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Abstract: In this paper, we study the exponential synchronization problem of a class of delayed
memristive neural networks(MNNs). Firstly, a intermittent control scheme is designed to solve the
parameter mismatch problem of MNNs. A discontinuous controller with two tunable scalars is
designed, and the upper limit of control gain can be adjusted flexibly. Secondly, an augmented
Lyaponov-Krasovskii functional(LKF) is proposed, and vector information of N-order canonical
Bessel-Legendre(B-L) inequalities is introduced. LKF method is used to obtain the stability criterion
to ensure exponential synchronization of the system. The conservatism of the result decreases with the
increase of the order of the B-L inequality. Finally, the effectiveness of the main results is verified by
two simulation examples.

Keywords: memristive neural network; exponential synchronization; canonical Bessel-Legendre
inequality; discontinuous controller; LMI
Mathematics Subject Classification: 93C10, 93D05

1. Introduction

In recent years, MNNs has attracted extensive attention because of its broad application prospect
in engineering fields such as associative memory, signal processing and pattern recognition [1–4].
Resistors are used in real systems to simulate the synapses of neural networks and store the historical
state of the system. Due to the influence of large volume resistance on the integral density of neural
network, the function of synapse cannot be completely simulated. This causes the calculation of neural
network circuit to deviate from the real value [5]. Memristors were first proposed by Professor Chua
in 1971, and the first physical memristors were developed by HP LABS in 2008. The value of the
memristor is determined by the voltage applied to the memristor, its polarity, and the duration of the
applied voltage [6]. In 2010, Professor Lu constructed the first electroneural circuit using memristors
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and verified the memory properties of memristors to the internal states of the system [7, 8]. This
characteristic suggests that memristors are the electronic components that most closely resemble the
synapses of neurons. MNNs was developed by replacing the resistors in traditional neural networks
with memristors.

Compared with traditional neural network, memristor neural network has more powerful
information capacity and computing power, which enables it to better deal with problems related to
state memory and information processing [9]. In most cases, the control signal is transmitted from
one system to another in the wireless communication network, so the nonlinear dynamic behavior will
inevitably occur in the control process and the system time delay will be generated [10, 11]. When
the time lag interval is very large, the design of the stability criterion with time-delay independent
will be very conservative [12]. Time delay may also lead to the instability, shock and performance
deterioration of the neural network system [13]. Therefore, in order to reduce the conservativeness of
the results, the consideration of time delay is an indispensable condition for the design of controllers
to keep the system stable.

Synchronization means that with the development of the network, the state of the driving system
and the response system tend to be in a common state, which is the most basic and important
dynamic characteristic of the neural network [14]. System synchronization control is often used
in communication security, biological systems, signal processing and other fields [15]. Many
researchers are studying synchronization control schemes for various neural networks [16–18]. In [16],
a distributed event-triggered controller is designed to study fixed-time synchronization of coupled
MNNs. In [17], the fixed time synchronization problem of coupled MNNs based on decentralized
event triggering scheme is studied. In [18], the author designed an exponential attenuation switching
event-trigger scheme to study the global stabilition of delayed MNNs. Inspired by [19], this paper
designs a new discontinuous feedback control scheme, and a more strict inequality is used to reduce
the conservatism. The upper bound of control gain can be reduced by adjusting two adjustable scalars
of the controller. Therefore, the controller application here is more flexible.

In the past, Jensen’s inequality has been widely applied as a method to reduce the conservatism
of the stability criterion for systems with time delay [20]. However, the integral inequality based on
Wirtinger proposed by Seuret and Gouaisbaut was considered to be less conservative than Jensen’s
inequality, and contains Jensen’s inequality [21]. And, many researchers have improved the estimation
methods of integral terms, such as Wirtinger inequalities [22], integral inequalities based on free
matrices [23], integral inequalities based on auxiliary functions [24]. Recently, the B-L inequality
has received more and more attention. It generalizes the above integral inequality and has smaller
amplification for some integral terms [25]. However, the integral interval of this inequality is fixed
[−h, 0]. Therefore, B-L inequality has a limited range of applications. The canonical B-L inequality
transfers the integral interval to the general interval [a1, a2] by introducing a canonical orthogonal
polynomial [26]. At present, most results for the stability of delayed neural networks are to choose a
special Bessel-Legendre inequality (N = 1 or N = 2), as mentioned in reference [27]. In order to further
reduce the conservatism of the result, Legendre vector information is fully considered in the design of
the augmented LKF. By using the canonical B-L inequality and anti-convex inequality lemma, the
criterion of exponential synchronization of the system is obtained.

This paper deals with the exponential synchronization control of delayed MNNs based on
discontinuous feedback controllers. We take the average of the maximum and minimum weights of
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the memristor synapse as the weight of the memristor synapse and transform the state parameters of
the memristor neural network into the traditional neural network with uncertain parameters. The main
contributions of this paper are as follows:

(1) In order to solve the parameter mismatch problem of MNNs, intermittent control scheme is
adopted in the synchronization of master-slave neural network system to relax the strict assumptions.
The designed discontinuous controller has two tunable scalars, which can adjust the upper limit of
control gain flexibly and reduce control cost.

(2) In order to reduce the conservatism of the results, this paper chooses to use canonical B-L
inequality to estimate the bounds of the integral term. It has been shown in [28] that if the LKF used
is less relevant to the B-L inequality, the effect of obtaining tighter bounds of the inequality will be
greatly reduced. Therefore, this paper constructs a suitable augmented LKF and fully considers the
Legendre polynomial information.

Finally, the stability criterion with low conservatism is obtained by using canonical B-L inequality,
and the conservatism decreases with the increase of N.
Notations: In this paper, the superscript T of the matrix is the transpose of the matrix, and −1 is its
inverse. The Rn means the n-dimensional Euclidean space. Sn

+ means the set of the positive definite
matrices of Rn×n. The symbol ‖ · ‖ refers to the Euclidean vector norm. There

(
j
i

)
=

j!
( j−i)!i! .

2. Problem formulation

The time-delay neural network can be realized by large-scale integrated circuits using memory
resistors, which represent connection weights. According to Kirchhoff’s current law, the equation of
the pth subsystem can be described as follows:

Cp ẋp(t) = −

 n∑
q=1

(W f pq + Wgpq) +
1

Rp

 xp(t)

+ sgnpq

n∑
q=1

W f pqlq(xq(t)) + Ip(t)

+ sgnpq

n∑
q=1

W f pqlq(xq(t − hq(t)))

(1)

where p = 1, 2, ..., n, xp(t) is the voltage of the capacitor Cp at t ≥ 0, and Rp is resistance in parallel
with Cp. Ip is the external input or bias, and lq is the activation function. hq(t) is the time-varying delay
of the transmission of the qth neuron, and it satisfies

0 ≤ h(t) ≤ h, µ1 ≤ ḣ(t) ≤ µ2 (2)

M f pq is the memristor connecting the activation function lq(xq(t)) to xp(t), Mgpq is the memristor
connecting the activation function lq(xq(t − hq(t))) to xp(t − h(t)). The memductance of memristors
M f pq and Mgpq is expressed in terms of W f pq and Wgpq respectively.

sgnpq =

{
1, p , q
−1, p = q
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The initial conditions for system (1) are xp(t) = φp(t) ∈ C([−h, 0],R), h = max1≤q≤n{hq}, µ =

max1≤q≤n{µq}.
As described by Chua [29], depending on the computer information being encoded only in ‘0’ and

‘1’, the memristor only needs to display two different states. System (1) can be rewritten as

ẋp(t) = −kpxp(t) +

n∑
q=1

bpq(xp(t))lq(xq(t))

+

n∑
q=1

dpq(xp(t))lq(xq(t − hq(t))) + L̃p(t)

(3)

where

kp =
1

Cp

 n∑
q=1

(W f pq + Wgpq)

 , L̃p(t) =
Ip(t)
Cp

bpq(xp(t)) = sgnpq ×
W f pq

Cp
=

{
b́pq, |xp(t)| ≤ Tp

b̀pq, |xp(t)| > Tp

dpq(xp(t)) = sgnpq ×
Wgpq

Cp
=

{
d́pq, |xp(t)| ≤ Tp

d̀pq, |xp(t)| > Tp

and the switching jumps Tp > 0, b́pq, b̀pq, d́pq, and d̀pq, p, q = 1, 2, ..., n, are constants.
Consider system (3) is taken as the driving system, and the corresponding responsive system is:

ẏp(t) = −kpyp(t) +

n∑
q=1

bpq(yp(t))lq(yq(t))

+

n∑
q=1

dpq(yp(t))lq(yq(t − hq(t))) + L̃p(t) + up(t)

(4)

where

bpq(yp(t)) =

{
b́pq, |yp(t)| ≤ Tp

b̀pq, |yp(t)| > Tp

dpq(yp(t)) =

{
d́pq, |yp(t)| ≤ Tp

d̀pq, |yp(t)| > Tp

where up(t) is the appropriate control input to be designed, the initial condition of system (4) are
yp(t) = ϕp(t) ∈ C([−h, 0],R), p = 1, 2, ..., n.

It can be seen that bpq(xp(t)) and dpq(xp(t)) are discontinuous, and the system (3) is a discontinuous
switching system. In this case, the classical solution is not available. Therefore, the solution of this
system is processed in Filippov sense. Now, the following definition is given.

Definition 1. [30] Consider the system ẋ(t) = F(x), x ∈ Rn with discontinuous right-hand sides, a
set-valued map is defined as

Φ(x) =
⋂
µ>0

⋂
δ(R)=0

co[F(B(x, µ)\R)] (5)
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where co[G] is the closure of the convex hull of set G, B(x, µ) = {y : ‖y − x‖ 6 µ}, and δ(R) is the
Lebesgue measure of set R. A solution in Filippov’s sense of the Cauchy problem for the above system
with initial condition x(0) = x0 is an absolutely continuous function x(t), t ∈ [0,T ], which satisfies
x(0) = x0 and differential inclusion: ẋ(t) ∈ Φ(x), for a.e. t ∈ [0,T ]

The research in this paper requires the following assumptions.

Assumption 1. There exist constants mp, such that for any u ∈ R, |lp(u)| ≤ mp, p = 1, 2, ..., n is true.

Assumption 2. The neuron activation function in system (3) satisfies lq(0) = 0 and

σ−q ≤
lq(u) − lq(v)

u − v
≤ σ+

q , u , v, q = 1, 2, ..., n (6)

where σ−q , σ
+
q are some constants, and K1 = diag{σ−1 , ..., σ

−
n }, K2 = diag{σ+

1 , ..., σ
+
n }

Remark 1. Obviously, system (3) is a discontinuous state-dependent switching system. “Filippov
proposes that the solutions of discontinuous systems have the same set of solutions contained in the
definite derivatives [30].” According to the theory of differential inclusion and the definition of Filippov
solutions, system (3) can be rewritten as:

ẋp(t) = − kpxp(t) +

n∑
q=1

co{b́pq, b̀pq}lq(xq(t))

+

n∑
q=1

co{d́pq, d̀pq}lq(xq(t − hq(t))) + L̃p(t)

(7)

where co{b́pq, b̀pq} = [bpq, bpq], co{d́pq, d̀pq} = [dpq, dpq], bpq = min{b́pq, b̀pq}, bpq = max{b́pq, b̀pq},

dpq = min{d́pq, d̀pq}, dpq = max{d́pq, d̀pq}.

Denote the interval matrices [B, B] = [bpq, bpq]n×n, [D,D] = [dpq, dpq]n×n. The system (6) can be
rewritten as the following matrix form

ẋ(t) ∈ − Kx(t) + [B, B]l(x(t))

+ [D,D]l(x(t − h(t))) + L̃(t)
(8)

where x(t) = [x1(t), x2(t), ..., xn(t)]T ∈ Rn, l(x(t)) = [l1(x1(t)), l2(x2(t)), ..., ln(xn(t))]T ∈ Rn, l(x(t −
h(t))) = [l1(x1(t−h1(t))), l2(x2(t−h2(t))), ..., ln(xn(t−hn(t)))]T ∈ Rn, L̃(t) = [L̃1(t), L̃2(t), ..., L̃n(t)]T ∈ Rn,
K = diag{k1, k2, ..., kn}, there are measurable function B(x(t)) ∈ [B, B], D(x(t)) ∈ [D,D] such that
system (8) can be of the form

ẋ(t) = − Kx(t) + B(x(t))l(x(t))
+ D(x(t))l(x(t − h(t))) + L̃(t)

(9)

Similarly, from system (4) we have

ẏ(t) = − Ky(t) + B(y(t))l(y(t)) + L̃(t)
+ D(y(t))l(y(t − h(t))) + U(t)

(10)

AIMS Mathematics Volume 7, Issue 3, 4711–4734.



4716

where B(y(t)) ∈ [B, B], D(y(t)) ∈ [D,D], U(t) = [u1(t), u2(t), ..., un(t)]T ∈ Rn.
Define the synchronization error e(t) = y(t)−x(t). Then we can obtain the following synchronization

error system
ė(t) = − Ke(t) + B(y(t)) f (e(t)) + N(t)

+ D(y(t)) f (e(t − h(t))) + U(t)
(11)

where f (e(t)) = l(y(t)) − l(x(t)), f (e(t − h(t))) = l(y(t − h(t))) − l(x(t − h(t))), N(t) = [B(y(t)) −
B(x(t))]l(x(t)) + [D(y(t)) − D(x(t))]l(x(t − h(t)))

After the state measurements of the master-slave system are transmitted to the processor, the
synchronization error e(zk) is calculated and used to construct the controller

U(t) = −K̃e(zk) −Csgn(v1e(t) + v2ė(t)) (12)

where K̃ is the controller gain to be determined. The updated control parameters are transmitted to the
zero-order hold (ZOH) over the communication network.

Definition 2. [31] If the error system (15) is exponentially stable, then the primary system (9) and the
slave system (10) are exponentially synchronized. There are two positive scalars α, β that satisfy

‖e(t)‖ ≤ αe−βt sup
−h≤z≤0

{‖e(z)‖, ‖ė(z)‖} (13)

where α, β are the exponential decay coefficient and decay rate.

Lemma 1. [32] There exist matrix G, H and the time-varying matrix Z(t) with appropriate dimensions,
for given time-varying matrix B(t) ∈ [B, B̄], and B ∈ Rn×n, B̄ ∈ Rn×n, such that

B(t) =
1
2

(B + B̄) + GZ(t)E (14)

and ZT (t)Z(t) ≤ I.

Remark 2. Let,

B̃ =

bpq + b̄pq

2


n×n

=
B + B̄

2
, B∗ = (b∗pq)n×n =

 b̄pq − bpq

2


n×n

=
B̄ − B

2
,

D̃ =

dpq + d̄pq

2


n×n

=
D + D̄

2
, D∗ = (d∗pq)n×n =

 d̄pq − dpq

2


n×n

=
D̄ − D

2
,

Gb =
[
Gb

1 Gb
2 ... Gb

n

]
, Gd =

[
Gd

1 Gd
2 ... Gd

n

]
,

Gb
p =


0p−1,n

(b∗p1)ω, (b∗p2)ω, ..., (b∗pn)ω

0n−1,n

 , Gd
p =


0p−1,n

(d∗p1)ω, (d∗p2)ω, ..., (d∗pn)ω

0n−1,n

 , ω ∈ [0, 1],

Eb =
[
Eb

1 Eb
2 ... Eb

n

]T
, Ed =

[
Ed

1 Ed
2 ... Ed

n

]T
,

Eb
p =diag{(b∗p1)1−ω, (b∗p2)1−ω, ..., (b∗pn)1−ω}, Ed

p = diag{(d∗p1)1−ω, (d∗p2)1−ω, ..., (d∗pn)1−ω},

Zi(t) = diag{Zi
11(t), ...Zi

1n(t),Zi
21(t), ...,Zi

2n(t), ...,Zi
n1(t), ...,Zi

nn(t)}, i = 1, 2, 3, 4,
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according to Lemma 1, we have B(x(t)) = B̃ + GbZ1(t)Eb, D(x(t)) = D̃ + GdZ2(t)Ed, B(y(t)) = B̃ +

GbZ3(t)Eb, D(y(t)) = D̃ + GdZ4(t)Ed, and (Zi(t))T Zi(t) ≤ I.
Then, the error system (11) can be written in the following form:

ė(t) = − Ke(t) + (D̃ + GdZ4(t)Ed) f (e(t − h(t)))
+ (B̃ + GbZ3(t)Eb) f (e(t)) + N(t)
+ (−K̃e(t) −Csgn(v1e(t) + v2ė(t)))

(15)

where N(t) = (Gb(Z3(t) − Z1(t))Eb)l(x(t)) + (Gd(Z4(t) − Z2(t))Ed)l(x(t − h(t))).

Lemma 2. [33] For a symmetric matrix A =

[
A11 A12

* A22

]
, where A11 ∈ R

n×n, the following conditions

are equivalent:

(1)A < 0;
(2)A11 ≤ 0, A22 − AT

12A−1
11 A12 ≤ 0;

(3)A22 ≤ 0, A11 − A12A−1
11 AT

12 ≤ 0.
(16)

We introduce two lemmas that are critical to the results of this paper.

Lemma 3. [26] (Canonical Bessel-Legendre inequalities)For any n-dimensional positive definite
matrix P (P ∈ Rn×n), any positive integer N ≥ 0, a1 < a2, and e ∈ L2([a1, a2]→ Rn), the inequality∫ a2

a1

ėT (s)Pė(s) ≥
1

a2 − a1
ξT ΠT

2NΠT
1N PNΠ1NΠ2Nξ (17)

holds, where

PN = diag{P, 3P, ..., (2N + 1)P}

Π1N =



I 0 0 · · · 0
(−1)1I (−1)1 p1

1 0 · · · 0
(−1)2I (−1)2 p2

1I (−1)2 p2
2I · · · 0

...
...

...
...

...

(−1)N I (−1)N pN
1 I (−1)N pN

2 I · · · (−1)N pN
N I


Π2N =


I −I 0 · · · 0
0 −I I · · · 0
...

...
...

. . .
...

0 −I 0 · · · NI


with ξ = col{e(a2), e(a1),

1
c2 − c1

ξ̄}, ξ̄ = {
∫ c2

c1
e(s)ds, · · · ,

∫ c2

c1
(

c2 − s
c2 − c1

)N−1e(s)ds}, and pi
k = (−1)

(
i
k

)(
i+k
k

)
.

Lemma 4. [34] For ω1, ω2 ∈ R
m, α ∈ (0, 1), and given m × m constant real matrice ℵ1 > 0,ℵ2 > 0,

the following inequality is satisfied for any Y1,Y2 ∈ R
m×m

1
α
ωT

1ℵ1ω1 +
1

1 − α
ωT

2ℵ2ω2 ≥

ωT
1 [ℵ1 + (1 − α)(ℵ1 − Y1ℵ

−1
2 YT

1 )]ω1

+ ωT
2 [ℵ2 + α(ℵ2 − Y2ℵ

−1
1 YT

2 )]ω2

+ 2ωT
1 [αY1 + (1 − α)Y2]ω2

(18)
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Lemma 5. [35] For any vector x, y ∈ Rn, matrices G, E and Z which are real matrices of appropriate
dimensions, ZT (t)Z(t) ≤ I, and scalar ε > 0, the following inequality holds:

2xT DZEy ≤ ε−1xT DDT x + εyT ET Ey (19)

Lemma 6. [36] For a matrix R ∈ Sn
+, scalars m and n with m < n, and vector x, the following

inequality holds

(n − m)2

2

∫ n

m

∫ n

θ

xT (s)Rx(s)dsdθ ≥
(∫ n

m

∫ n

θ

x(s)dsdθ
)T

R
(∫ n

m

∫ n

θ

x(s)dsdθ
)

(20)

3. Main results

To simplify the processing of problems, the following terms for vectors and matrices are defined as

ξT (t) =
[
eT (t) eT (t − h(t)) eT (t − h) ėT (t) ėT (t − h(t))

ėT (t − h) f (e(t)) f (e(t − h(t))) f (e(t − h)) ζT
N(t) ],

ζN(t) = col{ρ0(t), β0(t), $0(t), ι0(t), ..., ρN−1(t), βN−1(t), $N−1(t), ιN−1(t)},

ρi(t) =
1

hi(t)

∫ t

t−h(t)
(t − s)ie(s)ds, βi(t) =

1
hi+1(t)

∫ t

t−h(t)
(t − s)ie(s)ds,

$i(t) =
1

(h − h(t))i

∫ t−h(t)

t−h
(t − h(t) − s)ie(s)ds,

ιi(t) =
1

(h − h(t))i+1

∫ t−h(t)

t−h
(t − h(t) − s)ie(s)ds, i = 0, 1, ...,N − 1

S 1 = col{−K−, I}, S 2 = {K+,−I},

K1 = diag{σ−1 , ..., σ
−
n }, K2 = diag{σ+

1 , ..., σ
+
n },

ap =
[
0q×(p−1)q Iq 0q×(4N+9−p)q

]
.

(21)

Theorem 1. For given scalars h > 0, v1 ≥ 0, v2 ≥ 0, µ, ω ≥ 0, N ∈ N. When the error system
(15) under the control law (12) is stable at the attenuation rate exponential, this ensures exponential
synchronization between the primary and secondary systems,if there exist matrices P > 0, Qi > 0, i =

1, 2, QiN > 0, i = 3, 4, 5, U > 0,U1 > 0, diagonal matrices H̄ > 0, Λi > 0, i = 1, 2, 3, Υi > 0, i = 1, 2, 3,
Li > 0, i = 1, 2, 3 and appropriate dimensional matrices H̃, Y1N ,Y2N and ΓN such that

ΞN(0, µ)|µ=µ1,µ2 =


Ξ̃N(0, µ) (v1a1 + v2a4)T H̄Gb (v1a1 + v2a4)T H̄Gd F T

9NΠT
2NΠT

1NY1N

∗ −ε1In 0 0
∗ ∗ −ε2In 0
∗ ∗ ∗ −ŪN

 < 0 (22)

ΞN(h, µ)|µ=µ1,µ2 =


Ξ̃N(h, µ) (v1a1 + v2a4)T H̄Gb (v1a1 + v2a4)T F̄Gd F T

10NΠT
2NΠT

1NY2N

∗ −ε1In 0 0
∗ ∗ −ε2In 0
∗ ∗ ∗ −ŪN

 < 0 (23)
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In addition, the expected controller gain is as follows

K̃ = H̄−1H̃ (24)

C = diag{c1, c2, c3..., cp}, ci = 2
p∑

q=1

(b∗pq + d∗pqmq) (25)

where

Ξ̃N(h(t), ḣ(t)) =

5∑
i=1

Φi + Φ̃1(0) + Φ̃2(0) + He{ΓT
NX11N}

+ Φ̃2(0) + He{[v1a1 + v2a4]T [H̄(−a4 − Ka1) − H̃a1]}
+DT

6 (S 1L1S T
2 + S 2L1S T

1 )D6 +DT
7 (S 1L2S T

2 + S 2L2S T
1 )D7

+DT
8 (S 1L3S T

2 + S 2L3S T
1 )D8 −

2
h2D

T
9 U1D9

Φ1 =λDT
1 PD1 + 2DT

1 PD2

Φ2 =eλ(t+h)DT
3 Q1D3 − eλtDT

5 Q2D5 + (1 − ḣ(t))eλ(t+h−h(t)DT
4 (Q2 − Q1)D4

Φ3 =eλhF T
1N Q3NF1N − F

T
4N Q4NF4N − (1 − ḣ(t))eλ(h−h(t))F T

2N Q3NF2N

+ (1 − ḣ(t))eλ(h−h(t))F T
3N Q4NF3N + eλhF T

5N Q5NF5N − F
T

6N Q5NF6N

+ He{F T
7N Q3NF8N + F T

9N Q4NF10N} + F
T

11N Q5NF12N

Φ4 =h2eλhaT
4 (U +

U1

2
)a4 +

h2

2
eλhaT

4 U1a4

Φ5 =2[a1(Λ1K+ − Υ1K−) + a7(Υ1 − Λ1)]a4

+ 2[a3(Λ3K+ − Υ3K−) + a9(Υ3 − Λ3)]a6

+ 2(1 − ḣ(t))[a2(Λ2K+ − Υ2K−) + a8(Υ2 − Λ2)]a5

Φ̃1(κ) = 2(v1a1 + v2a4)T H̄B̃a7 + ε1aT
7 (Eb)T Eba7

+
κ

ε1
(v1a1 + v2a4)T H̄Gb(Gb)T H̄T (v1a1 + v2a4)

Φ̃2(κ) = 2(v1a1 + v2a4)T H̄D̃a8 + ε2aT
8 (Ed)T Eda8

+
κ

ε2
(v1a1 + v2a4)T H̄Gd(Gd)T H̄T (v1a1 + v2a4)

D1 =col{a1, a2, a3, a10, a12}, D2 = col{a4, a5, a6, a1 − a2, a2 − a3}

D3 =col{a1, a4, a7}, D4 = col{a2, a5, a8}, D5 = col{a3, a6, a9}, D6 = col{a1, a7}

D7 =col{a2, a8}, D8 = col{a3, a9}, D9 = ha1 − a10 − a12

F1N =col{a4, a1, a1, a2, a3, a10, a14, ..., a4N+6}

F2N =col{a5, a2, a1, a2, a3, a10, a14, ..., a4N+6}

F3N =col{a5, a2, a1, a2, a3, a12, a16, ..., a4N+8}

F4N =col{a6, a3, a1, a2, a3, a12, a16, ..., a4N+8}

F5N =col{a4, a1, a3, a10, a12, ..., a4N+6, a4N+8}

F6N =col{a6, a1, a3, a10, a12, ..., a4N+6, a4N+8}

F7N =col{0, 0, a4, (1 − ḣ(t))a5, a6, h70..., h7(N−1)}

(26)
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h70 =a1 − (1 − ḣ(t))a2

h7i = − iḣ(t)a4i+11 − (1 − ḣ(t))a2 + ia4i+7, i = 1, ...,N − 1
F8N =col{a1 − a2, a10, h(t)a1, h(t)a2, h(t)a3, h(t)a10, h(t)a11, ..., h(t)a4N+6}

F9N =col{0, 0, a4, (1 − ḣ(t))a5, a6, h90, ..., h9(N−1)}

h90 =(1 − ḣ(t))a2 − a3

h9i =iḣ(t)a4i+13 − a3 + i(1 − ḣ(t))a4i+9, i = 1, ...,N − 1
F10N = col{a2 − a3, a12, (h − h(t))a1, (h − h(t))a2,

(h − h(t))a3, (h − h(t))a12, (h − h(t))a16, ..., (h − h(t))a4N+8}

F11N = col{0, a4, a6, a1 − (1 − ḣ(t)) ∗ a2, (1 − ḣ(t)) ∗ a2 − a3, ..., h70, h90}

F12N = col{a1 − a3, h ∗ a1, h ∗ a3, h ∗ a10, h ∗ a12, ..., h ∗ a4N+6, h ∗ a4N+8}

F13N = col{a1, a2, a11, a15, ..., a4N+7}, F14N = col{a2, a3, a13, a17, ..., a4N+9}

F15N = col{a10 − h(t)a11, a12 − h(t)a13, ..., a4N+6 − h(t)a4N+7, a4N+8 − h(t)a4N+9}

ŪN = diag{U, 3U, ..., (2N + 1)U}

Proof. At first, the following augmented LKF candidate function is constructed:

V(t, e(t)) =

5∑
i=1

Vi(t, e(t)) (27)

where

V1(t, e(t)) =eλtϕT (t)Pϕ(t)

V2(t, e(t)) =

∫ t

t−h(t)
eλ(s+h)ϕT

1 (s)Q1ϕ1(s)ds +

∫ t−h(t)

t−h
eλ(s+h)ϕT

1 (s)Q2ϕ1(s)ds

V3(t, e(t)) =

∫ t

t−h(t)
eλ(s+h)ϕT

2 (t, s)Q3Nϕ2(t, s)ds +

∫ t−h(t)

t−h
eλ(s+h)ϕT

3 (t, s)Q4Nϕ3(t, s)ds

+

∫ t

t−h
eλ(s+h)ϕT

4 (t, s)Q5Nϕ4(t, s)ds

V4(t, e(t)) =h
∫ 0

−h

∫ t

t+θ
eλ(s+h)ėT (s)Uė(s)dsdθ +

∫ t

t−h

∫ t

θ

∫ t

u
eλ(s+h)ėT (s)U1ė(s)dsdudθ

V5(t, e(t)) =2eλt
n∑

p=1

∫ ep(t)

0
(Λ1p(σ+

p s − fp(s)) + Υ1p( fp(s) − σ−p s))ds

+ 2eλt
n∑

p=1

∫ ep(t−h(t))

0
(Λ2p(σ+

p s − fp(s)) + Υ2p( fp(s) − σ−p s))ds

+ 2eλt
n∑

p=1

∫ ep(t−h)

0
(Λ3p(σ+

p s − fp(s)) + Υ3p( fp(s) − σ−p s))ds

(28)
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and

ϕ(t) = col
{

e(t), e(t − h(t)), e(t − h),
∫ t

t−h(t)
e(s)ds,

∫ t−h(t)

t−h
e(s)ds

}
ϕ1(t) = col{e(t), ė(t), f (e(t))}
ϕ2(t, s) = col{ė(s), e(s), e(t), e(t − h(t)), e(t − h), φ1

N(t)}
ϕ3(t, s) = col{ė(s), e(s), e(t), e(t − h(t)), e(t − h), φ2

N(t)}
ϕ4(t, s) = col{ė(s), e(t), e(t − h), φ1

N(t), φ2
N(t)}

φ1
N(t) = col{ρ0(t), ρ1(t), ..., ρN−1(t)}
φ2

N(t) = col{$0(t), $1(t), ..., $N−1(t)}

(29)

Via differentiating Eq (27) along the trajectory of the system, we have

V̇1(t, e(t)) =eλtξT (t)Φ1ξ(t)
V̇2(t, e(t)) =eλ(t+h)ϕT

1 (t)Q1ϕ1(t) − eλtϕT
1 (t − h)Q2ϕ1(t − h)

− (1 − ḣ(t))eλ(t+h−h(t)ϕT
1 (t − h(t))Q1ϕ1(t − h(t))

+ (1 − ḣ(t))eλ(t+h−h(t)ϕT
1 (t − h(t))Q2ϕ1(t − h(t))

=ξT (t)Φ2ξ(t)
V̇3(t, e(t)) =eλ(t+h)ϕT

2 (t, t)Q3Nϕ2(t, t) − eλtϕT
3 (t, t − h)Q4Nϕ3(t, t − h)

+ eλ(t+h)ϕT
4 (t, t)Q5Nϕ4(t, t) − eλtϕT

4 (t, t − h)Q5Nϕ4(t, t − h)
− eλ(t+h−h(t))ϕT

2 (t, t − h(t))Q3Nϕ2(t, t − h(t))
+ ḣ(t)eλ(t+h−h(t))ϕT

2 (t, t − h(t))Q3Nϕ2(t, t − h(t))
+ eλ(t+h−h(t))ϕT

3 (t, t − h(t))Q4Nϕ3(t, t − h(t))
− ḣ(t)eλ(t+h−h(t))ϕT

3 (t, t − h(t))Q4Nϕ3(t, t − h(t))

+ 2
∫ t

t−h(t)
eλ(s+h)ϕT

2 (t, s)Q3N
∂ϕ2(t, s)
∂t

ds

+ 2
∫ t−h(t)

t−h
eλ(s+h)ϕT

3 (t, s)Q4N
∂ϕ3(t, s)
∂t

ds

+ 2
∫ t

t−h
eλ(s+h)ϕT

4 (t, s)Q5N
∂ϕ4(t, s)
∂t

ds

≤eλtξT (t)Φ3ξ(t)

(30)

Combining with the Eq (29), we can get

ϕ2(t, t) = F1Nξ(t), ϕ2(t, t − h(t)) = F2Nξ(t)
ϕ3(t, t − h(t)) = F3Nξ(t), ϕ3(t, t − h) = F4Nξ(t)
ϕ4(t, t) = F5Nξ(t), ϕ4(t, t − h) = F6Nξ(t)
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∂ϕ2(t, s)
∂t

= F7Nξ(t),
∫ t

t−h(t)
ϕ2(t, s)ds = F8Nξ(t)

∂ϕ3(t, s)
∂t

= F9Nξ(t),
∫ t−h(t)

t−h
ϕ3(t, s)ds = F10Nξ(t)

∂ϕ4(t, s)
∂t

= F11Nξ(t),
∫ t

t−h
ϕ4(t, s)ds = F12Nξ(t)

V̇4(t, e(t)) ≤h2eλ(t+h)ėT (t)Uė(t) − heλt
∫ t

t−h
ėT (s)Uė(s)ds

+
h2

2
eλ(t+h)ėT (t)U1ė(t) − eλt

∫ t

t−h

∫ t

θ

ėT (t)U1ė(t)dsdθ

=eλt[ξT (t)Φ4ξ(t) − h
∫ t

t−h
ėT (s)Uė(s)ds −

∫ t

t−h

∫ t

θ

ėT (t)U1ė(t)dsdθ

(31)

Now, using Lemma 3, the integral term of the equation satisfies the following conditions:

−h
∫ t

t−h(t)
ėT (s)Uė(s)ds

≤ −
h

h(t)
ξT (t)F T

13NΠT
2NΠT

1NŪNΠ1NΠ2NF13Nξ(t) − h
∫ t−h(t)

t−h
ėT (s)Uė(s)ds

≤ −
h

h − h(t)
ξT (t)F T

14NΠT
2NΠT

1NŪNΠ1NΠ2NF14Nξ(t)

(32)

Using Lemma 4, the following inequalities can be further calculated

−h
∫ t

t−h(t)
ėT (s)Uė(s)ds − h

∫ t−h(t)

t−h
ėT (s)Uė(s)ds

≤ ξT (t){[(1 − α)F T
13NΠT

2NΠT
1NY1NŪ−1

N YT
1NΠ1NΠ2NF13N

+ αF T
14NΠT

2NΠT
1NY2NŪ−1

N YT
2NΠ1NΠ2NF14N]

− [(2 − α)F T
13NΠT

2NΠT
1NŪNΠ1NΠ2NF13N

+ (1 + α)F T
14NΠT

2NΠT
1NŪNΠ1NΠ2NF14N

+ 2F T
13NΠT

2NΠT
1N(αY1N + (1 − α)Y2N)Π1NΠ2NF14N]}ξ(t)

(33)

Use Lemma 6 to deal with the following double integrals

−

∫ t

t−h

∫ t

θ

ėT (t)U1ė(t)dsdθ ≤ −
2
h2

(∫ t

t−h

∫ t

θ

ė(t)dsdθ
)T

U1

(∫ t

t−h

∫ t

θ

ė(t)dsdθ
)

= ξ(t)(−
2
h2D

T
9 U1D9)ξ(t)

(34)

V̇5(t, e(t)) =2eλt[eT (t)(Λ1K+ − Υ1K−) + f T (t)(Υ1 − Λ1)]ė(t)
+ 2eλt(1 − ḣ(t))[eT (t − h(t))(Λ2K+ − Υ2K−)
+ f T (t − h(t))(Υ2 − Λ2)]ė(t − h(t))
+ 2eλt[eT (t − h)(Λ3K+ − Υ3K−)
+ f T (t − h)(Υ3 − Λ3)]ė(t − h)

=eλtξT (t)Φ5ξ(t)

(35)
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Based on system (15), for any positive diagonal matrix H̄, there are:

0 =eλt2[v1e(t) + v2ė(t)]T H̄{−ė(t) − Ke(t)
+ (D̃ + GdZ4(t)Ed) f (e(t − h(t)))
+ (B̃ + GbZ3(t)Eb) f (e(t))) + N(t)
+ [−K̃(e(t)) −Csgn(v1e(t) + v2ė(t))]}

(36)

The equation mentioned above can also be written as

0 =eλt2[v1e(t) + v2ė(t)]T H̄[−ė(t) − Ke(t)
+ (D̃ + GdZ4(t)Ed) f (e(t − h(t)))
+ (B̃ + GbZ3(t)Eb) f (e(t))] − 2[v1e(t) + v2ė(t)]T H̃e(t)
+ 2[v1e(t) + v2ė(t)]T H̄[N(t) −Csgn(v1e(t) + v2ė(t))]

(37)

where H̃ = H̄K̃.
Form Lemma 5, for any scalar ε1 > 0, ε2 > 0, we have

2eλt[v1e(t)+v2ė(t)]T H̄(B̃ + GbZ3(t)Eb) f (e(t))
≤eλt{2[v1e(t) + v2ė(t)]T H̄B̃ f (e(t)) + ε1 f T (e(t))(Eb)T Eb f (e(t))

+
1
ε1

[v1e(t) + v2ė(t)]T H̄Gb(Gb)T H̄T [v1e(t) + v2ė(t)]}

=eλtξT (t)Φ̃1(1)ξ(t)

(38)

2eλt[v1e(t)+v2ė(t)]T H̄(D̃ + GdZ4(t)Ed) f (e(t − h(t)))
≤eλt{2[v1e(t) + v2ė(t)]T H̄D̃ f (e(t − h(t))

+ ε2 f T (e(t − h(t))(Ed)T Ed f (e(t − h(t))

+
1
ε2

[v1e(t) + v2ė(t)]T H̄Gd(Gd)T H̄T [v1e(t) + v2ė(t)]}

=eλtξT (t)Φ̃2(1)ξ(t)

(39)

Form Assumption 1 and Eq (25),

2eλt[v1e(t) + v2ė(t)]T H̄[N(t) −Csgn(v1e(t) + v2ė(t))]

≤ 2eλt
n∑

p=1

|v1ep(t) + v2ėp(t)|H̄p[|Np(t)| − cp]

≤ 2eλt
n∑

p=1

|v1ep(t) + v2ėp(t)|H̄p

2 n∑
q=1

(b∗pq + d∗pq)mq − cp


= 0

(40)

On the other hand, from Assumption 2, we can get

( fp(ep(t)) − σ+
pep(t))( fp(ep(t)) − σ−pep(t)) ≤ 0, p = 1, 2, ..., n (41)
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which is equivalent to

ϕ̃(t) = DT
6

[
−2σ+

pσ
−
p%p%

T
p (σ+

p + σ−p)%p%
T
p

(σ+
p + σ−p)%p%

T
p −2%p%

T
p

]
DT

6 ≥ 0, p = 1, 2, ..., n (42)

where %p = col{0, ...0, 1p, 0, ..., 0}. So you can get

eλt
n∑

p=1

L1pϕ̃(t) = eλtξT (t)DT
6 (S 1L1S T

2 + S 2L1S T
1 )D6ξ(t) ≥ 0 (43)

Similarly, we can get the following inequality

eλtξT (t)DT
7 (S 1L2S T

2 + S 2L2S T
1 )D7ξ(t) ≥ 0

eλtξT (t)DT
8 (S 1L3S T

2 + S 2L3S T
1 )D8ξ(t) ≥ 0

(44)

Form Eq (21), it is obvious that

ρp(t) = h(t)βp(t), $p(t) = (h − h(t))ιp(t), p = 0, ...,N − 1 (45)

Then for any appropriate dimension ΓN ,

2eλtξT (t)ΓT
NF15Nξ(t) = 0 (46)

Combined with the above analysis, the following conclusions can be drawn

V̇(t) ≤ eλtξT (t)ΞN(h(t), ḣ(t))ξ(t) (47)

where

ΞN(h(t), ḣ(t)) =(1 − α)F T
13NΠT

2NΠT
1NY1NŪ−1

N YT
1NΠ1NΠ2NF13N

+ Ξ̃N(h(t), ḣ(t)) + αF T
14NΠT

2NΠT
1NY2NŪ−1

N YT
2NΠ1NΠ2NF14N

+
1
ε1

[v1e(t) + v2ė(t)]T F̄Gb(Gb)T F̄T [v1e(t) + v2ė(t)]

+
1
ε2

[v1e(t) + v2ė(t)]T F̄Gd(Gd)T F̄T [v1e(t) + v2ė(t)]

Since ΞN(h(t), ḣ(t)) is linear on both h(t) and ḣ(t), ΞN(h(t), ḣ(t)) < 0 is satisfied for any (h(t), ḣ(t)) ∈
[0, h] × [µ1, µ2] if it holds at the four vertices (0, µ1), (0, µ2), (h, µ1), (h, µ2), which is

ΞN(τ, µ)|τ=0,h,µ=µ1,µ2 < 0 (48)

According to the Lemma 2, it can be obtained Eq (22) and (23), and ΞN(h(t), ḣ(t)) < 0, so we know
from Eq (48) that

V̇(t, e(t)) < 0 (49)
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In addition, from Eq (27), we have

V(0) ≤ ΛN

(
sup
−h≤θ≤0

{‖e(θ‖, ‖ė(θ)‖)}
)2

= ΛN‖φ‖
2 (50)

where

ΛN =(3 + 2h2)λmax(P) +
h3

2
eλhλmax(U)

+ heλh[2λmax(Q1) + λmax(K̂Q1K̂)] + heλh[2λmax(Q2) + λmax(K̂Q2K̂)]

+ heλhλmax(Q3N)(2 +
6
λ

+ Nh2) + heλhλmax(Q4N)(2 +
6
λ

+ Nh2)

+ heλhλmax(Q5N)(1 +
4
λ

+ 2Nh2) +
h3

2
eλhλmax(U1) + 2λmax[(Λ1 + Υ1)K+ − K−]

+ 2λmax[(Λ2 + Υ2)K+ − K−] + 2λmax[(Λ3 + Υ3)K+ − K−]
K̂ =diag{max{|σ+

1 |, |σ
−
1 |},max{|σ+

2 |, |σ
−
2 |}, ...,max{|σ+

n |, |σ
−
n |}}

By Eq (27), (49), (50) we can obtain that

ΛN‖φ‖
2 ≥ V(0) ≥ V(t) ≥ eλtλmin(P)‖e(t)‖2 (51)

Therefore

‖e(t)‖ ≤

√
Λ

λmin(P)
‖φ‖−λt

Accoding to Definition 2, system (9) and system (10) is globally exponentially synchronized when
the control law is (12). So that’s the proof of the Theorem 1.

To prove the correctness of the theorem, we will give two numerical examples in the next section.
�

4. Numerical examples

Example 1. Consider MRNN with the follows parameters: k1 = k2 = 1, l1 = l2 = 0, li(xi(t)) =

tanh(xi(t)), i = 1, 2 where

b11(x1(t)) =

1.7, |x1(t)| ≤ 2.5
2.3, |x1(t)| ≤ 2.5

, b12(x1(t)) =

−2, |x1(t)| ≤ 2.5
−1.9, |x1(t)| ≤ 2.5

b21(x2(t)) =

0.4, |x2(t)| ≤ 2.5
0.6, |x2(t)| ≤ 2.5

, b22(x2(t)) =

1.6, |x2(t)| ≤ 2.5
2, |x2(t)| ≤ 2.5

d11(x1(t)) =

−0.5, |x1(t)| ≤ 2.5
−1.5, |x1(t)| ≤ 2.5

, d12(x1(t)) =

0.1, |x1(t)| ≤ 2.5
0.2, |x1(t)| ≤ 2.5
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d21(x2(t)) =

0.1, |x2(t)| ≤ 2.5
0.2, |x2(t)| ≤ 2.5

, d22(x2(t)) =

−0.5, |x2(t)| ≤ 2.5
−1.5, |x2(t)| ≤ 2.5

The activation functions li(xi(t)) = tanh(xi(t)) satisfy Assumption 1 and 2 with σ−1 = σ−2 = 0, σ+
1 =

σ+
2 = 1, m1 = m2 = 1. And, we have

B̃ =

[
2.00 −1.95
0.50 1.80

]
, D̃ =

[
−1.00 0.15
0.15 −1.00

]
B∗ =

[
−0.30 −0.05
−0.10 −0.20

]
, D∗ =

[
0.50 −0.05
−0.10 0.50

]
As can be seen from Tables 1 and 2, when N = 1 h = 1, µ = 0.25, λ = 0.5, v2 = 1 and v1 increases,

the upper limit of control gain decreases, indicating that the controller Eq (12) is more flexible. When
N = 1 h = 1, µ = 0.25, λ = 0.5, v1 = 1, the upper limit of control gain decreases when v2 decreases.
Different controller gain K̃ can be obtained by adjusting v1, v2, and the appropriate controller gain can
be selected according to the control requirements. Table 3 shows some comparisons of control gains
with different h values. And it’s worth noting that [4, 37] requires µ < 1. Therefore, compared with
the existing synchronization standard in [4, 37], our results are less conservative.

Table 1. Control gains K̃ for N = 1 h = 1, µ = 0.25, λ = 0.5, v2 = 1, and various v1 in
Example 1.

v1 1 5 10 20

K̃
[
19.0189 −2.0389
−1.9456 14.6107

] [
7.6689 −1.0340
−1.0044 6.3736

] [
6.9658 −0.9291
−0.9073 5.8214

] [
6.3189 −0.8693
−0.8604 5.3212

]

Table 2. Control gains K̃ for N = 1 h = 1, µ = 0.25, λ = 0.5, v1 = 1, and various v2 in
Example 1.

v2 0.1 0.5 0.8

K̃
[

6.7472 −0.9204
−0.9035 5.6735

] [
11.5958 −1.3825
−1.3211 9.1989

] [
15.7968 −1.7601
−1.6789 12.2514

]

Table 3. Control gains K̃ for N = 1, µ = 0.25, λ = 0.5, v1 = 1, v2 = 1 and various h in
Example 1.

h 0.1 0.5 0.8

K̃
[
16.1541 −1.6865
−1.6218 11.9963

] [
17.3840 −1.9725
−1.8904 13.0817

] [
17.9333 −2.0398
−1.9414 13.7376

]

When the initial values of system (9) and (10) are set as x(t) = [2 − 1.2]T , y(t) = [−0.5 0.5]T ,
v1 = 1, v2 = 1, ω = 0, N = 1, the synchronization trajectory of the master and slave system without
controller is shown in Figure 1, the synchronization error is shown in Figure 2, and the state response
of the master system is shown in Figure 3. From the figure, we can see that the driver system and the
response system are non-synchronization.
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Figure 1. When N = 1, the state synchronization trajectories of x(t) and y(t) without
controller in Example 1.

Figure 2. Synchronization error e1(t), e2(t), of error system without controller in Example 1.
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Figure 3. State response trajectory of the drive system in Example 1.
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When the initial values of system (9) and (10) are set to x(t) = [2 − 1.2]T , y(t) = [−0.5 0.5]T ,
v1 = 1, v2 = 1, ω = 0, N = 1, the control law (12) is used to obtain the controller gain as show below,

K̃ =

[
19.0189 −2.0389
−1.9456 14.6107

]

The synchronous trajectories of the drive system and the response system are shown in Figure 4, the
synchronization error of the driving system and the response system is shown in Figure 5.

As shown in Figure 6, the synchronization time is reduced by comparing the synchronization process
when N=1 in Figure 5 with that when N=2 in Figure 6. By combining the values given in Figures 5
and 6 and Table 4, it can be seen that the conservatism of the results decreases with the increase of
the order of the Bessel-Legendre inequality. Moreover, the synchronization time of the error system is
reduced and the performance of the controller is better.

Table 4. Control gains K̃ for h = 1, µ = 0.25, λ = 0.5, v1 = 1, v2 = 1 and various
N,N = 1, 2, ... in Example 1.

N 1 2 3 · · ·

K̃
[
19.0189 −2.0389
−1.9456 14.6107

] [
21.2073 −2.5073
−2.4192 17.9747

] [
22.8669 −2.4866
−2.3966 17.6995

]
· · ·

Figure 4. When N = 1, the synchronization trajectories of x(t) and y(t) under control law
(12) in Example 1.
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Figure 5. When N=1, synchronization error e1(t), e2(t) of error system with control law (12)
in Example 1.

Figure 6. When N=2, synchronization error e1(t), e2(t) of error system with control law (12)
in Example 1.

Example 2. Consider MRNN with the follows parameters: k1 = k2 = k3 = 1, l1 = l2 = l3 = 0,
li(xi(t)) = tanh(xi(t)), i = 1, 2, 3 where

b11(x1(t)) =

0.2, |x1(t)| ≤ 1
0.4, |x1(t)| ≤ 1

, b12(x1(t)) =

−0.1, |x1(t)| ≤ 1
0.2, |x1(t)| ≤ 1

, b13(x1(t)) =

0.4, |x1(t)| ≤ 1
0.3, |x1(t)| ≤ 1

b21(x2(t)) =

0.12, |x2(t)| ≤ 1
0.1, |x2(t)| ≤ 1

, b22(x2(t)) =

0.1, |x2(t)| ≤ 1
0.3, |x2(t)| ≤ 1

, b23(x2(t)) =

0.2, |x2(t)| ≤ 1
−0.4, |x2(t)| ≤ 1

b31(x3(t)) =

0.2, |x3(t)| ≤ 1
0.1, |x3(t)| ≤ 1

, b32(x3(t)) =

0.3, |x3(t)| ≤ 1
−0.2, |x3(t)| ≤ 1

, b33(x3(t)) =

0.1, |x3(t)| ≤ 1
0.3, |x3(t)| ≤ 1
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d11(x1(t)) =

−0.2, |x1(t)| ≤ 1
−0.7, |x1(t)| ≤ 1

, d12(x1(t)) =

0.1, |x1(t)| ≤ 1
−0.09, |x1(t)| ≤ 1

, d13(x1(t)) =

−0.1, |x1(t)| ≤ 1
0.1, |x1(t)| ≤ 1

d21(x2(t)) =

−0.1, |x2(t)| ≤ 1
−0.19, |x2(t)| ≤ 1

, d22(x2(t)) =

−0.5, |x2(t)| ≤ 1
−1.1, |x2(t)| ≤ 1

, d23(x2(t)) =

0.2, |x2(t)| ≤ 1
0.3, |x2(t)| ≤ 1

d31(x3(t)) =

0.2, |x3(t)| ≤ 1
−0.1, |x3(t)| ≤ 1

, d32(x3(t)) =

−0.2, |x3(t)| ≤ 1
−0.4, |x3(t)| ≤ 1

, d33(x3(t)) =

−0.3, |x3(t)| ≤ 1
0.1, |x3(t)| ≤ 1

The activation functions li(xi(t)) = tanh(xi(t)) satisfy Assumption 1 and 2 with σ−1 = σ−2 = σ−3 = 0,
σ+

1 = σ+
2 = σ+

3 = 1, m1 = m2 = m3 = 1.And, we have

B̃ =


0.30 0.05 0.35
0.11 0.2 −0.1
0.15 0.05 0.2

 , D̃ =


−0.45 0.005 0
−0.145 −0.8 0.25

0.05 −0.3 −0.1


B∗ =


−0.10 −0.15 0.05
0.01 −0.1 0.3
0.05 0.25 −0.1

 , D∗ =


0.25 0.095 −0.10

0.045 0.30 −0.05
0.15 0.1 −0.2


Select the initial value x(t) = [0.7 − 1.2 0.3]T , y(t) = [−0.5 0.5 0.7]T , v1 = 1, v2 = 1, ω = 0,
N = 1. The control gain is obtained as follows

K̃ =


3.6623 0.0597 0.1680
0.0602 3.7304 0.0209
0.1670 0.0214 3.5752


When N = 1, Figure 7 shows the synchronization trajectories of x(t) and y(t) in Example 2. Figure 8
shows the status of the error signal e(t). It is obvious that the error signal state converges exponentially
to zero, and the results conform to the conclusion of Theorem 1 in this paper.

Figure 7. When N=1, the synchronization trajectories of x(t) and y(t) in Example 2.
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Figure 8. When N=1, synchronization error e1(t), e2(t),e3(t) of error system with control in
Example 2.

5. Conclusions

The exponential synchronization problem of a class of delayed memory neural networks is studied.
By using The N-order Bessel-Legendre inequality, the exponential synchronization criterion of n-
related memory neural networks is given, and a more flexible intermittent feedback controller is
constructed by introducing two adjustable scalars. Finally, the criterion for the conservatism decreasing
with the increase of the order of Bessel-Legendre inequality is given. The validity of the main results
is verified by two simulation examples.
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