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Abstract: The modified function projective synchronization problem for master-slave neural networks
with mixed interval time-varying delays is presented using periodically intermittent feedback control.
The interval distributed time-varying delay including the lower and upper bound is comprehensively
established, which developed from the previous work. The following techniques are utilize to
analyze the appropriate criteria for the modified function projective synchronization problem for
master-slave neural networks with mixed interval time-varying delays such as the construction of
appropriate Lyapunov-Krasovskii functionals merged with Newton-Leibniz formulation method, the
intermittent feedback control technique, the reciprocally convex technique’s lower bound lemma,
Jensen’s inequality, and the piecewise analytic method. The sufficient criteria for the modified function
projective synchronization of the error system between the master and slave neural networks with
intermittent feedback control are first established in terms of linear matrix inequalities (LMIs). The
designed controller ensures that the synchronization of the error systems are proposed via intermittent
feedback control. Finally, numerical examples are given to demonstrate the effectiveness of the
proposed method.
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1. Introduction

Neural networks (NNs) have been a fascinating topic during the last decade and have been
intensively researched. A neural network is a calculation model spurred by the organic brain
organizations in the cerebrum with a mix of neurons and neurotransmitters. There have been
widely applied in many aspects, such as software engineering, physics, psychology, biology, artificial
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intelligence (Al), and electrical engineering. On the other hand, due to the connecting of neurons, the
state of neural network nodes tends to be consistent with time. So there are many research studies on
the synchronization of neural networks have been applied in many areas, including neural computing,
image processing, traffic systems, and secure communication.

Since the restricted interchange speed of neurons and amplifiers can lead to network instability or
inconstancy, time delays are always required for neural networks. As a result, as stated in [1-12],
neural networks incorporating time delay have garnered a lot of study attention. Time delay is a
natural phenomenon that always occurs in neural networks. Note that the latency of information
processing and the limited speed of information transmission between neurons causes the discrete
time delay [1-9]. On the other hand, since the variety of sizes and lengths of the axon, nerve impulses
are distributed, which causes the distributed time delay [13]. Such delays frequently lead to system
instability, oscillation, and decreased performance. Therefore, time delays cannot be avoided in the
analysis of stability and performance for neural networks, and many researchers have studied neural
networks with distributed and discrete time delays [11, 12]. In 2018, Zhou and Cai investigated
the synchronization of two delayed neural networks using intermittent feedback control, In 2016,
Balasundaram, Raja, Zhu, Chandrasekaran and Zhou investigated discrete-time stochastic recurrent
neural networks with multiple time-varying leakage terms and impulsive effects, and [7] investigated
the synchronization of chaotic neural networks with discrete time-varying leakage terms and impulsive
effects using delayed exponential synchronization.

Recently, synchronization has been a hot topic in neural networks with delays. Synchronization
is a term that refers to the process of weaving the threads of execution of several tasks together
without destroying shared data or causing deadlocks or race conditions. Synchronization also
occurs between network nodes to ensure that send and receive streams operate correctly and that
information does not collide. Projective synchronization [12—17], cluster synchronization [18-21],
general decay synchronization [22], quasi synchronization [23], complete synchronization [24], lag
synchronization [25], finite-time synchronization [26], and outer synchronization [27, 28] are some
of the types of synchronization that have been defined. Function projective synchronization is
characterized that the master and slave systems could be synchronized up to a scaling function.
Function projective synchronization is a more general definition than that of projective synchronization.
It could be used to get more secure communication in applications because it is evident that
the unpredictability of the scaling function in function projective synchronization can enhance
communication security, such as [29]. In [30], Cai, Hao, and Liu examined how to use intermittent
control to accomplish exponential synchronization of two chaotic systems with delays using
intermittent control. In [31], Xing, Jiang, and Hu utilized Lyapunov functional theory, mathematical
induction, and an inequality technique to provide intermittent synchronization for delayed recurrent
neural networks. To the best of the author’s knowledge, no publication has been made on a neural
network’s proposed exponential function projective synchronization.

To date, many effective control approaches to study the stabilization problem of time delay systems
have been put forward, including continuous state-feedback control and discontinuous state-feedback
control. In recent years, discontinuous feedback control, such as switch control, impulsive control,
and intermittent control, has received wide attention. Especially intermittent control was proposed
in the seminal paper in [32] and has aroused a great deal of interest due to its broad potential
applications in various practical systems [33-36], such as economy, transportation, communication,
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manufacturing, etc. Compared with continuous control, intermittent control is more economical and
practical when the system output is measured intermittently rather than continuously. Compared
with impulsive control, intermittent control is easier to implement in practical applications and
process control because it has a nonzero control width. However, impulsive control is activated
only at some isolated instants. Owing to those merits, intermittent control has become a hot
control method in various fields and achieved many results [37-39]. The intermittent control
strategy also finds applications in physiological modeling, networked control systems, transportation,
economy, communication, and manufacturing, among others [40—43]. The problem of exponential
synchronization for the complex dynamical network with mixed time-varying under periodically
intermittent control was studied in [44]. In [45], the problem of projective synchronization of a
hyperchaotic system under periodically intermittent control has been investigated. On the other hand,
nonperiodically (aperiodically) intermittent control permits us to vary both the constant and the control
width [46,47]. In [48], Pecora and Carroll presented the master-slave approach for synchronizing
two identical chaotic systems with differing beginning circumstances in recent years. Aperiodic
intermittent control is more practicable than intermittent control regularly. In [12], Abdurahman,
Jiang, and Teng investigated the synchronization of impulsive neural networks with heterogeneous
time-varying delays using projective function synchronization. The Lyapunov stability theory,
the periodically hybrid intermittent feedback control technique, the differential inequality method,
and inductive mathematics were used to derive the theoretical result in [49], which examined the
synchronization of master-slave neural networks with mixed time-varying delays. Later in [50], the
exponential synchronization of chaotic neural networks with time-varying delay was studied using an
intermittent output feedback approach. However, there is room for improvement. No study has been
published on function projective synchronization for master-slave neural networks with mixed interval
time-varying delays via intermittent feedback control.

Motivated by the above discussion, we have considered the issue of modified function projective
synchronization for master-slave neural networks with mixed time-varying delays in this paper. The
neural networks may not be synchronized when a controller is not added to the infrastructure of
individual nodes. Hence the controlled synchronization of neural networks is a rather important
topic in both theoretical research and practical applications, such as feedback control [51], intermittent
control [31]. We have considered periodically intermittent control and feedback control in this paper.
Intermittent control is to control systems via discontinuous control inputs at a control period. In
some cases, it can be impossible to use only the synchronization of neural networks at all times.
Therefore, using synchronization of neural networks in some intervals may prove more cost-effective
than synchronization of neural networks at all times. As a result of the above, we will study the
intermittent feedback controller with mixed time-varying delays, including both discrete interval and
distributed time-varying delays representing two time-varying differential functions o(¥) and o, (¢)
are treated as continuous functions belonging to the specified interval. These delays have upper and
lower bounds required to find the function derivative, similar to the time delay in [12]. Developing
a novel Lyapunov-Krasovskii functional and linear transformation technique, employing the lower
bound and upper bound lemma for the reciprocally convex approach, novel criteria for the master
system’s synchronization with the slave system derived in terms of linear matrix inequalities (LMIs).
Additionally, this study disproves the commonly held notion that the upper bound of the delay-
derivation upper bound of time-varying delay must be less than 1. Finally, simulated examples are
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offered to demonstrate the use and benefits of the proposed techniques.

This paper is organized as follows. Section 2 contains model descriptions and preliminaries.
Section 3 introduces several criteria for establishing modified function projective synchronization
across master-slave neural networks with heterogeneous time-varying delays. Finally, Section 4 uses
numerical examples to demonstrate the utility of the theoretical result.

2. Problem formulation and preliminaries

The following notation will use in this paper: R indicates the set of real numbers, R* denotes the
set of all real non-negative numbers, R” denotes the set of n-dimensional real spaces equipped with the
Euclidean vector norm || . ||, and R™™ denote the space of all matrices of n X m-dimensional. AT is
denoted the transpose of matrix A, A is symmetric if A = AT, 1,,,.(A) and Ay, (A) signify the maximum
and minimum eigenvalues, respectively, of matrix A. I denotes the identity matrix with the appropriate
dimensions. The symbol *x always denotes the symmetric block in a symmetric matrix.

Consider the neural networks model shown below, which incorporates both interval and distributed
time-varying delays:

#(1) = —Cx(t) + AR (D) + Bf(x(t — ko) + D [777 fA(x(s))ds. 1 > 0, 0
x(1) = ¢(0),t € [-7,0], 7 = maxi/y, pa},
$(0) = =Cy(0) + ARGM) + BAGE = k) + D [ 7 A()ds + U, 1> 0, .
y(t) = @), 1 € [-7,0], 7 = max{h, p2},

where x(t) = [x1(2), x2(?), ..., x,(¥)] € R" and y(¢) = [y((?), y2(?), ..., y.(£)] € R" are the master system’s
state vector and the slave system’s state vector, respectively, n is the number of neurons, C € R™"
is a positive matrix, A € R™, B € R™ and D € R™" represent the connection weight matrices.
U(¢) represents the control input that will be designed. The initial conditions ¥(¢) and ¢(¢) denote
continuous vector-value initial functions, A(¢) and o;(¢) (i = 1,2) denoted the interval discrete time-
varying delay and interval distributed time-varying delay, respectively, &,, p, is the upper bound of A(¢)
and o;(i = 1, 2), respectively.
Assumptions include the following:
(A.1) The delay functions A(f) : R* — R*, and o;(¢) : R* — R* satisfy 0 < h; < h(f) <
and 0 < p; < 01(f) < 0»(t) < pa, respectively, where 0 < /(f) < u < 00,0 < hy <
0 < p; < p2,t € R* and u > 0 are given real constants.
(A.2) For the activation functions fi(-), f>(-) and f3(-) with f;(0) = £2(0) = f5(0) = 0, assume there
are three matrices with positive diagonals. €, €, and €3, there hold

1AO) —afi@IP < (y—an)a@ - ax),
10w — afrnlP < O — axp) &y — axy),
1A0) - afsIf v — a0 &y - ax).
where y, = y(t — h(t)), x, = x(t — h(?)).

The master system (1) is said to achieve exponential function projective synchronization with the
slave system (2) if there exists a continuously differentiable positive scaling function a(#) > 0 such that

25

h
ha,

IA

lim [le;(1)[| = Lim [ly;(6) — a(Ox: (I, i = 1,2,, ..., N,
—00 —00
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where || - || stand for the Euclidean vector norm and x(¢) € R” can be equilibrium point.
By defining the error signal as e(f) = y(f) — a(t)x(t), we obtain the following synchronized error
system for master-slave neural networks:

e(r) = y(@) — a()x() — a@)x(),
= =Cly@®) — a()x(@®)] + AL/i(@®) — a(@) fi(x(D))]
+B[L((t — h(1))) — (D) f2(x(t = h(D))] — &(D)x(7)
t—0 1 (f) 1= (1)
+D| f | HOGNs=a® | ftsnds| + U0, 3)

We design the following periodically intermittent feedback controller:
U@) = ui (1) + ux (1), C))

where

w () = a@x(@) + Aa() f1(x(0) = Afi(a(D)x(®)) + Ba(1) fo(x(t = h(1)))

1= (1)

—Bfr(a()x(t — h(1)) + Da(1) f3(x(5))ds

t=0(1)

t—01 (1)
—Df Sala(s)x(s))ds,

—o2(1)

MJGe(1),t € [nQ,nQ + {),
uy(t) =
0,1€[nQ+¢,(n+ 1)Q),

where n € Z*, M and G are constant matrix and J is a control gain metrices, € is the control period,
0 < €< Q, and ¢ is the so-called control width.

Substituting intermittent feedback controller (4) for the error system of master-slave neural
networks (3), the closed-loop system shown below demonstrates the findings:

t—o1(t) »

o {—(C — MIG)e(t) + Afi(e(t) + Bfs(e(t — h(@)) + D ["7'" fie(s))ds, t € [nQ,nQ + 0),
e =

R R oi(®) A (1) 5
~Ce(r) + Afi(e(t) + Bfse(t — h(1)) + D [ fi(e(s))ds, 1 € [nQ + €, (n + 1)Q), ©)

where
file@®) = AOGD®) - a®fi(x()),
flet = h(t)) = LOE— 1) —a@®fH(x( - h(t))),
file(s) = HO(5)) — als) f(x(s)),

and A(?) = ¢(t) — a(t)y(1) is the error system’s starting state (3).

Remark 1. When a(t) = 1 or a(t) = —1 is used as the scaling function, the synchronization issue is
simplified to complete synchronization or anti-synchronization. When a(t) = 0, the synchronization
issue becomes a chaos management challenge.
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To establish our primary findings, we will require the following definitions and lemmas.

Definition 2.1. [12] Error system for master-slave neural network with mixed interval time-varying
delays (5), which including both discrete interval and distributed interval time-varying delay is said
to achieve exponential function projective synchronization (EFPS) if there exists L > 1, A > 0 and a
continuously differentiable positive scaling function a(t) > 0 such that

tim [le()l| = Tim [[y(1) = e()x(®) < LIY() - ae®lle™, Vi > 0,

where || - || stands for the Euclidean vector norm.

Remark 2. The neural networks will achieve function projective synchronization if the scaling function
a(t) is a function of t. Many different types of synchronization are included in the function projective
synchronization, when a(t) = a or a(t) = 1, the function projective synchronization is reduced to
projective synchronization or common synchronization proposed in [15—-17] and [52, 53], respectively.
It is worth pointing out that there was no exponential function projective synchronization for master-
slave neural networks with intermittent feedback control shown in the system (5).

Lemma 2.1. [54] For any constant symmetric positive matrix M > 0 scalar d > 0 and vector function
Z : [0,d] — R", such that the integrations concerned are well defined, the following inequality holds:

_ ft T MZ(s)ds < _Zli[ j: dZ(s)ds]TM[ j: Z(5)ds]. )

—d d

Lemma 2.2. [55] Define the function ®(y, H) as follows for all vectors o € R? :
1 1
O(y,H) = =" W HW o + 1—0'TW2T HWyo (7)
Y -

for a pair of positive integers q, p and a scalar v € (0, 1), a matrix with a positive definite value
H € R??_ two matrices Wy and W, € R if a matrix K € R?1 exists such that

H K
[ ol <0 ®)
consequently, the following inequality is true:
T
. W]O' H K W]O'
> .
minyeon®r- B 2w o |« H [WZO']

Lemma 2.3. [56] (Schur’s complement) Given matrices X, Y and Z with X' = X and Z" = Z, then
XY
[* 7 <0, )]

is equivalent to one of the following condition
(1)X<0andZ-Y'X'Y <0,
(2)Z<0and X -YZ7'YT <0.
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Remark 3. In this paper, distributed delays o(t) and o,(t) are included in the system (5), which is
more general and flexible than the previous research [57-59]. Then, these results can be established
as new criterion LMIs.

The goal of this work is to create the controller with the structure (4) that is capable of exponentially
synchronizing the master system (1) and the slave system (2). Furthermore, we are interested in
developing a feedback gain matrix J that is exponentially stable for the controlled error system (5).

3. Main results

In this section, we will evaluate the modified function projective synchronization of the master
systems (1) and the slave system (2) utilizing suitable Lyapunov-Krasovskii functionals method,
Jensen’s inequality, the reciprocally convex technique’s lower bound lemma, and piecewise analytic
method.

Theorem 3.1. The master system (1) and the slave system (2) achieve exponential function projective
synchronization under periodically intermittent feedback controller (4), for given scalar 0 < a < 8
there exist nxn-symmetric positive definite matrices P, Q, Q», Oz, S1, S», R, nXn-matrices Wi, W,
and J such that the following inequalities hold:

(Y11 Si—-Wi W, 0 0 0  y,; 2PA 2PB 2PD)]
* Y22 Y23 W, 0 0 0 0 0 0
* * viz So—-W, O 0 0 0 0 0
* * * Va4 0 0 0 0 0 0
* * * * V5.5 0 0 0 0 0
I= * * * * * —-R+eg 0 0 0 0 <0, a0
* * * * * * v77 2PA 2PB 2PD
* * * * * * * =1 0 0
* * * * * * * * -1 0
B * * * * * * * * -1 |
(611 S —-W, W, 0 0 0 —~C"P 2PA 2PB 2PD)]
* Y22 Y23 i} 0 0 0 0 0 0
* * viz S,—-W, 0 0 0 0 0 0
* * * Yaa 0 0 0 0 0 0
* * * * Ys.s 0 0 0 0 0
A= * * * * * —-R+e& 0 0 0 0 <0, an
* * * * * * v17 2PA 2PB 2PD
* * * * * * * -1 0 0
* * * * * * * * -1 0
B * * * * * * * * —I |
S, = il ‘;Vll] >0, (12)
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where

Y1 =

011 =
Y7 =
Y22 =
Y23 =
Y33 =
Y44 =
Y55 =
Y11 =

Sy =

S, W,
N Sz] > 0,

(@+p)f-pQ>0,

—PC-C'P+PMIG+G " I"TM"P+Q,+ Q0+ 03— S, +2aP
+(o2 — p1)°¢ 2R + €,

—PC-C'"P+ Qi1+ Qs+ Q3—81—2BP+ (0, — p1)°e R + €,

—C'P+G"J"TM"P,

WI+ W, -28, -8, -eQ,,
S1+8, =W, =W,

W) +W,—S,-25, +e,

—e "0, - S,

—(1 = guye "™ Qs,

hie>™MS | + hye S, — 2P,

Proof. We considered the following Lyapunov-Krasovskii functional:

where

It is easy to check that

AIMS Mathematics

V3

Vi

Vs

V7

7
V(t9 et) = Z Vi’
i=1

el (H)Pe(t),
f el ()01 e(s)ds,

—hy

'
f el (5)0se(5)ds,
t

—hy

t
f 700! (5)Qse(s)ds,
t

0]

0 t
hy f f 2= T (9)S | e(0)d sdo),
—hy t+6

0 t
h, f f 2= 6T (9)S L o(0)d sd),
—hy Jit+6

—P1 !
(02— p1) f f 2671 T (O)Re(0)d sdb.
P2 +6

+

Alle®I? < V(t,e) < AalledP,

(13)

(14)

15)

(16)
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where

/ll /lmin(P)’
/12 = Amax(P) + /?vmax(Ql) + ﬂmax(QZ) + /lmax(Q3) + hl/lmax(S 1) + hZAmax(SZ)
+(,02 - pl)/lmax(R)'

Calculating the derivative of V(¢, x,) with respect to ¢ along the error system’s trajectory (5) indicates
that

Vi = 2 (0)Per),

V, = e (00ie(t) — e ™Me (1 = h)Qe(t — hy) = 2a Vs,

Vi = e (Qse(t) — e (t — hy) Qrelt — hy) — 2a'Vs,

Vi < e (00se() — (1 - gu)e e’ (t — ph(1)) Qse(t — ph(1)) — 2V,
!

Vs < hie ™Ml (S e(t) — hy f 21T (6)S 1 e(s)ds — 2a Vs,
—hy
!

Vs < hze el (H)S,e(t) — hy f T (§)Se(s)ds — 2a Vs,
ho

=01 (1)

Vi < (p2—p1)’e el (HRe(t) — (o(t) - Ul(f))f TPl (s)Re(s)ds — 2a'Vs,

(1)

then, we obtain that

V(t,e) < 2e"(t)Pe(t) + e (1)(Q1 + Qs + Q3 + (p2 — p1)*e > R)e(t)
—e Mol (t — h)Qye(t — hy) — 2aVs,
—e 2"l (1 — hy) Qre(t — hy) — 2aV3 — (1 — gpye >*"e’ (1 — ph(1)) Qze(t — Ph(1))
—2aVy + &' ()(hfe ™S | + he>"85)e()

t

!
—h f 20T (S 1 o(s)ds — 2aVs — hy f 20 1) T (VS o(5)d s
—hy t—hy
=01 (1)
—2a Vs — (02(t) — 1)) 2T (S Re(s)ds — 2a V5. (17)

t=02()

By using Lemmas 2.1 and 2.2, it is shown that there exists a matrix K such that §,>0and S, >0,
respectively, and the following inequality is proven:

!
—h f 2T (S e(s)ds
t—hy
f
—hy f el (5)S 1e(s)ds
t—hy

t t—hy
= - f el (5)S 1e(s)ds — hy f el (5)S 1e(s)ds
t—hy

t—h(t)

—[e(t) —e(t —h)]'S [e(t) — e(t — h])]
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h
e - i |e(t = 1) — et = RS 1[e(t — hy) — e(t — h(0))]
< -7 (HO' S ,0,11(¢). (18)

Similarly, it holds that

!
—h, f 2T T (S e(s5)d s
t—hy
f
<—h2f el (5)S,e(s)ds
t—hy
t—hy t—h(t)
= —h, f eT($)S,e(s)ds — hy f eT($)S,e(s)ds
t

—h(t) t—hy

h
0 B i |e(t = ) — et = RO Sale(t = hy) — et — h(1))]
h
- _2h 5 |e(t = () = e(t = )" S le(t — (1) = et — hy)|
< - (103 $,0,11(1), (19)

and by use of Lemma 2.1, we obtain

t—01 (1)

—(02(t) — o1 (1)) f 2T () Re(s5)d's
t=0(t)
=0 (1)

< =(02(1) = o4(0)) e’ (5)Re(s)ds

t=02(1)

< —[ f e eT(s)ds]TR[ f o eT(s)ds], (20)

-0 (1) 1= (1)

where

t—o1 (1) =01 (1)

1) = [e" (e (¢ = h)h(1) " (s)dse™ (07 (e(t) f (et — h(1))) JHEO

t—0(1) 1—0(1)

OJ

0,

OJ

!
0 1 -1

[0
0, = 0
As aresult of (A.2), it is apparent that

< el e - fi (@) file), 1)
< el (t = h()ee(t — h(®) = f (e(t = k(D)) fale(t = h(1))), (22)
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=01 (1) T t—01 (1) =01 (1) =)
0 < f e(s)ds) e&( f e(s)ds) - f T (e(s)ds f fi(e(s))ds.

—oa(1) —oa(1) —oa(1) 1=0(1)

(23)

Case I. For r € [nQ,nQ + £), the slave system is executed inside control windows, which enables the

intermittent feedback control to function.
From (5) and (17)—(23), we obtain

V(t,e) +2aV(t,e) < e (t)(=PC—-C'P+PMIG+G"JTM"™P+Q,+ Q>+ 03
+2aP + (02 — p1)2e PR + €))e(r) + 2" (1)PA fi(e(1))

1= (1)

+2e(1)PBfy(e(t — h(1))) + ZeT(t)PDf fale(s))ds

t—0(1)
—e 2ol (t — h)Ore(t — hy) + €7 (t — h(f))ee(t — h(1))
—e 26T (t — hy) Qre(t — hy)
—(1 — gye ™" (t — ph(1)) Qse(t — Pph(1))

t—a (1) T =01 (1)
+[f eT(s)ds] (—R+e3)[f eT(s)ds]

—o(1) t—o(1)

+e” ((Me™S | + hye ™S, )e(r)

~11" (0TS ,0,11(r) — TT7 (101 S, 0, 11(2)

—fl (e file()) = £ (et — h(®) fole(t — h(D))
t—o1 (f) t—o1 (1)

- f ) fi(e(s))ds f ) fale(s))ds.

The following zero equation is derived.

0 = 2éT(t)P[ — &(t) — (C — MJIG)e(t) + Afi(e(r)) + Bfs(e(t — h(1)))

t—01 (1)
+D f Frle(s)ds|.t € [nQ,nQ + 1.

—o2(1)

From (24) and (25), we have

V(t,e) +2aV(t,e) < e (t)(—~PC—-C'P+PMIG+G'J"M"P+Q,+ 0, + 05
—S1 4+ 2aP + (0, — p1)*e > + €)e(t)
+e" (1)(S1 — Wpe(t — hy) + " ()Wye(t — h(1))
+2e” ()PAfi(e(0)) + 2¢” (1) PBfr(e(t — h(1)))

=01 (1)

+2e7(1)PD f File(s))ds

t=0(?)
+el (t —h)WI + W, =285, — S, —e ™ Q))e(t - hy)
+el(t —h)(S1 + S, — W, — Wh)e(t — h(t))
+el (t — h)Wse(t — h)
+el (t — ()W + Wy — 81 =25, + &)e(t — h(t))
+e’ (1 = h(D)(S2 — Wa)e(t — hy)

(24)

(25)
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N

IfI" < 0, then we get

Integrating the above inequality for ¢ € [nQ, nQ + €),n € Z*, yields the following result:

which implies

+el (t — hy)(—e™ 2™ Q, — Sy)e(t — hy)
—(1 = e e’ (t — ph(1))Ose(t — ph(1))

t—o1 (1)

=01 ()
+[ft_az(t) e(s)ds]T(—R+63)[ s e(s)ds]

—2¢(t)(PC + PMJG)e(r)
+e” (O(He ™S | + hoe ™S, — 2P)é(t)
+2e" ()PAFi(e(t) + 2T ())PB fr(e(t — h(1)))

t—0 (1)

+2¢" (1H)PD f File(s))ds

t—0(1)

—fle®)file() — f (e(t — h(D) frle(t — h(D)))
t—o1(f) t—o 1 (1) .
- f T (e(s)ds f Fle(s))ds

—oa(1) t—oa(1)

7 (HrG).
V(t,e,) < —2aV(t,e,).

V(t,e)) < V(e(nQ))e >,

V(e(nQ + £)) < V(e(nQ))e .

(26)

27)

(28)

(29)

Case II. For [nQ+¢, (n+1)Q), the slave system is running in free windows, and the intermittent output

feedback control is disabled.

We are able to do similar estimation as we did for Case I, we have the following

V(t,e,) +2aV(t,e,) <

AIMS Mathematics

' O(=PC-C"P+ Qi+ Q,+0Q3—-S,-28P
+(py — p1)*e 22 + €)e(t) + e’ ()(S | — Wy)e(t — hy)
+el (OWe(t — h(1)) + 2eT ())PA fi(e(1))

t—01(t)
+2e" (1)PBf(e(t — h(1))) + 2¢” (f)PD fae(s))ds

t=02(1)
+el (t —h)WI + W, =28, =S, —e ™ Q)e(t - hy)
+el (t = h)(S1 + S, — Wy — Woe(t — h(z))
+el' (t — h)Wae(t — hy)
+el (t — h())WT + Wy =81 =25, + &)e(t — h(t))
+e' (1 = h(1)(S 2 — Wa)e(t — hy)
+e' (1 — ha)(—e ™ Q) — Sy)e(t — hy)
—(1 = e >"2e" (t — ph(1)) Q3e(t — (1))
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<

+[ft_m(t) e(s)ds]T(—R + @)[ft_mm e(s)ds]

—oa(t) t=0(1)
—2e(t)(PC)e(t) + &' (1)(e ™S | + h3e>"S 5 — 2P)e(r)
+2¢T () PAfi(e(n)) + 26" (1) PBfy(e(t — h(r)))

=01 (1)

25 ()PD f Be(s)ds — 7o) fi(e()

t—=0(1)

— I (e(t = h(t))) fr(e(t — k(1))
=01 (1) —oi()
- f fi (e(s)ds f fale(s)ds

—oa(1) 1= (1)

+2ae’ (t)Pe(t) + 2Be” (H)Pe(t)
7 (HAII(E) + Qa + 28)V(t, ).

If (11) satisfies the matrix inequality (30) and is equivalent to A < 0, we get

V(t,e) < 2BV(t, e,

therefore, when t € [nQ + ¢, (n + 1)Q),n € Z*, we get

V(t,e) < V(e(nQ + £))e=0,

Combination with (29) and (32), we can obtain

Vie((n + 1)Q))

NN

(AN

NN

NN

X

V(e(nQ + £))Pr+H9-nQ=0
V(e(nQ))e 2 -0
V(e(nQ))e_[Z((Hﬁ)é’—ZﬁQ]

V(e((n — 1) + £))e P@P=2p1 2500
V(e((n — 1)Q))e 2P i-280-2a+p)+260)
V(e((n — 1)Q))e #H@BI-4p

V(e ((n - 2)Q + [))e—[4(a+ﬁ)€—4ﬁg]ezﬂg
V(e((n — 2)Q))eHa+P-45a-2a+p)t+240)
V(e((n — 2)Q))e 1o +A-660]

Vie((n — 3)Q + £))e 6@ BA-6521 ,26@Q-0
V(e((n — 3)Q))e 0@+ -680-2a+p)+240)

Vie((n — 3)Q))e BlaB)-860]

V(e(0))e~DI2a+0)t-2p0]

Thus, for t € [nQ, nQ + £), n € Z*, by (28) and (33), we get

Vit,e) < V(e(nQ))e 20t

AIMS Mathematics

(30)

€1y

(32)

(33)
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V(e(o))e—2(a+ﬁ)€n+2ﬂQn—2(a+ﬁ)t’+2/j’Qe—2(y(;_nQ)

NN

V(e(0))e 1 2H-25Q0n-12(a+H)(-250]
V(e(0))e 2@D=2500n- 2+ (=250

Xe—[Z((t+ﬁ)€(nQ+Q)—2ﬁ([+ D(nQ+Q)+264(n+1)]

V(e(0)) PHAHBI=2BQ ,~[(2AatB)-2pQ)nQHQ)HQ-0))/Q
< V(e(0) o 12@B=2BRNQ-0(n+ 1)/
P A@HB=2B)(/Q V(e(0)) o~ Q@B=2BQ(n+11/Q

and fort € [nQ + ¢, (n + 1)Q), n € Z*, by (29), (32) and (33), we have

V(t, e) V(e(nQ + )P0
V(e(nQ))e 22 2Pt-n2=0

V(e(0))e 2@ D+2pn+260 ,3pl1-nQ=0

N NN

V(e(0))6—[2(a+ﬂ)5—2ﬁ9](n+1)
V(e(o))e—[2(a+ﬂ)€—2ﬂ9](n+l)Q/Q

V(e(0))e 2@ B-25Q0(n+ 11/

N

From (34) and (35), we obtain that
V(l, €;) < é«V(e(O))e—[Z(a/+ﬁ)f—2ﬁQ](n+l)t/Q,

where
= P 2atB-282)/Q

Furthermore, as a result of (16), we get
V(e(0) < LIy(1) = a(e@)I’, AL > 1,
and
V(t,e) 2 Amin(P)lle()|.
So, we get from (36)—(38) that
LLIY () = a@)p(n)|Pe POPEBRADIL 5 s (PYle(I,
then

Ly
/1min (P )

(1) = a(Op(@)lle CPFNL > le(n)].

(34)

(35)

(36)

(37)

(38)

(39)

By Definition 2.1, the master system (1) can be exponential function projective synchronized with

the slave system (2) under the intermittent feedback controller (4). The proof is completed.

O

Remark 4. If Q = ¢ in condition (14), the intermittent feedback controller (4) immediately transforms

into a continuous output feedback controller in the Theorem 3.1 is met.
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Remark 5. Ifa(f) =1, D=0,8, =0, 0, =0, R=0, by =0, p; = p, = 0and f5(-) = 0, the
closed-loop system (5) turns into form

(1) = —(C — MJG)e(r) + Afi(e(t)) + Bhr(e(t — h()), t € [nQ, nQ + ¢), “0)
| =Ce(t) + Afi(e(t)) + B (e(t — h(D)), 1 € [nQ + £, (n + 1)Q),
proposed by [50], and the assumption (A.1) can be reduced the case, that is
0<h(t) <hy, 0<Ah(t)<pu<oo. 41)

To address this situation, we define
11(t) = [¢" (e (¢ = ht)e” (t — hp)e" (¢ = ph(e)e” (O f] (e f; (et = h(1)))].

Then, a similar method used in Theorem 3.1 is used to produce Corollary 3.1.

Corollary 3.1. Assume (41) is satisfied. For given scalar a > 0 and B > 0, there exist nXn-symmetry
matrices P, Q», O3, S, nxXn-matrix Wy and J such that conditions (10) and (11), the controller error
system is exponentially stable,and the following inequalities are hold:

B So-W, W, 0 -CTP+GTJTM'P 2PA 2PB
* Ers S,=W, 0 0 0 0
* * B34 0 0 0 0
r = |« * * E4s 0 0 0 |<0, (42)
* * * * Zss 2PA 2PB
* * * * * -1 0
| X * * * * * -1 ]
T, S,-W, W, 0 -CTP 2PA 2PB
* Ez’z S, —W, 0 0 0 0
* * 233 0 0 0 0
A = | % * * i O 0 0 [<0, (43)
* * * x Zss 2PA 2PB
* * * * * -1 0
| * * * * * * -1

where

= —PC-C"P+PMIG+G"J"M"P+Q,+Q3—-S,+2aP +¢,
= —PC-C'"P+Qr+Q3—S,-2BP +¢,
= W2+W2T—252+62,

—2ah
= -S,-e *0s,

— —
[ —

[th [k [k [k =R [k
o
[

33 —
se = —(L=gme ™™ Qs,
55 = h%e_zathz - 2P.
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Proof. From (15), we can get
Vi = el@)Pe(?),
t
Vi = f 2Dl (9)0ye(s)ds,
t

—hy
!

Ve = f T () Ore(s)ds,
t

—h(r)

0 t
Ve = hy f f 206" 6T (9)S , 6(0)d sdb.
—hy t+6

Calculating the derivative of V(¢, x,) with respect to ¢, it can be deduced that

Vi = 2" (0)Pet),

Vi = e (0Qze(r) — e e! (1 — hy) Qae(t — o) — 2aV3,

Vi < ' (0)0se(t) — (1 — gpye e’ (1 — ph(1)) Qze(t — ph(t)) — 2a'Vy,

Vs < he ™l (1)S,6(t) — hy f 2T (S e(s)ds — 2aVe.
t—hy

For case t € [nQ, n€) + ¢), from (17)—(25) and (40), we have

V(t,e)+2aV(t,e) < e (t)(~PC—-C"P+PMJIG+G J"M"P
+0s + O3 — S» + 2aP + €)e(r) + 2e” ()PA f(e(r))
+e" (1)(S2 — Wa)e(t — hy) + &' () Wae(t — (1))
+2e” ()PBfr(e(t — h(1)))
+el (t — hy) (W) + Wa — 28, + &)e(t — hy)
+e' (1 = hy)(S2 — Wa)e(t — h(1))
+e' (t = h(1))(—e > Qs — S)e(t — h(t))
—(1 = gpye™>"2e" (1 — ph(1) Qse(t — Ph(1))
—-2é()(PC + PMFG)e(t)
+e” (1)(M3e "S5 - 2P)e(r)
+2 ()PA fi(e(0)) + 2&" (1) PBfr(e(t — h(1)))
i () fi(e) = f5 (e(t = h(e) fale(t = h(1)))
< I @OITI). (44)

If T < 0, then (44) is equivalent to (42).
Similarly, for case t € [nQ + £, (n + 1)Q) is equivalent to (43). O

Note that the controller gain matrix J cannot be derived directly based on Theorem 3.1 since they
are coupled with the positive definite matrix P in (10) and (11). In order to calculate the controller gain
matrix, we apply the partition matrix method to get the following conclusion.

Theorem 3.2. Assume a situation (0 < ¢ < 1), and ¢u < 1, the controlled error system (5) is
exponentially function projective stable, if « > 0 and B > 0. There are nxXn-symmetric positive
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definite matrices Z, Ql, Qz, Qg, S1, S5, R,n x n-matrices W, W,, K, and an inverse nxn-matrix
V respectively, such that the following inequalities hold:

where

AIMS Mathematics

I o= [fi]<0.ij=1.23.13

A = [6]<0.ij=123,.13
5 W

Sl = % SA1]>O,

N P A

S, = % §2]>0,

GZ = VG,

Sym{—CZ + MKG} + Q1 + Or + O3 = 8 + 2aZ + (py — p1)?e 2R,
~CZ-ZC"+ Q1+ 0r+ 03— S\ = 2BZ + (p2 — p1)*e 2R,
31,2 = Sl - Wla

31,3 = Wla

-ZCT + GTkMT,

-zcT,

518 =AZ +ZAT,

619 =BZ+ZB",

6110 =DZ+2ZD",

Sin =2,

bpp =W+ W, =28, -8, -,
32,3 ZSI +§2—W1 —Wz,

32,4 = WZ’

b33 = Wl + W, -8, -28,,

33,4 = SZ - WZ,

33,12 = Za

Saa=—€72"0, -8,

bs5 = —(1 — pe "0,

36,6 = _I/é,

S6.13 = Z,

617 = e8| + hle?™m§, — 27,
615 =AZ+ZAT,

b70 = BZ+ZB',

6710 =DZ +ZD",

Sss = —1,

(45)
(46)

(47)

(48)
(49)
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Yoo = 099 =—1,

Y010 = 010,10 = —1,

YiLin = O = —€ ,
A A -1
Yi2,12 = 512,12 =—€,
A _ 2 _ -1
Y33 = 0133 =—6€ .

Additionally, the controller (4) intended gain matrix is provided by J = KV~!.

Proof. Denote Z = P!, y = diag{Z,Z,Z,2,7Z,7,Z,1,1,1}. The inequalitie (10) obtained by pre and
post multiplying the matrices Z” and Z, respectively, using the idea of congruence transformation, are
equivalent to

(Y11 S1-Wi W, 0 0 0 y17 2PA 2PB 2PD)
* V22 Y23 W, 0 0 0 0 0 0
* * viz So—=W, O 0 0 0 0 0
* * * Yaa 0 0 0 0 0 0
* * * * Y55 0 0 0 0 0
aAz=z * * * * * —-R+e& 0 0 0 0 z<0,
* * * * * * v77 2PA 2PB 2PD
* * * * * * * =1 0 0
* * * * * * * * -1 0
B * * * * * * * * I |
then
7_1,1 SAI - Wl Wl 0 0 0 71,7 A1,8 A1,9 /)\/1,10‘
* Y22 V23 W, O 0 0O 0 0 o0
* x 3 S2-W, 0 0 0O O O 0
* * * Vaa o O o o0 o 0
_ * * * * ¥ss 0O 0 0 0 0
I= * * * * * Yoo O 0 0 0 <0. (50)
* * * * *  * Y17 Yis Yo Yoo
* * * * * *x * =1 0 0
* * * * * *x % x —=I 0
| * * * * *x  *x  x Kk *x =]
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Similarly, the inequality (11) is equivalent to

ZINZ =7

then

>

where

2

>

b D D D T . S D

—

L D D . D S

Si1—=-wp W
Y22 Y23
* Y33
* *
* *
* *
* *
* *
* *
* *
1 S 11— Wl

Y22

*

*

*

*

*

*

*

*

0

0

W, 0
S,=-W, 0

Y.

N

L D . . S

4

o O OO

L D D

W

o O O O oo

L D

-CTP 2PA
0 0
0 0
0 0
0 0
0 0

v17  2PA
* -1
* *
* *
—ZCT y 1,8
0 0
0 0
0 0
0 0
0 0
777,7 '5’1,8
* -1
* *
* *

2PB 2PD)]
0 0
0 0
0 0
0 0
0 0
2PB 2PD
0 0
-1 0
*x -
y 1.9 6’1,10—
0 0
0 0
0 0
0 0
0 0
6’1,9 5\’1,10
0 0
-1 0
*x -

Z <0,

<0, (S1)

Sym{—CZ + MJIGZ} + Oy + Q> + O3 — §1 + 2aZ + (p» — p1)*e 2% + Ze Z,
—CZ-ZCT+ 01+ 02+ 03— 81 —=2BZ + (0, — p1)*e 2% + Ze, Z,
-ZC" +ZG" I M,
~(1 = pwe " Qs + Ze,Z,
-R+7Ze&7Z,
VAQVA
VA YA
VAQYA
ZS.Z,
ZS,Z,
ZRZ,
ZW,Z,
ZW,Z.

From, ¥, ; and the others are defined in Theorem 3.2. If a real matrix V exists that satisfies (49) let
K = JV, then we have

yii = Sym{—=CZ + MJIGZ}+ Q1+ 0, + O3 =8| +2aZ + (0, — p1)*e > + Ze| Z

AIMS Mathematics
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= Sym{-CZ+ MKG}+ O, + Q>+ O3 — S| + 2aZ + (p» — p1)*e > + Ze Z,

and apply the Schur complement lemma, from (50), we get

r o, 0, ®;

* —el‘] 0 0

* x -&' 0 <0, (52)
* ok ok €]

the linear matrix inequalities (LMIs) (52) is equivalent to LMI-based conditions in (45). Similarly,
from (51), we get

A 0 0, 03
* —el‘l 0 0
* % —62_1 0 <0, (53)
* ok ok €]
where
T
® ={200000000 0,
® =[00z0000000,
® =[000002z000 0,
and linear matrix inequalities (LMIs) (53) is equivalent to (46). The proof is completed. O

Remark 6. In Theorem 3.2, the periodically intermittent feedback control gain matrix is obtained using
the partition matrix method and elementary transformation of matrix and condition (50). In particular,
the partition matrix method provides a powerful tool to solve the problem of coupling between matrices.

4. Numerical examples

Example 4.1. Consider the following 2-dimensional neural networks with mixed interval time-varying
delays:

C:[loy A:[LS 4uﬂ, 32[47 —Qu}

0 1 -5.1 35 -0.24 =25
06 0.15 1 2 1 -3
I R A
10
61262263212[0 1]

From the Theorem 3.2, we let 4; = 0.05, h, = 0.1, p; =0.05, p, =0.1, =03, =32, u=1.3

t

and ¢ = 0.5, h(?) = e’eT’ o1(¢) = 0.05 + 0.05 sin(¢), o»(¢) = 0.08 + 0.02 sin(?).
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For the period width Q = 2 and £ = 1.9, consider the condition (14) yields
(a+p)—-pQR=0.15>0.

By applying the MATLAB, Theorem 3.2 may be solved in the following ways. Following that, the
controller gain is set

| 1.3122830557009  0.22247866421386
~ [-0.47036125972558 0.20058100285227 |

Figure 1 shows the trajectory of master system (1) and slave system (2) with the time-varying

0.57t
scaling function a(?) = 0.8+0.2 sin dl

J

. Figure 2 shows The trajectories of e;(¢) and e,(¢) without the

controller. Figure 3 shows the trajectories of e; () and e,(¢) with the controller and the modified function
projective synchronization error trajectories of e;(¢) and e,(¢) of the master-slave neural networks with
intermittent feedback control is shown in Figure 4.

()
— — —ax)

¥,(0 ) x (1)
T

¥, (0, ) x, (0

Figure 1. The trajectory of master system (1) and slave system (2) with the time-varying
0.5t

scaling function a(t) = 0.8 + 0.2 sin

¥, (0-a() x,()

100 150 200 250 300
Time t

Volt-a() x,(t)
5

1 1 1 1
-5
[ 50 100 150 200 250 300
Time t

Figure 2. The trajectories of e;(¢) and e,(f) without the controller.
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¥ (0-a(t) x,(1), y,(0-a(t) x,(0)
o

5 1 1 1 1 1 1 1 1 1

—

0 50 100 150 200 250 300 350 400 450
Time t

Figure 3. The trajectory of e;(¢) and e,(#) with the controller.

500

¥, (0-a(0) x,(0)
°

-0.05 —

¥,(t-a(t) x,(t)
o

e ! ! ! ! !

[ 5 10 15 20 25
Time t

30

Figure 4. The modified function projective synchronization error trajectories of e;(#) and

e,(1) of the master-slave neural networks with intermittent feedback control.

Example 4.2. Consider the following 3-dimensional neural networks with mixed interval time-varying

delays:
[1 -8 0 02 -0.1 -0.2] [ 2
c=|-1 1 -1}, A=1]-0.5 02 0 1, B =102
|0 11 O 03 03 -0.7] | O
(0.5 0.2 0.1 1 2 -1 1
D={-03 05 0.2}, M=105 -02 1/, G=|-1 1
| 0.5 03 0.2 1 1 1] 10.5
1 00
e=6==1=(0 1 0],
0 01
AIMS Mathematics

0 0
-0.1 0|,
0 0.1

-3 5
1,
-3 1
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then, the controller gain is

—-9.1582710867253  7.7847810761557  42.693466366122
J =] 4.8266868389679 —4.2482292471003 -23.155005119169|.
3.8145981383877 —3.6406103878667 —19.294068882407

As aresult of Theorem 3.2, the system (1) under the direction of the controller (4) with the provided
parameters is exponential function projective synchronized.

Figure 5 shows the trajectory of the master system (1) and slave system (2) with the time-varying

scaling function a(¢) = 0.8 + 0.2 sin l;m. Figure 6 shows the trajectories of e(¢), e;(f) and e3(f) of
the master-slave neural networks without the controller. Figure 7 shows the trajectories of e(t), e;(f)
and e;3(f) of the master-slave neural networks with the controller. The modified function projective

synchronization error trajectories of e;(f), e>(t) and e;(f) of the master-slave neural networks with
intermittent control is shown in Figure 8.

ym
—— —axt)

alt) xy(t), yy(0)

alt) x, (0, v,
al) x,(0), v,

Figure 5. The trajectory of master neural network (1) and slave neural network (2) with the

0.57t
time-varying scaling function a(#) = 0.8 + 0.2 sin 15ﬂ .
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4l
3

5 I I I

k

=

—— ) x,()
— Y t)-a(t) ;1)
Vyltralt) x, ()

0 50 100 150
Time t

Figure 6. The trajectories of e,(t), e;(#) and e3(f) of the master-slave neural networks without

the controller.

«

V(t-a(t) x,(t)

b o

°
8
8

150
Time t

200 250 300

Vtra(t) x,0)
=1

L s~
p—

s
8
8

150
Time t

200 250 300

3
T

b o o
T

Vot () x,(0)

3
T

s
8
8

150
Time t

Figure 7. The trajectories of e(¢), e;(¢) and e3(t)
the controller.

0.6

200 250

8

of the master-slave neural networks with

0.4

0.2

—e)
——e,m|]

elt)

4 6 8 10
Time t

12 14 16 18 20

Figure 8. The modified function projective synchronization error trajectories of e(¢), e,(¢)
and e3(7) of the master-slave neural networks with intermittent feedback control.
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Remark 7. In this paper, we have developed a model of the master-slave neural networks to be more
comprehensive and general than the previous paper. As a result, there are no results to compare with
our paper. However, we have offered examples to show our work, and we can reduce the system model
Jfrom our work to compare it. Our model is more general than others [12, 29, 30, 45, 49, 50, 57, 59].
By Remark 5, a novel Lyapunov-Krasovskii functional, the reciprocally convex approach, and Jensen’s
inequality, we gain less conservative results when compared with the other work [50], as shown in
Corollary 3.1.

Remark 8. The periodically intermittent feedback controller presented in this paper is more general
and efficient than [60,61 | because the controller does not have to run all the time. Moreover, distributed
delays o (t) and o»(t) are included in the system (5), which is more general and flexible than [62—64],
which this study disproves the commonly held notion that the upper bound of the delay-derivation
upper bound of time-varying delay must be less than 1.

Remark 9. There is room to improve this work in that constant matrices M and G are required for
calculating the controller. Moreover, in the future topic, it is very challenging to apply some lemmas or
Lyapunov-Krasovskii functional used in this paper into memristive neural networks [65,66] to achieve
improved stability criteria, which are applied in the next generation computer [67, 68].

5. Conclusions

The periodically intermittent control of modified function projective synchronization of master-
slave neural networks was studied between discrete intervals and distributed time-varying delays. The
development of suitable Lyapunov-Krasovskii functionals uses the lower bound lemma for reciprocally
convex approach. Moreover, it still uses the application of the piecewise analysis method, periodically
intermittent control and mathematical induction. The sufficient conditions for modified function
projective synchronization of master-slave neural network systems were derived in terms of LMIs. The
intermittent feedback controller designed can guarantee modified function projective synchronization
of the error system. Finally, numerical simulations were presented to illustrate the efficacy of the
suggested theoretical conclusions.
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