fractional process. 

Due to surprise macroeconomic news, analyzing ambiguous volatility and jump innovations in 

asset returns have attracted a great deal of attention. Therefore, several researchers have addressed the 

pricing contingent claims under jump-diffusion or self-exciting (Hawkes) processes (e.g., [31]). In this 

regard, there is also a growing literature explaining the sudden shocks or jumps using volatility models 

as shown by [32−34]. The exclusion of sudden shocks (changes) or jumps in the volatility dynamics 

can generate the persistence of estimated volatility bias (see, e.g., [35]) or jump dynamics in the 

volatility process [36]. Some studies in the area of option pricing (models) were conducted by [37,38], 

but an extensive empirical analysis is not undertaken yet. For this, we first apply the nonparametric 

approach to detect jumps in GARCH models developed by Laurent et al. (2016) [35] on leading green 

cryptocurrencies such as Solana (SOL) to identify the price jumps. Recognizing surprise news-driven 

jump phenomena, the difficulty of estimating jump parameters, and the importance of incorporating 

marketing information into option pricing models, we employ alternately jump models and more 

advanced option pricing models to obtain an insight into the green financial markets. 

Unfortunately, little attention has been dedicated to integrating green financial studies with that of 

option pricing to establish green financial option pricing models under jump-diffusion process. In the 

wake of blockchain technology, there is an increasing interest in tokenonomics or ‘token finance’, and 

many research papers have begun exploring the price dynamics of cryptocurrencies, see e.g., [32,33]. 

However, little work has been dedicated to incorporating jump detection into green financial assets to 
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conduct option pricing models with jump fractional Brownian motion.  

3. The representative models of pricing green financial options with jumps 

3.1. Definition 

Let a probability space (𝛺, ℱ, ℙ)  be a complete probability space with a right-continuous 

filtration (ℱt)t>0 . A fractional Brownian motion (fBm) with Hurst exponent H  ∈ (0,1] follows a 

centered Gaussian process. A mixed fractional Brownian motion 𝑀𝛼,𝛽
𝐻 (𝑡)of parameters are α,β and H 

stands for a linear compound of a Brownian motion or a Wiener process 𝑊𝑡 and fractional Brownian 

motion 𝑊𝐻(𝑡) with a Gaussian zero-mean nonstationary stochastic process indexed by a single scalar 

of Hurst parameter H ∈ (0,1), defined on a probability space {(ℱtt≥0, ) ℙ} by: 

𝑀𝛼,𝛽
𝐻 (𝑡)= α𝑊𝑡 + β𝑊𝑡

𝐻,  

where 𝑊𝑡 and 𝑊𝑡
𝐻 are independent, and α and β denote real constants such that (α, β) ≠ (0, 0). ℙ is 

the physical probability measurement and the information filtering {ℱt}t≥0 is produced by (𝑊τ, 𝑊τ
𝐻) 

for τ ≤ t, which meets the monotonic increasing properties. As shown in previous research, we list 

some properties of the mfBm.  

Proposition 1. The mfBm 𝑀𝛼,𝛽
𝐻 (𝑡) satisfies the properties as follow:  

(i) 𝑀𝛼,𝛽
𝐻 (𝑡) is a centered Gaussian process with mean zero and the covariation function is regarded as 

long-range dependence then given by 

𝐶𝑜𝑣(𝑀𝐻(𝑡),𝑀𝐻(𝑠)) = 𝛼2(t⋀𝑠)+
𝛽2

2
(𝑡2𝐻 + 𝑠2𝐻 − |t −s|2H), s,t >0;  

(ii) 𝑀𝛼,𝛽
𝐻 (𝑡) is not a Markovian process for H ∈ (0,1) \ { 

1

2
 }; 

(iii) The increments of 𝑀𝛼,𝛽
𝐻 (𝑡) are mixed-self-similar and stationary, in this regard, for any h > 0,  

𝑀𝛼,𝛽
𝐻 (𝑡)

𝑑
⇒ 𝑀

𝛼ℎ2,𝛽ℎ𝐻
𝐻 (𝑡);          (3.1) 

where the symbol 
𝑑
⇒ represents the random variables on both sides of the Eq (3.1) have drawn from 

the same asymptotic distribution;  

(iv) The increments of the process 𝑀𝛼,𝛽
𝐻 (𝑡) are positively correlated if H∈( 

1

2
,1),uncorrelated if H = 

1

2
 , 

and negatively correlated if H ∈ (0,
1

2
); 

(v) The increments of 𝑀𝛼,𝛽
𝐻 (𝑡) are long-range dependence if and only if H ∈ (

1

2
,1); 

(vi) The mfBm 𝑀𝛼,𝛽
𝐻 (𝑡) is equivalent to BM for H ∈ ( 

3

4
,1). 

Proof of Proposition 1 and for a comprehensive description of the features of the mfBm, the interested 

reader is referred to [19,22]. The details of the Hurst exponent algorithms are available from the 

corresponding author.  

Corollary 1. The assets prices at every t ∈ [0, 𝑇]  of a bounded ℱ𝑡
𝐻 -measurable claim can be 

described as 

ℱ𝑡 = 𝑒
−𝑟(𝑇−𝑡)𝔼𝑡(𝐹),          (3.2) 

where r is the constant risk-free interest rate.  

3.2. The market model 

    
(3.2) 
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The price process 𝑆 = (𝑆𝑡)𝑡 of a green financial asset is defined. Under the physical probability 

measure ℙ, the green financial prices with return dynamics are given by:  

𝑑𝑆𝑡

𝑆𝑡−
= (𝜇 − 𝜆𝑘)𝑑𝑡 + 𝜎𝑑𝑊𝑡 + (𝑒

𝐽 − 1)𝑑𝑁𝑡,       (3.3) 

where 𝜇 and 𝜎 are the instantaneous expected return and the continuous volatility, respectively. The 

process 𝑁𝑡 is a Poisson process, independent of the jump-sizes J with arrival intensity 𝜆 per unit 

time so that its increments satisfy 

𝑑𝑁𝑡 = {
0  with probability    1 − λ𝑑𝑡, jumps cannot occur,
1  with probability    λ𝑑𝑡. jumps can occur

   (3.4) 

 

The corresponding function is in that case, the expected proportional jump size 

𝑘 ≡ 𝔼ℙ(𝑒
𝐽 − 1). 

Recalling a filtered probability measure space [𝛺, ℱ, ℙ, (ℱt)t>0] is supposed where the filtration ℱt 
is the natural filtration yielded by the Wiener process 𝑊𝑡  under the market measure ℙ  and the 

compound Poisson process ∑ 𝐽𝑗
𝑁𝑡
𝑗=1 . Jumps arriving at different times are supposed to be independent 

of each other. A sample path 𝑆𝑡 for a process described by 

𝑑𝑆𝑡

𝑆𝑡−
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 + 𝑑[∑ (𝑒𝐽 − 1)

𝑁𝑡
𝑖=1 ] − 𝜆𝔼(𝑒𝐽 − 1)𝑑𝑡       

= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 + (𝑒
𝐽 − 1)𝑑𝑁𝑡 − 𝜆𝔼(𝑒

𝐽 − 1)𝑑𝑡.     (3.5) 

The mixed fractional nature and jumps have an impact on the fundamental theorem of asset 

pricing. This impact involves ensuring martingale properties under the risk-neutral measure1 ℚ and 

examining conditions that maintain market completeness with these dynamics. Specifically, we define 

the risk-neutral dynamics for the asset price under mixed fractional Brownian motion with jump 

diffusion, ensuring that the pricing measure ℚ  satisfies the no-arbitrage conditions and preserves 

market completeness. 

Under the risk-neutral measure ℚ, the asset price 𝑆𝑡 evolves according to 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑊�̃� + 𝑆𝑡(𝑒
𝐽 − 1)𝑑𝑁�̃�,        (3.5a) 

where 

- 𝑊�̃� is a standard Brownian motion under ℚ. 

- 𝑁�̃� is a Poisson process with intensity 𝜆 under ℚ, independent of 𝑊�̃�. 
- 𝐽 are the jump sizes with an adjusted distribution under ℚ to ensure the martingale property of the 

discounted asset price. 

3.3. Pricing European green financial option under fractional Brownian motion model with jumps  

To solve the prominent issues associated with the construction of our prime model, we model the 

long memory and jump-type behavior on the underlying asset price under an uncertain environment. 

Accordingly, pricing the European cryptocurrency option and carbon option in a mixed fractional 

Brownian motion with detecting jumps is analyzed. More accurately, we first show the dynamics of 

the underlying asset price driven by a jump fractional Brownian motion and then derive analytical 

 
1
 The authors are thankful to an anonymous referee for suggesting the mixed fractional Brownian motion with jump 

-diffusion model under risk-neutral measure ℚ. 
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pricing formulae for European options. Recent advances in mathematical models offer a better choice, 

the mixed fractal Brownian model with jumps (MFBMJ) has extended from mixed fractional Brownian 

motion (hereafter MFBM) which is a linear component of BM and FBM. 

European green financial options 

One of our purposes here is exactly to derive the pricing of European-style options for underlying 

green financial assets. Subsequently, the mfBm with jump model by incorporating the mixed fractional 

Brownian motion and Poisson jump process is acquired and several prominent features are investigated. 

To develop the fresh option pricing derivation in a jump mixed fractional market, some assumptions 

will be given as follows: 

(i) There are no transaction costs or taxes and all green assets are perfectly divisible; 

(ii) The risk-free interest rate is constant; 

(iii) Assets trading is continuous;  

(iv) Asset prices conform to FBM. 

Now consider an MFBMJ market that includes two investment possibilities: 

(i) A carbon market account: 

𝑑𝑝𝑡 = 𝑟𝑐𝑝𝑡𝑑𝑡, 𝑝0=1, 0 ≤ t ≤ T,       (3.6) 

where 𝑟𝑐 is the return of carbon emissions prices. 

(ii) A green crypto (Solana: SOL) whose price movements are governed by a fractional Wiener process 

as follows:  

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡

𝐻
, 𝑆0 = 𝑆>0, 0 ≤ t ≤ T,    (3.7) 

where H is Hurst parameter satisfied H > 1/2, where 𝑆𝑡 denote the spot price at time 𝑡 of one unit of 

the major green cryptocurrency: Solana is measured in low carbon emissions. 

Making the change of variable 

𝑊𝑡+𝑊𝑡
𝐻 =

𝜇+𝑟𝑔−𝑟𝑐

σ
+𝑊𝑡 +𝑊𝑡

𝐻
,        (3.8) 

then under the risk-neutral measure, one can obtain that:  

𝑑𝑆𝑡 = (𝑟𝑐 − 𝑟𝑔)𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡
𝐻, 𝑆0 = 𝑆>0, 0 ≤ t ≤ T,    (3.9) 

where 𝑟𝑔 is the return of green cryptocurrency (Solana). Hence, we obtain the solution of (3.7) as 

follows 

𝑆𝑇 = 𝑆𝑡𝑒𝑥𝑝(𝑟𝑐 − 𝑟𝑔)𝑇 + 𝜎(𝑊𝑇 +𝑊𝑇
𝐻) −

1

2
𝜎2𝑇 −

𝜎2

2
𝑇2𝐻.     (3.10) 

More importantly, under the risk-neutral measure 𝒫𝐻, the fractional Brownian motion model with 

jumps can be described as (3.11) 

𝑑𝑆𝑡

𝑆𝑡
= (𝜇𝑡 − 𝜇𝐽(𝑡))𝑑𝑡 + ∑ 𝜎𝑖𝑡

𝑁
𝑖=1 𝑑𝑊𝑡

𝐻𝑖 + 𝜎𝑡𝑑𝑊𝑡 + (𝑒
𝐽(𝑡) − 1)𝑑𝑁𝑡.   (3.11) 

𝑆0=S, 0≤t≤T, 

where 𝑁𝑡 represents a Poisson process with rate λ; 𝐽(𝑡) is the jump size percent at time t which 

follows a sequence of independent identically distributed (iid) process, and (𝑒𝐽(𝑡) −

1)~𝑁(𝜇𝐽(𝑡), 𝛿𝐽(𝑡)
2 ).  

Besides, the FBM i.e., 𝑊𝑡
𝐻𝑖,i= 1,𝑁, the Poisson process 𝑁𝑡, and the jump size (𝑒𝐽(𝑡) − 1) are 

https://www.sciencedirect.com/topics/mathematics/fractional-brownian-motion
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supposed to be relatively independent of all sources of randomness.  

Let  

𝑊𝑡 = 𝑊𝑡+∫
𝜇(𝑢)+𝑟𝑔(𝑢)−𝑟𝑐(𝑢)

σ(𝑢)

𝑡

0
𝑑𝑢 , 𝑊𝑡

𝐻𝑖
= 𝑊𝑡

𝐻𝑖.     (3.12) 

A risk-neutral measure 𝒫𝐻 is given by  

𝑑𝒫𝐻

𝑑𝒫
= 𝑒𝑥𝑝 (−∫ 𝜃(𝑢)𝑑𝑊(𝑢) −

1

2
∫ 𝜃2(𝑢)𝑑𝑢
⬚

𝑅

⬚

𝑅
),     (3.13) 

where 𝜃𝑡 =
𝜇(𝑡)+𝑟𝑔(𝑡)−𝑟𝑐(𝑡)

σ(𝑡)
.          (3.14) 

Then 𝑊𝑡 + ∑ 𝑊𝑡

𝐻𝑖𝑁
𝑖=1  stands for a new MFBM under the risk-neutral measure 𝒫𝐻. Under the risk-

neutral measure 𝒫𝐻, Eq (3.11) can be described as (3.15)  

𝑑𝑆𝑡

𝑆𝑡
= (𝑟𝑔(𝑡) − 𝑟𝑐(𝑡))𝑑𝑡 + ∑ 𝜎𝑖𝑡

𝑁
𝑖=1 𝑑𝑊𝑡

𝐻𝑖 + 𝜎𝑡𝑑𝑊𝑡 + (𝑒
𝐽(𝑡) − 1)𝑑𝑁𝑡.   (3.15) 

Let C(𝑆𝑡, 𝑡) be the price of a European contingent claim (option) at time t with a strike price X that 

expires at time T. Then we present the pricing formula for the green financial call option by the theorem 

as follows. 

Theorem 1. The price at every t ∈ [0, T] of a European call green financial option with strike price 𝑋 

that expires at time 𝑇 is described as 

𝐶𝑎(𝑆𝑡, 𝑋, 𝑡) =∑
𝑒−𝜆𝜏(𝜆𝜏)𝑛

𝑛!

∞

𝑛=0
ℰ𝑛[𝑆𝑡∏ 𝑒𝐽(𝑡𝑖)𝑛

𝑖=1 𝑒−(𝑟𝑔+𝜆𝜇𝐽(𝑡))𝜏ℕ(𝑑1𝑖) − 𝑋𝑒
−(𝑟𝑐)𝜏 ℕ(𝑑2𝑖)]  (3.16) 

where 

𝑑1𝑖 =

𝑙𝑛 (𝑆𝑡∏
𝑒𝐽(𝑡𝑖)

𝑋
𝑛
𝑖=1 ) + (𝑟𝑐 − 𝑟𝑔 − 𝜆𝜇𝐽(𝑡))𝜏 +

1
2 𝜎

2𝜏 +
1
2𝜎

2𝜏2𝐻

𝜎√𝑇2𝐻 − 𝑡2𝐻
 

𝑑2𝑖 = 𝑑1𝑖 − 𝜎√𝑇2𝐻 − 𝑡2𝐻 

ℰ𝑛 ,𝜏 = 𝑇 − 𝑡 , is the expectation operator over the distribution of ∏ 𝑒𝐽(𝑡𝑖)𝑛
𝑖=1  , time to expiration 

(maturity), respectively. ℕ(⋅) denotes the normal cumulative distribution. 

Proof of Theorem 1. In a risk natural world, from Corollary 1, a European call green financial option 

with maturity 𝑇 and strike price 𝑋 can be shown. Also, a European call option with maturity 𝑇 and 

strike price 𝑋 is theoretically equivalent to  

𝐶𝑎(𝑆𝑡, 𝑋, 𝑡) = 𝔼ℛ[𝑒
−𝑟𝑐(𝑇−𝑡)(𝑆𝑇 − 𝑋)

+⌊ℱ𝑡
𝐻]  

= 𝑒−𝑟𝑐(𝑇−𝑡)𝔼𝒫𝐻[𝑆𝑇 𝟏𝑆𝑇>𝑋⌊ℱ𝑡
𝐻] − 𝑋𝑒−𝑟𝑐(𝑇−𝑡)𝔼ℛ[𝟏𝑆𝑇>𝑋⌊ℱ𝑡

𝐻],     (3.17) 

where 𝟏𝑆𝑇>𝑋 denotes an indicator function. 

Let 𝑊𝑡 +𝑊𝑡

𝐻
= 
𝜇−∙𝜆𝜇𝐽(𝑡)+𝑟𝑔−𝑟𝑐

σ
𝑡 +𝑊𝑡+𝑊𝑡

𝐻.      (3.18) 

Then we obtain 

𝑆𝑇 = 𝑆𝑡∏ 𝑒
(𝜇−𝜆𝜇𝐽(𝑡))(𝑇−𝑡)+𝜎(𝑊𝑇−𝑊𝑡)+𝜎(𝑊𝑇

𝐻
−𝑊𝑡

𝐻
)×[−

1

2
𝜎2(𝑇−𝑡)−

1

2
𝜎2(𝑇2𝐻−𝑡2𝐻)]𝑁𝑇−𝑡

𝑖=1 ,    (3.19) 

let 

    
(3.19) 

                                                                                           

    
(3.16) 
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𝑆𝑇 = 𝑆𝑡∏ 𝑒
(𝜇−𝜆𝜇𝐽(𝑡))(𝑇−𝑡)+𝜎(𝑊𝑇−𝑊𝑡)+𝜎(𝑊𝑇

𝐻
−𝑊𝑡

𝐻
)×[−

1

2
𝜎2(𝑇−𝑡)−

1

2
𝜎2(𝑇2𝐻−𝑡2𝐻)]𝑛

𝑖=1 . 

Using the independence of 𝑁𝑇−𝑡 and 𝐽(𝑡𝑖) and the theory of Poisson distribution with intensity 𝜆(𝑇−𝑡), 
we have 

𝑆𝑇=∑ 𝑃(𝑁𝑇 = 𝑛)
∞
𝑛=0 𝑆𝑇

𝑛=∑
𝑒−𝜆𝜏(𝜆𝜏)𝑛

𝑛!

∞

𝑛=0
𝑆𝑇
𝑛.     (3.20) 

By utilizing the fractional Girsanov theorem, we conclude that 𝑊𝑇

𝐻
−𝑊𝑡 is a new mixed fractional 

Brownian motion under ℛ. Hence, setting  

𝑑2
∗ = 𝑙𝑛 (

𝑋

𝑆𝑡∏ 𝑒𝐽(𝑡𝑖)𝑛
𝑖=1

) − (𝑟𝑐 − 𝑟𝑔 − 𝜆𝜇𝐽(𝑡))𝜏 + 𝜎 (𝑊𝑇

𝐻
−𝑊𝑡) +

1

2
𝜎2(𝑇 − 𝑡) +

1

2
𝜎2(𝑇2𝐻 − 𝑡2𝐻), 

and applying Corollary 1, we infer that  

𝔼ℛ[ 𝟏𝑆𝑇>𝑋⌊ℱ𝑡
𝐻]= 𝔼ℛ [ 𝟏𝑑2∗<𝜎(𝑊𝑇

𝐻
+𝑊𝑡)<∞

⌊ℱ𝑡
𝐻] 

= ∫
1

√2𝜋[𝜎2(𝑇−𝑡)+𝜎2(𝑇2𝐻−𝑡2𝐻)]
×

∞

𝑑2
∗ exp [−

(𝑦−𝜎𝑊𝑇
𝐻
−𝜎𝑊𝑡 )

2

2[𝜎2(𝑇−𝑡)+𝜎2(𝑇2𝐻−𝑡2𝐻)]
] 𝑑𝑦 

= ∫
1

√2𝜋
× 𝑒−

𝑧2

2
𝜎𝑊𝑇

𝐻
+𝜎𝑊𝑡−𝑑2

∗/√𝜎2(𝑇−𝑡)+𝜎2(𝑇2𝐻−𝑡2𝐻)

−∞
𝑑𝑧 = ℕ(𝑑2),       (3.21) 

where 

𝑑2 =
𝜎𝑊𝑇

𝐻
+ 𝜎𝑊𝑡 − 𝑑2

∗

√𝜎2(𝑇 − 𝑡) + 𝜎2(𝑇2𝐻 − 𝑡2𝐻)
 

=
ln(

𝑆𝑡∏ 𝑒𝐽(𝑡𝑖)𝑛
𝑖=1
𝑋

)+(𝑟𝑐−𝑟𝑔−𝜆𝜇𝐽(𝑡))𝜏−
1

2
𝜎2(𝑇−𝑡)−

𝜎2

2
(𝑇2𝐻−𝑡2𝐻)

𝜎√(𝑇−𝑡)+(𝑇2𝐻−𝑡2𝐻) 
.      (3.22) 

Now we consider 𝔼ℛ[ 𝑆𝑇𝟏𝑆𝑇>𝑋⌊ℱ𝑡
𝐻] and set the following equation  

𝜎𝑊𝑡
∗ + 𝜎(𝑊𝑡

𝐻)∗ = (𝑊𝑡 − 𝜎𝑡) + 𝜎 (𝑊𝑇

𝐻
− 𝜎𝑡2𝐻).     (3.23) 

From the Girsanov transformation on the fractional Wiener process, one knows that there exists a 

probability measure 𝔼ℛ in which 𝜎𝑊𝑡
∗ + 𝜎(𝑊𝑡

𝐻)∗ is a new MFBM. 

𝑍𝑡 = 𝑒𝑥𝑝 (𝜎𝑊𝑇

𝐻
+ 𝜎𝑊𝑡−

1

2
𝜎2𝑡2𝐻 −

1

2
𝜎2𝑡).      (3.24) 

Let, then 𝑆𝑇 = 𝑆𝑡𝑒
(𝑟𝑐−𝑟𝑔)(𝑇−)𝑡𝑍𝑡 from previous theorem, we can obtain that  

𝔼ℛ[ 𝑆𝑇𝟏𝑆𝑇>𝑋⌊ℱ𝑡
𝐻] = 𝑆𝑡𝑒

(𝑟𝑐−𝑟𝑔)(𝑇−)𝑡 × 𝔼ℛ [ 𝑍𝑇𝟏𝑑2∗<𝜎(𝑊𝑇
𝐻
+𝑊𝑡)<∞

(𝜎𝑊𝑇

𝐻
+ 𝜎𝑊𝑡) ⌊ℱ𝑡

𝐻] 

= 𝑆𝑡𝑒
(𝑟𝑐−𝑟𝑔)(𝑇−)𝑡 × 𝔼ℛ [ 𝟏𝑑2∗<𝜎(𝑊𝑇𝐻∗+𝑊𝑇∗)<∞

(𝜎 (𝑊𝑇

𝐻
)
∗

+ 𝜎𝑊𝑡) ⌊ℱ𝑡
𝐻] 

= 𝑆𝑡𝑒
(𝑟𝑐−𝑟𝑔)(𝑇−)𝑡 × ∫

1

√2𝜋
× 𝑒−

𝑧2

2
𝜎(𝑊𝑇

𝐻)
∗
+𝜎𝑊𝑇

∗−𝑑1
∗/√𝜎2(𝑇−𝑡)+𝜎2(𝑇2𝐻−𝑡2𝐻)

𝑑2
∗ 𝑑𝑧 

= 𝑆𝑡𝑒
(𝑟𝑐−𝑟𝑔)(𝑇−)𝑡ℕ(𝑑1)             (3.25) 
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where 𝑑1 = 
ln(

𝑆𝑡 ∏ 𝑒𝐽(𝑡𝑖)𝑛
𝑖=1
𝑋

)+(𝑟𝑐−𝑟𝑔−𝜆𝜇𝐽(𝑡))𝜏−
1

2
𝜎2(𝑇−𝑡)+

𝜎2

2
(𝑇2𝐻−𝑡2𝐻)

𝜎√𝑇2𝐻−𝑡2𝐻 
 

𝑑2 = 

ln(
𝑆𝑡 ∏ 𝑒𝐽(𝑡𝑖)𝑛

𝑖=1
𝑋

)+(𝑟𝑐−𝑟𝑔−𝜆𝜇𝐽(𝑡))𝜏−
1

2
𝜎2(𝑇−𝑡)−

𝜎2

2
(𝑇2𝐻−𝑡2𝐻)

𝜎√𝑇2𝐻−𝑡2𝐻 
. 

From the above analysis, it is calculated that the price of the European call green financial option can 

be expressed as 

𝐶𝑎(𝑆𝑡, 𝑋, 𝑡) =∑
𝑒−𝜆𝜏(𝜆𝜏)𝑛

𝑛!

∞

𝑛=0
ℰ𝑛[𝑆𝑡∏ 𝑒𝐽(𝑡𝑖)𝑛

𝑖=1 𝑒−(𝑟𝑔+𝜆𝜇𝐽(𝑡))𝜏ℕ(𝑑1𝑖) − 𝑋𝑒
−(𝑟𝑐)𝜏 ℕ(𝑑2𝑖)]. (3.26) 

The proof is achieved. 

For the sake of simplicity, we consider only the above European call option in the following 

analysis, while the put option can be handled analogously. Furthermore, we can computer the price of 

a put green financial option which is produced by the following corollary. Perhaps, utilizing the put–

call parity, one can readily acquire the evaluation model for a put green financial option, which the 

following corollary is given by. 

Corollary 2. The price at every 𝑡∈ [0, 𝑇] of a European put green financial option with strike price 𝐾 

and maturity 𝑇 is described as follows.  

𝑃𝑢(𝑆𝑡, 𝑋, 𝑡) =∑
𝑒−𝜆𝜏(𝜆𝜏)𝑛

𝑛!

∞

𝑛=0
ℰ𝑛[𝑋𝑒−(𝑟𝑐)𝜏 ℕ(−𝑑2𝑖) − 𝑆𝑡∏ 𝑒𝐽(𝑡𝑖)𝑛

𝑖=1 𝑒−(𝑟𝑔+𝜆𝜇𝐽(𝑡))𝜏ℕ(−𝑑1𝑖)]  (3.27) 

where 𝑑1𝑖 and 𝑑2𝑖 are shown in the preceding equation. 

3.4. Jump detection in the green financial markets 

As discussed above, our model assumes that the underlying asset price processes are driven by 

mfBm and Poisson jumps. Thus, our first procedure is looking to estimate jump instants or excessively 

volatile, and our second procedure is to calculate the corresponding amplitude of the jump motion. Our 

approach is based on the argument introduced in [39] Bouri et al.’s (2020) work, in which methodology 

for estimating jump instants is proposed by Laurent et al. (2016 [35]; hereafter LLP) test. The LLP test 

is based on the semi-parametric approach which considers additive jumps in AR-asymmetric-GARCH 

models to take potential asymmetric effects into account. Assume random asset returns ( 𝑟𝑡) in an AR 

(1)-GJR-GARCH (1,1) model are described as follows:  

rt = 𝑢𝑡 + 𝜉𝑟𝑡−1 + 휀𝑡           (3.28) 

𝜎𝑡
2 = 𝜔 + 𝛼휀𝑡−1

2  +𝛾𝐷𝑡−1휀𝑡−1
2  +𝛽𝜎𝑡−1

2        (3.29) 

휀𝑡 = 𝑎𝑡𝑧𝑡 and  𝑧𝑡
𝑖.𝑖.𝑑
→  𝑁(0,1)        (3.30) 

where 𝑧𝑡 denotes the white noise process, and 𝜎𝑡
2 represents the conditional variance of  𝑟𝑡. Here is 

denoted as Dt−1 = 1 if  휀𝑡−𝑖< 0 and 0 otherwise.  

If a target-independent jump component 𝑎𝑡𝐼𝑡 is added to  𝑟𝑡, we can yield 

𝑟𝑡
∗ = rt + 𝑎𝑡𝐼𝑡          (3.31) 

where 𝑟𝑡
∗ represents the observed returns, 𝐼𝑡 is a binary variable taking the value of 1 in the case 

while a jump occurs on day t and 0 otherwise, and 𝑎𝑡 is the jump size. In Eq (3.31), an additive jump 

𝑎𝑡𝐼𝑡 cannot influence the conditional variance 𝜎𝑡+1
2  at the next period 𝑡 + 1 (see [35]).  

    
(3.27) 
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The results are qualitatively the descriptive statistics on significant jumps via LLP test and are 

shown in Table 2.  

4. Numerical analysis and results  

The study is conducted on green financial options with underlying green asset prices, including 

quotes according to two leading green assets: SOL (Solana) and Carbon. In this study, we designed a 

green financial option contract. First, we combined a generalized autoregressive conditional 

heteroskedasticity model (GARCH) to predict the dynamics jump of green financial assets. Next, we 

established a fractional Brownian motion option pricing model with temporally variable volatility. 

Consequently, we apply this approach to the valuation of option pricing by executing the closing price 

of the underlying assets of SOL (Solana) and Carbon from 14 April 2020 to 29 February 2024 as an 

empirical analysis. The trend of the prices detected by the GARCH model with jumps was consistent 

with the actual trend and predictions of actual prices were highly accurate. Our approach is based on 

ideas proposed in [39] Bouri et al.’s (2020) work, which method for estimating jump instants is 

introduced by Laurent et al. (2016) [35]. The technique is based on the semi-parametric approach 

which is extended to consider additive jumps in AR-asymmetric-GARCH models to measure potential 

asymmetric effects. 

4.1. Data description and statistical analysis 

This section aims to present the green financial option value process in the formula (3.20) based 

on the physical measure of underlying green asset prices. In the physical market, we can get 2,004 

historical data on the prices of SOL (Solana) and Carbon at https://coinmarketcap.com/ and 

https://www.investing.com, respectively. The sample period is April 14, 2020, to February 29, 2024, 

yielding 1,002 trading days. The selected sample is dictated by the price data availability of SOL, 

collected from the representative green cryptocurrency by market capitalization to ensure the longest 

possible period. Solana (briefly denoted as SOL) is regarded as a green cryptocurrency, see the list of 

sustainable cryptocurrencies (https://dailycoin.com/green-crypto-eco-friendly-cryptocurrencies/#h-

top-green-cryptocurrencies).  

4.2. Empirical data analysis on green financial assets 

As evidenced in the first-four moments shown in Table 1, the visual impressions are performed 

by the descriptive statistics for SOL’s log-return that the maximum, the minimum, and the mean values 

are 0.5805, −0.5495, and 0.0048, respectively. Taking into account these historical data, an important 

SOL (Solana) feature reports that the skewness value is greater than 0, so a large proportion of the data 

is found in the long right tail, with a relatively fat right tail, however, the opposite result for carbon. 

Taken together, the measure of log-return distribution is leptokurtic (10.28, 6.94), implying evidence 

of heavy tails, respectively. It also displays that the kurtosis is greater than the value of 3 for the 

standard normal distribution. The Jarque-Brea statistic was significant at P < 0.001; as a result, we 

rejected the hypothesis that the logarithmic return of all series follows a normal distribution. In 

particular, as depicted in Figure 1, we use daily prices and log-returns of SOL and carbon data to 

estimate parameter values as far as it is possible to capture the jump and diffuse risk. The bottom panel 

depicts volatility clustering and asymmetric jump diffusion in the carbon market. 

To further analyze the jump dynamics, Table 2 exhibit quarterly statistics of the significant jump 

components for both SOL and carbon returns. The jump size of carbon observations with mean, 

https://coinmarketcap.com/
https://www.investing.com/
https://dailycoin.com/green-crypto-eco-friendly-cryptocurrencies/#h-top-green-cryptocurrencies
https://dailycoin.com/green-crypto-eco-friendly-cryptocurrencies/#h-top-green-cryptocurrencies
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standard deviation, and jump probability equal 0.0658, 0.2481 and 0.0659, respectively. As a whole, 

the jump intensity λ is computed along with an average of 0.1214 for the full sample period. Figure 2 

illustrates the jump intensity visualization for the SOL and carbon. 

Figure 3 displays the estimated results for respective graphs of the GARCH model’s conditional 

variance as well as standardized residuals. Overall, as depicted in Figure 3, the conditional volatility and 

residuals of Carbon have smaller amplitude fluctuations than SOL (Solana) via the TGARCH (1,1) model. 

Hurst Exponent Calculation 

Following the method of Hurst exponent algorithms, a scatter plot of R/S values at window size 

is drawn with a natural base 𝑒 and the resulting slope of Hurst exponent values is fitted. According to 

the results in Table 1, the Hurst exponent is computed as 0.6715 and 0.5720 for SOL and carbon, 

respectively. These coefficients are significant since p-values are greater than the chosen values at a 

5% significance level. Table 1 also displays the values of the underlying green assets prices for the 

intensity of the jump process 0.065 when the power exponent is taken to be ℎ=0.572 value obtained 

from Table 1. The R/S statistics cannot reject the null hypothesis of the absence of long-range 

dependence in the case of return series. The observed results show that the daily log-return series for 

SOL and carbon display evidence of long memory behaviour since p-values are reported as 

significantly lower than 5 %. In this sense, this concludes that the returns of the two green assets exhibit 

the existence of high volatility persistence but follow a non-random walk. The result aligns with [40]. 

In addition, Figure 4 displays the boxplots of log(n) and log(R/S) and a clear linear pattern in the two 

markets, with n ranging from 1 to N. Notably, a general property is exhibited in Figure 4, the scatter 

diagram depicts that while the return series has shown an exponential market trend, and multifractality 

increased generally after their respective change-points. 

Table 1. Summary statistics of prices and its log-return for the SOL (Solana) and carbon. 

 SOL  𝑟𝑠 Carbon 𝑟𝑐 

Mean 47.5417 0.0048 63.9873 0.0009 

Median 26.4800 0.0019 70.3800 0.0014 

Maximum 248.470 0.5805 98.0100 0.1613 

Minimum 0.51530 −0.5495 19.3100 −0.1773 

Std. Dev. 53.9461 0.0861 23.3654 0.0276 

Skewness 1.6470 0.2379 −0.5132 −0.3960 

Kurtosis 5.0897 10.2789 1.8545 6.9415 

Jarque-Bera 635.359 2221.512 98.768 674.821 

Probability 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 

Standard error 0.0123  0.0273  

t-stat 13.978  2.633  

p-value 0.00%***  3.89%**  

Observations 2,004    

Notes: 

1. *, ** and ***, represent statistical significance at the 10%, 5%, and 1% levels, respectively.  

2. 𝑟𝑠 and 𝑟𝑐 denote the daily log return computed from closing prices of SOL and carbon. 

3. The carbon price is currency in EUR € and 𝑟𝑠 − 𝑟𝑐=0.0039. 
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Table 2. Descriptive statistics on significant jumps using LLP statistics. 

 SOL Carbon  

Jump Mean  0.1775 0.0658 

Jump Std Dev 0.3823 0.2481 

Jump probability 0.1766 0.0659 

average 0.1214  
No. of jumps per year   
2020 26 10 

2021 38 20 

2022 49 26 

2023 56 7 

2024 9 3 

Total jumps 178 66 

Notes:  

1. Concerning number of jumps and jump intensity are calculated as the total number jumps (# jumps), their 

proportion (%) over sample observations, i.e., shown as (P(jump) = 100 (#jumps/#obs.)), and their mean and standard 

deviation of jump components are also reported. Percentage of the year having jumps =  
Number of jump days

Total number of days
 ∗ 100. 

2. Yearly estimates for the Solana (SOL) and Carbon and no. of jumps denote the number of detecting jumps, and P 

(jump freq.) indicates the proportion of observations with a significant jump occurrence at α = 0.05.  

3. LLP statistics is the Laurent et al. (2016) [35] jump test statistic.
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Figure 1. The evolution of prices and log returns for SOL and carbon. 

Notes: 

1. As shown in the upper plot, an illustration of price dynamics given the evolution of the SOL (blue line) presents the huge and slight jumps. The most significant 

jumps are highlighted by red circles when the massive jump occurred. We use Solana (SOL) and carbon data to estimate parameter values as far as it is possible to 

capture the jump and diffuse risk. The data source is obtained from Coinmarketcap.com. 

2. The bottom panel depicts volatility clustering and asymmetric jump diffusion in the SOL and carbon market. 
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Figure 2. Jump intensity for SOL and carbon. 

Notes: 

1. Regarding the definition of jumps and jump intensity, and their mean and standard deviation of jump components, see Note of Table 1. 

2. Quarterly estimates for no. of jumps for SOL and carbon denote the number of identifying jumps, and P (jump freq.) indicates the proportion of observations with 

jumps, and jump frequency accounts for observations with a significant jump occurrence at α = 0.05. 
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Figure 3. The conditional variance and standardized residuals of TGARCH model for SOL and carbon. 

Notes: 

The top panel for respective graphs the TGARCH model’s conditional variance as well as standardized residuals 

generated from Eq (3.29) for SOL; the second panel plots the conditional variance and standardize residuals of the 

TGARCH model for carbon. In specific, the mean equation under a TGARCH process can be given in Eq (3.28).  
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Figure 4. An illustration of Hurst exponent for SOL and carbon. 

4.3. Value analysis of the green financial options 

Consequently, the above-expected average variance and average jump frequency are substituted  

into the jump-diffusion approximation, as discussed in [41] Bates (1991), and adequate conditions are 

determined based on the green financial option pricing. The real-world probabilities computed from 

historical price data are represented as physical or market probability measures ℙ. Consequently, the 

estimated model parameters can be employed in the option pricing under the risk-neutral pricing 

measure ℚ for all pricing options formula in Eq (3.16) above. In this context, we will display the 

values of the green financial options and the basic parameters are primarily listed: 

The log return of SOL 𝑟𝑠 is 0.48%, and the carbon 𝑟𝑐 is 0.09%, the 𝑟𝑠 − 𝑟𝑐 (cost of carry or 

position spread) is about 0.39%, accordingly. Based on the historical datum, we apply the R/S analysis 

approach to estimate the Hurst exponent (H=0.572). Next, we can calculate the valuation of the green 

financial call option using European contingent claims written on the underlying asset of green 

financial assets with carbon quotations lying in the closed interval of [4.85,5.30]. The remaining time 

to maturity T−t is updated according to the underlying asset. The empirical results are reported in Table 3. 

Now, we consider the values of the computed jump parameters and preceding Hurst parameters 𝐻= 

0.572 and then calculate the values for our green financial options under jump mixed fractional 

Brownian motion. Table 3 and Figures 5a and 5b display the values of the call green financial option 

against its parameters, 𝐻, 𝜆, and 𝜇𝐽. The chosen parameters are acquired from Table 1 as follows: 

S0 = 52.51(i.e., carbon price at 23 Feb.2024), 𝐾= 48.5, 𝑟𝑠= 0.0048, 𝑟𝑐= 0.0009, 𝜎 = 0.0276, 𝑡 = 0, 𝑇 = 

19 (days), 𝐻 = 0.572, 𝜆 = 7, 𝜇𝐽= 0.0065, and 𝛿𝐽 = 0.2418. Not surprisingly Figure 1 depicts that the 

option value is a decreasing function of 𝜇𝐽 , 𝛿𝐽 , and the increasing parameter of 𝐻 and 𝜆 is accompanied 

by an increase of the corresponding option value.  

4.4. Numerical application 

Concerning numerical experiments: Application to green financial derivative valuation, we 

provide numerical implications by using the asymptotic approximations of the green financial prices 

under numerical study. We can take a closer look at the values of our jump fractional green financial 

options for constant Hurst parameters H and then consider the values for computed jump parameters. 
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Panel b of Table 3 exhibits the values of a European green financial call option versus its parameters, 

H, λ, 𝜇𝐽, and δ. The defaulting parameters are 

S0= 52.51, 𝐾= 48.5, 𝑟𝑠= 0.0048, 𝑟𝑐= 0.0009, 𝜎 = 0.0276, 𝑡 = 0, 𝑇 = 117 (days), 𝐻 = 0.572, 𝜆 = 7, 𝜇𝐽 

= 0.0065, and 𝛿𝐽 = 0.2418.  

Perhaps unsurprisingly, Figure 5b suggests that the option value is an increasing function of λ, 

and increasing parameters of 𝜇𝐽 and 𝛿𝐽 are accompanied by an increase of the corresponding option 

value. However, the opposite result was reported in [42]. 

4.4.1. Calibration to market data 

This study provides a practical example of a green financial options contract written at the strike price 

on the interval (48.50−53.00) and calls underlying: ICE (Intercontinental Exchange) EUA Futures Mar’24 

(CKH24) on 23 February 2024. Our findings displayed in Table 3 should be interpreted with caution. 

4.4.2. Comparison of fits 

The fitting results are evaluated in terms of the major measure of the root mean squared error 

(RMSE) of the calibrated model prices in connection with the market prices. We summarize the pricing 

performance for the previously calibrated models. Turn to Table 3 displays the RMSE for the 

calibration on 29 February 2024, while the last column of Table 3 shows each model on the error 

evaluation indicator of RMSE. The longer maturity pricing options already do a better job than the 

short maturity pricing options, the call option model results in slightly better fits.  

Indeed, the general testing procedure is to compute the implied volatilities of option prices derived 

by this new model. In what follows, we can account for simultaneously green financial put option 

prices for various maturities utilizing the JFBM model. In the same way, we present the computed 

option values generated with our JFBM in Table 4. The calibrated parameters are 

The strike prices vary from 48.5 to 53.5, S0 = 52.51, 𝑟𝑠= 0.0048, 𝑟𝑐= 0.0009, 𝜎 = 0.0276, 𝑡 = 0, 𝑇 = 

117 (days), 𝐻 = 0.572, 𝜆 = 7, 𝜇𝐽 = 0.0065, and 𝛿𝐽 = 0.2418. 

As can be evidenced in the bottom panel of Figures 5a and 5b, the graphical results are clearly 

presented as the “smile” effect. That is, the implied volatility is not a constant but varies with 

moneyness and maturity, exhibiting our model has a good explanation of the “volatility smile” in 

option pricing.  

Regarding inclusive of a comparison between the proposed model and standard models like 

Black-Scholes or other jump-diffusion models without the fractional component. Now, we compared 

the implied volatility derived from the mfBm model to that of the conventional Black-Scholes model. 

More importantly, as depicted in the bottom panel of Figures 5a−5d, the implied volatility in the fitted 

JFBM model exhibits the “volatility smile” in option pricing for scenario a−d. However, the implied 

volatility in the fitted Black-Scholes model exhibits a straight line in option pricing. Therefore, we can 

confirm that our jump fractional Brownian motion (JFBM) model seems a reasonable and efficient one 

for pricing green financial options. 

4.5. Valuation implications  

This article empirically compounds the jump process and mixed fractional Brownian motion. 

Besides that, some specific properties of green financial asset pricing formulae are also presented. 

Moreover, numerical examples acquired in Section 4 suggest that our jump mixed fractional Brownian 
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motion model is commonly used and has particular features to capture the extreme movements of 

financial markets. In summary, owing to MFBM is a well-developed mathematical model of deeply 

correlated random processes and jumps can play an important role in financial markets. Meanwhile, 

JMFBM can be considered a more effective approach for pricing green financial options. In addition, 

financial asset returns usually have potential jumps, long memory, and volatility clustering. These 

behaviors cannot be completely captured by geometric Brownian motion. The main objective of this 

article is to apply a parsimonious parametric model that describes the crucial properties of the data. 

The major finding from the study is the model specification that allows fractional Brownian motion 

plus jump processes to quantify these properties of green financial datum. 

Table 3. Calculating European call option valuation with jump fractal Brownian motions. 

Panel a: 

Strike Market price Difference Option value Delta Premium RMSE 

48.50C 5.015 0.3651 4.6499 0.4950 1250 0.7325  

49.00C 4.65 0.4564 4.1936 0.6070 7600  

49.50C 4.295 0.5559 3.7391 0.5951 7300  

50.00C 3.955 0.6686 3.2864 0.5831 7010  

50.50C 3.63 0.7945 2.8355 0.5710 6725  

51.00C 3.32 0.932 2.388 0.5586 6450  

51.50C 3.03 1.0304 1.9996 0.5461 6180  

52.00C 2.755 0.9314 1.8236 0.5335 5915  

52.50C 2.485 0.7321 1.7529 0.5207 5660  

53.00C 2.24 0.5499 1.6901 0.5079 5410  

Notes: 

1. 19 days to expiration on 03/13/24 (Implied Volatility: 58.96%). 

2. Price value of option point: EUR 1,000. 

3. ICE EUA Futures Mar’24 (CKH24) and options prices for Fri, Feb 23rd, 2024. 

Also,  

S0 =52.51 at 23-Feb-24. 

4. Downloaded from Barchart.com as of 02-23-2024. 

 

Panel b: 

Strike Market price Difference Option value Delta Premium RMSE 

49.00C 7.78 (0.0006) 7.7794  0.6071 7600 0.4732  

49.50C 7.47 0.0978  7.5678  0.5951 7300  

50.00C 7.165 0.1965  7.3615  0.5831 7010  

50.50C 6.875 0.2853  7.1603  0.5710 6725  

51.00C 6.59 0.3742  6.9642  0.5586 6450  

51.50C 6.315 0.4582  6.7732  0.5461 6180  

52.00C 6.045 0.5421  6.5871  0.5335 5915  

52.50C 5.785 0.6210  6.4060  0.5207 5660  

53.00C 5.535 0.6946  6.2296  0.5079 5410  

53.50C 5.285 0.7730  6.0580  0.4952 5170  

Notes: 

1. 117 days to expiration on 06/19/24. 

2. ICE EUA Futures Jun '24 (CKM24) and options prices for Fri, Feb 23rd, 2024. 
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3. Market price downloaded from Barchart.com as of 02-23-2024. Also, a summary of 

the pricing performance and calibration on 23 February 2024.  

Table 4. Calculating European put option valuation with jump fractal Brownian motions. 

Panel a: 

Strike Market price Difference Option value  Delta Premium RMSE 

48.50P 1.295 0.6602 0.6348 −0.5076 6450 0.9878  

49.00P 1.43 0.7519 0.6781 −0.3760 4380  

49.50P 1.575 0.8518 0.7232 −0.3899 4580  

50.00P 1.735 0.9649 0.7701 −0.4041 4790  

50.50P 1.91 1.0912 0.8188 −0.4184 5005  

51.00P 2.1 1.2291 0.8709 −0.4329 5230  

51.50P 2.31 1.328 0.982 −0.4476 5460  

52.00P 2.535 1.2293 1.3057 −0.4624 5695  

52.50P 2.765 1.0304 1.7346 −0.4774 5940  

53.00P 3.02 0.2486 2.7714 −0.4924 6190  

Notes: 

1. Time to Maturity=19 days. 

2. Downloaded from Barchart.com as of 02-23-2024 06:51pm CST. 

3. European put options prices are estimated via Eq (3.27). Calibration of the jump fractal 

Brownian motions model is simultaneously used to put options, which are the same as Table 3. 

 

Panel b: 

Strike Market price Difference Option value Delta Premium RMSE 

49.00P 3.98 0.2558  4.2358 -0.3761 4380 0.6920  

49.50P 4.17 0.3518  4.5218 -0.3899 4580  

50.00P 4.365 0.4481  4.8131 -0.4041 4790  

50.50P 4.575 0.5345  5.1095 -0.4184 5005  

51.00P 4.79 0.6211  5.4111 -0.4329 5230  

51.50P 5.015 0.7026  5.7176 -0.4476 5460  

52.00P 5.245 0.7842  6.0292 -0.4624 5695  

52.50P 5.485 0.8606  6.3456 -0.4773 5940  

53.00P 5.735 0.9318  6.6668 -0.4924 6190  

53.50P 5.985 1.0050  6.99 -0.5076 6450  

Notes: 

1. Time to Maturity=117 days. 

2. Numerical results are based on historical parameter estimates and then calibration of the 

jump fractal Brownian motions model is simultaneously used to put options. 

3. Downloaded from Barchart.com as of 02-23-2024 06:51pm CST. 
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Note: The produced results are performed from the software provided by [43] Haug (2007). 

Figure 5a. Option value against the maturity time and the asset price (Scenario a). 

 

Option value 

                                                                                           

JFBM model 
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21516 

AIMS Mathematics  Volume 9, Issue 8, 21496−21523. 

 

 

Figure 5b. Option value against the maturity time and the asset price (Scenario b). 
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Figure 5c. Option value against the maturity time and the asset price (Scenario c). 
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Figures 5d. Option value against the maturity time and the asset price (Scenario d)  

As usual, a convergent algorithm and a large sample are necessary for relatively precise estimates 

of the parameters. 

Option value 

                                                                                           

Scenario d: Implied volatility against the strike price                                                                              
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 Scenario d: The chosen parameters 

 
  

   

Time in :  

Asset price ( S ) 52.51 

Strike price (𝑋 ) 49.00 

Time to maturity (√𝑇2𝐻 − 𝑡2𝐻  ) 88.0000 

Risk-free rate ( r ) 2.00% 

Cost of carry (𝑟𝑠 − 𝑟𝑐) 0.40% 

Volatility (  ) 2.70% 

Jumps per year (  ) 7.00 

Avg.% jump size (kbar) 6.50% 

Jump std. Deviation 24.00% 

Jump-diffusion value 4.2358 
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To our knowledge, the prior studies on option valuation under an uncertain mixed fractional 

Brownian motion with a jump model are rare. That is to say, we ought to investigate a more 

predominate asset-pricing model to capture both the jumps and long-range dependence behaviors of 

the underlying asset price, and identify key sources of uncertainties, i.e., both uncertain and 

randomness. Motivated by the aforementioned insights, the major objective of this paper is to expand 

the tractable analytical tool of the uncertainly mfBm model to alternative models with jumps. 

5. Conclusions and research suggestions  

5.1. Conclusions 

At present, In the face of severe climate change, researchers have looked for assistance from 

financial instruments. They have examined how to hedge the risks of these instruments created by 

market fluctuations through various green financial derivatives, including green bonds (i.e., fixed-

income financial instruments designed to support an environmental goal). In this study, given the 

historical measure, we use the GARCH-type models with jump innovations to describe the price 

dynamics of green financial prices as well as the important components in long-memory behavior. As 

suggested in Figures 2 and 3, we confirm that combining jumps detection of the green financial market 

with the calibrated parameters in the computational methods for the option pricing model is suitable. 

This paper develops a new model and produces instruments for digital currency and green options 

based on the GARCH model with jumps detection and fractional Brownian motion (FBM). The 

findings hope to offer a reference for upcoming green financial options trading through the green 

financial option price predicting technique. The fractal feature of green financial option prices implies 

that it is reasonable to utilize FBM to predict option prices and the GARCH model incorporating the 

detected jumps can remedy the lack of constant FBM volatility. The modified fractional Brownian 

motion option pricing model improved the pricing accuracy. Our results can be treated as a policy 

reference for the development of a green financial derivatives market and can accelerate the 

transformation of markets towards a more sustainable economic development model.  

To the best of our knowledge, this is the first study to investigate the phenomenon of SOL’s jump 

risk and long-memory gap to explain its valuation as “exceptionally ambiguous”. In addition, evidence 

suggests that SOL price movements have fat-tailed distributions and the returns process of the SOL 

demonstrates sudden and unexpected price jumps. There is evidence of jumps in the corresponding 

green financial options. Moreover, these results may be valid for the SOL and carbon of GARCH 

option pricing models owing to the blockchain progress. 

5.2. Research recommendations 

As discussed before, this paper utilizes a jump fractional Brownian motion to describe the 

behavior of the prices of SOL and carbon and infers the European green financial option pricing model 

in this jump fractional environment. In addition, some specific features of green assets pricing 

formulae are also indicated. Our numerical results in Section 4 present that it seems to be necessary to 

utilize our jump fractional Brownian motion model when the time to maturity is sufficient. At the same 

time, our JFBM model is essential to use and has the potential to interpret the natural phenomena of 

volatility smile in option pricing. All in all, jumps play a crucial role in financial markets, and the jump 
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fractional Brownian model can be a more suitable model for pricing green financial options because 

fractional Brownian motion is a cogent mathematical model for self-similarity with vigorously 

correlated stochastic processes.  

Finally, after analyzing SOL’s price under jump-diffusion process, the benefits it may bring, and 

the potential problems that might arise, we present the specific policy recommendations for the 

government about green financial assets and derivatives enforcement and regulations that require 

amendment.  
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