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Abstract: In the present paper, the primary resonance and feedback control of the fractional Duffing-
van der Pol oscillator with quintic nonlinear-restoring force is studied. The approximately analytical
solution and the amplitude-frequency equation are obtained using the multiple scale method. Based on
the Lyapunov theory, the stability conditions for the steady-state solution are obtained. The bifurcations
of primary resonance for system parameters are analyzed, and the influence of parameters on fractional-
order model is also studied. Numerical simulation shows that when the parameter values are fixed, the
curve bends to the right or left, resulting in jumping phenomena and multi-valued amplitudes. As
the excitation frequency changes, the typical hardening or softening characteristics of the oscillator
are observed. In addition, the comparisons of approximate analytical solution and numerical solution
are fulfilled, and the results certify the correctness and satisfactory precision of the approximately
analytical solution.
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1. Introduction

Fractional calculus is an ancient mathematical topic from the 17th century. Although Fractional
calculus is a mathematical subject with a history of more than 300 years, its application in physics and
engineering did not attract wide attention until recent decades. In the past twenty years, significant
progress has been made in fractional calculus and fractional order dynamical systems [1–4]. Previous
studies have shown that fractional calculus is a mathematical tool, which is applicable to anomalous
social and physical systems with non-local, frequency- and history-dependent properties, as well as
intermediate states such as soft materials that are neither ideal solids nor ideal fluid [5–7]. Moreover,
applications of fractional calculus have been reported in many areas such as signal processing, image
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processing, automatic control and robotics [8–11]. Research has even applied fractional derivatives
to specific fields of research: psychological and life sciences [12, 13]. In a word, virtually no area
of classical analysis has been left untouched by fractional calculus. These examples and many other
similar samples perfectly clarify the importance of consideration and analysis of dynamical systems
with fractional-order models.

For the reason that nonlinear vibration systems exist in a large number of engineering technology
and scientific practice, the research of nonlinear vibration systems has attracted the attention of many
engineering and technical personnel and researchers. As a combination of two typical nonlinear
systems, the nonlinear part of the Duffing-van der Pol system contains not only the nonlinear damping
term for maintaining self-excited vibration of the van der Pol system, but also the cubic nonlinear
restoring force term of the Duffing system, which has particularly rich dynamic characteristics. The
Duffing-van der Pol oscillator is also a typical system to simulate some physical phenomena, and its
simple nonlinear structure has led to an in-depth study of its dynamic behavior, which can be used
as a research model in many fields, such as engineering, electronics, biology and neurology [14–17].
Furthermore, the fractional Duffing-van der Pol oscillator is considered to be one of the most commonly
used equations in various system designs, including dynamics, biology, seismology, etc. [18, 19].
Therefore, it is of practical significance to further study the dynamic behavior of such systems.

Many scientists have done a lot of research on the nonlinear dynamic behavior of the Duffing-van
der Pol equation, including integer and fractional order cases [20–25]. Specially, in [22], a three-
dimensional autonomous Van der Pol-Duffing type oscillator is proposed. Using the Routh-Hurwitz
stability criterion and the linear stability analysis of equilibrium points, it was found that there is a Hopf
bifurcation in the three-dimensional autonomous Van der Pol-Duffing oscillator. In [23], the damping
characteristics of two Duffing-van der Pol oscillators with damping terms described by fractional
derivative and time delay are studied by the residue harmonic balance method. A Duffing-van der Pol
oscillator having fractional derivatives and time delays is investigated by the residue harmonic method
in [24]. The dynamical properties of fractional order Duffing-van der Pol oscillators are studied in [25],
and the amplitude-frequency response equation of the primary resonance is obtained by the harmonic
balance method.

According to current research results, many studies focus on only Duffing-van der Pol equations
with lower power terms under different excitations, while relatively few studies focus on the system
with high power nonlinear terms. The Duffing-van der Pol systems with high power nonlinear terms are
more worthy of study, because in the process of simplifying the actual model to the Duffing equation
or van der Pol equation, in order to reduce the error between the system and the actual process, the
nonlinear terms need to be approximately expressed as higher powers by power series to study the
richer dynamic characteristics of the system. In addition, for the reason that the nonlinear dynamic
behavior of the Duffing-van der Pol oscillator is very rich in bifurcation, chaos, primary resonance,
superharmonic or subharmonic resonance, stochastic resonance and other vibration characteristics,
the dynamic characteristics of the fractional Duffing-van der Pol oscillator are worthy of further
exploration and research. It should be noted here that the primary resonance of a fractional Duffing-
van der Pol oscillator can be studied by perturbation methods such as harmonic balance method or
averaging method. Although a multiple scale method has been commonly used in the study of integer-
order models, they are rarely involved in the study of fractional-order related problems. Therefore,
it is also very necessary to use the multiple scale method to study the resonance characteristics of
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fractional Duffing-van der Pol oscillators, for example, to understand how the system parameters affect
the periodic solutions resulted from resonance of the fractional Duffing-van der Pol oscillator.

The paper is organized as follows: In Section 2, the approximately analytical solution is obtained by
the multiple scale method. The amplitude frequency equation is obtained and the stability conditions
for the steady-state solution are given, while numerical simulations of the time history and phase
diagrams are also provided. In Section 3, the bifurcations of primary resonance are investigated and
the influence of parameters on fractional-order models is investigated. In Section 4, the comparisons of
the approximate analytical solution and numerical solution are fulfilled. Finally, concluding remarks
and implications in Section 5 close the paper.

2. Mathematical analysis

2.1. Primary resonance

The fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force is given by a
second-order non-autonomous differential equation as follows

ẍ − µ(1 − x2)Dq
t x + αx + λx3 + βx5 = f cosωt, (2.1)

where x is the position coordinate and is a function of time t, Dq
t x is the q-order derivative of x with

respect to time, µ is a positive fractional damping coefficient, ω0 is the natural frequency, α, λ and
β are coefficients of nonlinear restoring forces, the external excitation have amplitude and frequency
parameters which are f and ω, respectively. There are many definitions available for the fractional-
order derivative, and in this study, Dq

t x with 0 < q ≤ 1 is the Caputo’s fractional derivative of x(t)
described by

Dq
t x(t) =

1
Γ(1 − q)

∫ t

0
ẋ(τ)(t − τ)−qdτ,

in which Γ(z) is Gamma function satisfying Γ(z + 1) = zΓ(z). Under certain conditions, primary
resonance with limited amplitude occurs in the fractional Duffing-van der Pol oscillator (2.1) when
ω = ω0

def
=
√
α or ω ≈ ω0. That is, the primary resonance means the excitation frequency is close to

the natural one.
In order to find an approximate resonant solution of Eq (2.1), the multiple scale method will be used,

for which a small parameter ε is required. Let Tn = εnt, (n = 0, 1) be two independent time variables,
an approximate solution of Eq (2.1) with small amplitudes in three time scales can be represented by

x = x0(T0,T1) + εx1(T0,T1) + · · · . (2.2)

With such a small parameter ε, in order to balance the effect of the nonlinearity, damping and
excitation, the following scaling is used

µ→ εµ, λ→ ελ, β→ εβ, f → ε f . (2.3)

Then, Eq (2.1) becomes

ẍ − εµ(1 − x2)Dq
t x + ω2

0x + ελx3 + εβx5 = ε f cosωt. (2.4)
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The derivatives with respect to t can be expressed in terms of the new scaled times Tn using chain rule
as follows:

d
dt

= D0 + εD1 + · · · , (2.5a)

d2

dt2 = D2
0 + 2εD0D1 + ε2D2

1 + · · · , (2.5b)

Dq
t = Dq

0 + qεDq−1
0 D1 + · · · , (2.5c)

in which Dq
0 = ∂q

∂T q
0
, Dn = ∂

∂Tn
, D2

n = ∂2

∂T 2
n

and n = 0, 1.

For the primary resonance with ω = ω0 :=
√
α or ω ≈ ω0, a detuning parameter σ describing the

nearness of ω to ω0 is introduced by
ω = ω0 + εσ, (2.6)

then ωt = ω0T0 + σT1. Substituting (2.2), (2.5b) and (2.5c) into (2.4) leads to the following equation

(D2
0 + 2εD0D1 + ε2D2

1)(x0 + εx1) − εµ[1 − (x0 + εx1)2] · (Dq
0 + qεDq−1

0 D1)(x0 + εx1)
+ ω2

0(x0 + εx1) + ελ(x0 + εx1)3 + εβ(x0 + εx1)5

= ε f cos(ω0T0 + σT1).

Equating the coefficients of the same power of ε, a set of linear differential equations are obtained

O(ε0) : D2
0x0 + ω2

0x0 = 0, (2.7)

O(ε1) : D2
0x1 + ω2

0x1 = −2D0D1x0 + µ(1 − x2
0)Dq

0x0 − λx3
0 − βx5

0 + f cos(ω0T0 + σT1), (2.8)

from which x0 and x1 can solved one-by-one, respectively. In this way, the resonant solution x is
dominated by x0 and collected by εx1.

In order to obtain the primary resonance solutions, it is necessary to eliminate the secular term when
solving the Eqs (2.7) and (2.8) one by one, so as to find the amplitude-frequency response equation,
from which the influence of various parameters on the resonance solution can be studied.

The general solution of Eq (2.7) is of the form,

x0 = A(T1)eiω0T0 + A(T1)e−iω0T0 , (2.9)

where A(T1) and A(T1) are unknown functions, A(T1) denotes the complex conjugate of A(T1).
To solve Eq (2.8), for sufficient large t � 1, the qth-order (0 ≤ q ≤ 1) derivative of eiΩt is

approximated with
Dq

t eiΩt ≈−∞ Dq
t eiΩt = (iΩ)qeiΩt, (2.10)

according to the “Short Memory Principle” [13, 26], where

−∞Dq
t x(t) =

1
Γ(1 − q)

∫ t

−∞

ẋ(τ)(t − τ)−qdτ.

Substituting Eqs (2.9) and (2.10) into Eq (2.8) and using

cos(ω0T0 + σT1) =
ei(ω0T0+σT1) + e−i(ω0T0+σT1)

2
,
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the right-hand of Eq (2.8) becomes

[−2iω0D1A + µ(1 − 2AĀ)A(iω0)q − 3λA2Ā − 10βA3Ā2 +
f
2

eiσT1]eiω0T0 + NS T + cc,

where NS T stands for the terms that do not produce secular terms, cc denotes the complex conjugate
of the preceding terms.

In order that x1 is periodic, the secular terms with eiω0T0 must be zero, namely

− 2iω0D1A + µ(1 − 2AĀ)A(iω0)q − 3λA2Ā − 10βA3Ā2 +
f
2

eiσT1 = 0. (2.11)

To analyze the solution of Eq (2.11), it is convenient to express A(T1) in the polar form as

A(T1) =
a(T1)

2
eiθ(T1). (2.12)

In addition, the Euler formula gives

iq = (eiπ/2)q = eiqπ/2 = cos
qπ
2

+ i sin
qπ
2
.

Let ϕ def
= σT1 − θ. By separating the real and imaginary parts of Eq (2.11), the differential equations

governing amplitude a(T1) and ϕ(T1) of A(T1) are as follows respectively

D1a = µ(1 −
a2

2
)
a
2
ω

q−1
0 sin

qπ
2

+
f

2ω0
sinϕ, (2.13a)

aD1ϕ = σa + µ(1 −
a2

2
)
a
2
ω

q−1
0 cos

qπ
2
−

3λ
8ω0

a3 −
5β

16ω0
a5 +

f
2ω0

cosϕ. (2.13b)

We are interested in the steady solutions satisfying D1a = 0, D1ϕ = 0 in (2.13a) and (2.13b), namely

µ(2 − a2)
4

aωq−1
0 sin

qπ
2

= −
f

2ω0
sinϕ, (2.14a)

σa +
µ(2 − a2)

4
aωq−1

0 cos
qπ
2
−

3λ
8ω0

a3 −
5β

16ω0
a5 = −

f
2ω0

cosϕ. (2.14b)

Because sin2 ϕ+cos2 ϕ = 1, by eliminating ϕ from Eqs (2.14a) and (2.14b), the amplitude-frequency
response equation can be obtained as follows

[(4µ(2 − a2)ωq
0 sin

qπ
2

)2 + (16σω0 + 4µ(2 − a2)ωq
0 cos

qπ
2
− 6λa2 − 5βa4)2]a2 = (8 f )2. (2.15)

The real solution a of Eq (2.15) determines the dominant part x0 of the primary resonance response
amplitude. Similar results have been discussed in [21] for the case when q = 1, but the calculation
error in the derivation process of this paper leads to inaccurate amplitude-frequency response equation.
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2.1.1. Feedback control

The fractional Duffing-van der Pol oscillator with negative acceleration feedback considered is as
follows

ẍ − µ(1 − x2)Dq
t x + ω2

0x + λx3 + βx5 = f cosωt − uẍ, (2.16)

in which −u is the feedback gain reflecting the magnitude of a feedback force. Similar to the previous
discussion, the method of multiple time scales is used to obtain a uniformly valid, asymptotic expansion
of the solution for Eq (2.16). Let Tn = εnt, (n = 0, 1) be two independent time variables, an approximate
solution of Eq (2.16) with small amplitudes in three time scales can be represented by

x = x0(T0,T1) + εx1(T0,T1) + · · · . (2.17)

With such a small parameter ε, in order to balance the effect of the nonlinearity, damping and
excitation, the following scaling is used

µ→ εµ, λ→ ελ, β→ εβ, f → ε f , u→ εu. (2.18)

Then, Eq (2.16) becomes

ẍ − εµ(1 − x2)Dq
t x + ω2

0x + ελx3 + εβx5 = ε f cosωt − εuẍ. (2.19)

Substituting (2.17), (2.5b) and (2.5c) into (2.19) leads to the following equation

(D2
0 + 2εD0D1 + ε2D2

1)(x0 + εx1) − εµ[1 − (x0 + εx1)2] · (Dq
0 + qεDq−1

0 D1)(x0 + εx1)
+ ω2

0(x0 + εx1) + ελ(x0 + εx1)3 + εβ(x0 + εx1)5

= ε f cos(ω0T0 + σT1) − εu(D2
0 + 2εD0D1 + ε2D2

1)(x0 + εx1).

Similar to the previous discussion, the following differential equations about amplitude and phase
can be obtained,

D1a = µ(1 −
a2

2
)
a
2
ω

q−1
0 sin

qπ
2

+
f

2ω0
sinϕ, (2.20a)

aD1ϕ = σa + µ(1 −
a2

2
)
a
2
ω

q−1
0 cos

qπ
2
−

3λ
8ω0

a3 −
5β

16ω0
a5 +

f
2ω0

cosϕ + uω0
a
2
. (2.20b)

The steady solutions satisfying D1a = 0, D1ϕ = 0 in (2.20a) and (2.20b), namely

µ(2 − a2)
4

aωq−1
0 sin

qπ
2

= −
f

2ω0
sinϕ, (2.21a)

σa +
µ(2 − a2)

4
aωq−1

0 cos
qπ
2
−

3λ
8ω0

a3 −
5β

16ω0
a5 + uω0

a
2

= −
f

2ω0
cosϕ. (2.21b)

By eliminating ϕ from Eqs (2.21a) and (2.21b), the amplitude-frequency response equation can be
obtained as follows

[(4µ(2 − a2)ωq
0 sin

qπ
2

)2 + (16σω0 + 4µ(2 − a2)ωq
0 cos

qπ
2
− 6λa2 − 5βa4 + 8uω2

0)2]a2 = (8 f )2. (2.22)
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It should be noted that a fractional dynamical system does not have an exact periodic solution,
see [27, 28], and it may have one if the fractional derivative is defined over (−∞, t] [28]. When the
asymptotic behaviors of the fractional system are addressed, a fractional derivative over [0, t] with
large t equals approximately the corresponding one over (−∞, t], according to the “Short Memory
Principle” of fractional derivatives [26]. Thus, a periodic solution of a fractional system should be
understood as an asymptotic solution with transients before a finite time neglected. All the periodic
solutions mentioned in this paper are understood in this sense.

2.2. Stability of the steady resonant solutions

To determine the stability of the steady resonant solutions, suppose that (a, ϕ) = (a∗, ϕ∗) is a steady
solution of Eqs (2.20a) and (2.20b), let

∆a = a − a∗, ∆ϕ = ϕ − ϕ∗ (2.23)

are perturbations which are assumed to be small compared to a∗ and ϕ∗. Substituting Eq (2.23)
into Eqs (2.20a) and (2.20b), using Eqs (2.21a) and (2.21b), then the linearized differential equations
governing ∆a and ∆ϕ are

D1∆a =
2 − 3(a∗)2

4
µω

q−1
0 sin

qπ
2

∆a +
f

2ω0
cosϕ∗ ∆ϕ, (2.24a)

D1∆ϕ = [
σ

a∗
+

2 − 3(a∗)2

4a∗
µω

q−1
0 cos

qπ
2
−

9λa∗

8ω0
−

25β(a∗)3

8ω0
+

uω0

2a∗
]∆a −

f
2ω0a∗

sinϕ∗ ∆ϕ. (2.24b)

Let M=σ+
2−(a∗)2

4 µω
q−1
0 cos qπ

2 −
3λ

8ω0
(a∗)2−

5β
16ω0

(a∗)4+uω0
2 , N=σ+

2−3(a∗)2

4 µω
q−1
0 cos qπ

2 −
9λ

8ω0
(a∗)2−

25β
8ω0

(a∗)4+uω0
2 .

According to Eqs (2.21a) and (2.21b), the characteristic equation can be written as∣∣∣∣∣∣∣
2−3(a∗)2

4 µω
q−1
0 sin qπ

2 − λ −a∗M
1
a∗N

2−(a∗)2

4 µω
q−1
0 sin qπ

2 − λ

∣∣∣∣∣∣∣ = 0.

By expanding the determinant, we can get

λ2 + [(a∗)2 − 1]µωq−1
0 sin

qπ
2
λ + Λ = 0, (2.25)

in which Λ =
[2−3(a∗)2][2−(a∗)2]

16 (µωq−1
0 sin qπ

2 )2 + MN.
Thus, the steady solution (a, ϕ) = (a∗, ϕ∗) is asymptotically stable if and only if the real parts of all

roots of the characteristic Eq (2.25) are negative.

2.3. Numerical simulation

In this section, time history diagrams are used to briefly illustrate the impact of feedback control on
the model. Figure 1 shows the time history of the system without controller. The various parameters
of the system in Figure 1 are ω0 = 1, q = 0.9, µ = 0.01, λ = 0.04, β = 0.01 and f = 0.06. It can be
observed that the amplitude fluctuates significantly in the first 150s and the steady-state amplitude of
the system is about 0.28. The phase diagram shows a limit cycle, indicating that there is no chaos in
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the system. Different initial conditions were tested and it was found that the steady-state amplitude of
the system is not sensitive to the initial conditions.
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Figure 1. The time history and phase diagram of (2.1) without controller.

Figure 2 shows the time history of the system with feedback controller. The various parameters
of the system in Figure 2 are ω0 = 1, q = 0.9, µ = 0.01, λ = 0.04, β = 0.01, f = 0.06 and
u = 0.1. From Figure 2, it can be seen that the steady-state amplitude of the system has decreased to
approximately 0.115, this indicates the effectiveness of the controller. The steady-state value appears
after 150s without control, while it appears before 50 seconds with control, which also reflects the
effect of adding control.
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Figure 2. The time history and phase diagram of (2.16) with feedback controller.
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3. Analysis of the resonant solutions

Rewritten Eqs (2.15) and (2.22) in terms of the original system parameters as follows

[(4µ(2 − a2)ωq
0 sin

qπ
2

)2 + (16(ω − ω0)ω0 + 4µ(2 − a2)ωq
0 cos

qπ
2
− 6λa2 − 5βa4)2]a2 = (8 f )2, (3.1)

and

[(4µ(2−a2)ωq
0 sin

qπ
2

)2 +(16(ω−ω0)ω0 +4µ(2−a2)ωq
0 cos

qπ
2
−6λa2−5βa4 +8uω2

0)2]a2 = (8 f )2. (3.2)

The effect of different parameters on the amplitude of the resonant solutions is investigated
numerically. Here, the difference between the model with quintic nonlinear term and the model
without quintic power is given by the amplitude-frequency response curve, as shown in Figure 3.
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Figure 3. Response curves with q = 0.9, µ = 0.01, ω0 = 1, f = 0.06.

It can be seen from the figure that the bending degree, resonance region and jump phenomena of
the model have obvious changes after considering the quintic nonlinear terms, indicating that it is very
important to consider the role of higher order terms for studying the nonlinear characteristics of the
model.

3.1. Parameter influence on the amplitudes of the resonant solutions

This section discusses the influence of parameters on the hardening/softening characteristics and
resonance peak value based on Eq (3.1). As shown in Figures 4–7, typical hardening/softening
characteristics can be observed also in the curves of the resonant amplitudes with respect to the changes
of λ, β, q, µ and f , respectively.

The influence of the nonlinear terms on the amplitude-frequency response curve can be identified
with the changes of λ, β. Typical softening characteristic can be observed in Figure 4 with λ = −0.04
and β = −0.01, and the frequency response curve bends to low frequency. When λ = 0.04 and β = 0.01,
hardening characteristic can be observed and the frequency response curve bends to high frequency.
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Figure 4. Response curves with q = 0.9, µ = 0.01, ω0 = 1, f = 0.06.

The effect of the fractional-order q on the amplitude-frequency curves is shown in Figure 5. If the
fractional order q is closer to 0, the fractional differential term degenerates to linear stiffness, while
if q is closer to 1, it degenerates to linear damping. It is further known that the smaller the order
q is, the larger the maximum amplitude is. The integer-order model is the lowest. Compared with
the integer order case when q = 1, the bending degree, resonance peak and resonance region of the
amplitude-frequency curve of the fractional-order model change accordingly with the decrease of the
fractional-order q.
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Figure 5. Effect of the fractional-order q on the amplitude-frequency curves when ω0 = 1,
µ = 0.01, λ = 0.04, β = 0.01, f = 0.06.

Figure 6 shows the effect of the damping coefficient µ on the amplitude-frequency curves. With the
increase of µ, the nonlinear jump of the system weakens and the resonance amplitude of the system
decreases. In other words, as µ increases, the unstable portions decrease.
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Figure 6. Effect of the damping coefficient µ on the amplitude-frequency curves whenω0= 1,
q = 0.9, λ = 0.04, β = 0.01, f = 0.06.

The effect of the excitation amplitude f on the amplitude-frequency curves can be seen in Figure 7.
With the increase of the excitation amplitude f , the frequency response curve will generate a
multivalued region, the nonlinear jump of the system is more obvious and the resonance range and
resonance amplitude of the system increase.
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Figure 7. Effect of the excitation amplitude f on the amplitude-frequency curves when
ω0 = 1, q = 0.9, µ = 0.01, λ = 0.04, β = 0.01.

Figures 5–7 present parameter effects on resonant amplitudes with respect to excitation frequency.
With fixed parameter values, all the figures exhibit typical characteristics of hardening spring. Let
us take a different view on the resonant solutions. Now, the excitation frequency is fixed, and then
with the change of a parameter, the amplitude of the primary resonant solution changes in different
ways. In Figures 8–10, the images reflect characteristics similar to hardening spring, where the peak
of amplitude is bent to the right as f varies, as λ varies or as β varies, respectively.
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Figure 8. Resonant amplitude with respect to f for ω0 = 1, q = 0.9, µ = 0.01, λ = 0.04,
β = 0.01.
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Figure 9. Resonant amplitude for increasing non-linear parameter λ and β when ω0 = 1,
q = 0.9, µ = 0.01.
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Figure 10. Resonant amplitude with respect to λ and β for ω0 = 1, q = 0.9, µ = 0.01,
f = 0.04.

3.2. Parameter influence on the resonant solutions under feedback control

Through Eq (3.2), this section discusses the influence of parameters on the resonant solutions under
feedback control. Figure 11 considers the influence of the gain value of the feedback control on
the vibration state of the system. The red line in Figure 11 shows the primary resonance amplitude
frequency response curve of the system without feedback control. It can be seen from Figure 11 that
compared with the amplitude frequency curve of the primary resonance of the system without feedback
control, after adding the feedback control, the resonance curve of the system moves to the left, and the
resonance domain of the system changes. When the amplitude of the value of the gain of the control is
increased, the deviation of the amplitude frequency response curve becomes larger.
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Figure 11. Influence of the gain value of the feedback control on the vibration state for
ω0 = 1, q = 0.9, µ = 0.01, λ = 0.04, β = 0.01, f = 0.06.
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Figure 12 shows the influence of the frequency parameters on the vibration state of the system. The
closer the external excitation frequency ω is to the primary resonance frequency ω0, the smaller the
offset of amplitude frequency curve is, and the smaller the change of resonance domain is. On the
contrary, the more the phase difference, the larger the offset of the amplitude frequency curve. The
peak amplitude of the primary resonance in Figure 12 does not change, but changes the position where
it appears.
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Figure 12. Resonant amplitude with respect to u for ω0 = 1, q = 0.9, µ = 0.01, λ = 0.04,
β = 0.01, f = 0.04.

4. Comparison between approximate analytical solution and numerical solution

According to Eq (3.1), the primary resonance amplitude-frequency response curve of the system can
be drawn. For comparison, this paper adopts the power series method introduced in references [3, 29],
and its calculation formula is

Dq
tn[y(tn)] ≈ h−q

n∑
j=0

Cq
j y(tn− j), (4.1)

where tn = nh is the sample points, h is the sample step and Cq
j is the fractional binomial coefficient

with the iterative relationship as

Cq
0 = 1, Cq

j = (1 −
1 + q

j
)Cq

j−1. (4.2)

According to Eqs (4.1) and (4.2), the numerical scheme for Eq (2.4) can be expressed as

x(tn) = y(tn−1)h −
n∑

j=1

C1
j x(tn− j), (4.3a)

y(tn) = { f cos(ωtn) − αx(tn) − λx3(tn) − βx5(tn) + µ[1 − x2(tn)]z(tn−1)}h −
n∑

j=1

C1
j y(tn− j), (4.3b)
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z(tn) = y(tn)h1−q −

n∑
j=1

C1−q
j z(tn− j). (4.3c)

The numerical amplitude-frequency curve marked with circle in Figure 13, where the stepsize of
time is h = 0.005, and the total computation time is 100s with the first 25s neglected. It shows that the
resonant amplitude calculated from Eq (3.1) is in good agreement with the numerical results, especially
when the ω ≈ ω0.
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Figure 13. Comparison between approximate analytical solution and numerical solution
when ω0 = 1, q = 0.85, µ = 0.03, λ = 0.03, β = 0.005, f = 0.02.

5. Conclusions

We study the primary resonance and feedback control of the fractional Duffing-van der Pol
oscillator with quintic nonlinear-restoring force. The approximate analytical solution and the
amplitude-frequency equation are obtained by the multiple scale method. The stability condition
for steady-state solution is obtained based on the Lyapunov theory. The influence of parameters on
system characteristics was studied using the amplitude frequency response equation and phase plane
technology, and bifurcation analysis was conducted to verify the stability of the system. It can also be
concluded that fractional orders and damping coefficients are very important in the fractional Duffing-
van der Pol oscillator. For example, larger fractional orders and larger damping coefficients can reduce
the effective amplitude of resonance and change the resonance frequency.
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