Research article Special Issues

Prediction of the air quality index of Hefei based on an improved ARIMA model

  • Received: 04 December 2022 Revised: 06 May 2023 Accepted: 12 May 2023 Published: 02 June 2023
  • With the rapid development of the economy, the air quality is facing increasingly severe pollution challenges. The air quality is related to public health and the sustainable development of the environment of China. In this paper, we first investigate the changes in the monthly air quality index data of Hefei from 2014 to 2020. Second, we analyze whether the Spring Festival factors lead to the deterioration of the air quality index according to the time sequence. Third, we construct an improved model to predict the air quality index of Hefei. There are three primary discoveries: (1) The air quality index of Hefei has obvious periodicity and a trend of descent. (2) The influencing factors of Spring Festival have no significant effect on the air quality index series. (3) The air quality index of Hefei will maintain a fluctuating and descending trend for a period of time. Finally, some recommendations for the air quality management policy in Hefei are presented based on the obtained results.

    Citation: Jia-Bao Liu, Xi-Yu Yuan. Prediction of the air quality index of Hefei based on an improved ARIMA model[J]. AIMS Mathematics, 2023, 8(8): 18717-18733. doi: 10.3934/math.2023953

    Related Papers:

  • With the rapid development of the economy, the air quality is facing increasingly severe pollution challenges. The air quality is related to public health and the sustainable development of the environment of China. In this paper, we first investigate the changes in the monthly air quality index data of Hefei from 2014 to 2020. Second, we analyze whether the Spring Festival factors lead to the deterioration of the air quality index according to the time sequence. Third, we construct an improved model to predict the air quality index of Hefei. There are three primary discoveries: (1) The air quality index of Hefei has obvious periodicity and a trend of descent. (2) The influencing factors of Spring Festival have no significant effect on the air quality index series. (3) The air quality index of Hefei will maintain a fluctuating and descending trend for a period of time. Finally, some recommendations for the air quality management policy in Hefei are presented based on the obtained results.



    加载中


    [1] A. Peters, C. A. Pope Ⅲ, Cardiopulmonary mortality and air pollution, Lancet, 360 (2002), 1184–1185. https://doi.org/10.1016/S0140-6736(02)11289-X doi: 10.1016/S0140-6736(02)11289-X
    [2] C. A. Pope Ⅲ, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, et. al., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA, 287 (2002), 1132–1141. https://doi.org/10.1001/jama.287.9.1132 doi: 10.1001/jama.287.9.1132
    [3] P. Gallagher, W. Lazarus, H. Shapouri, R. Conway, F. Bachewe, A. Fischer, Cardiovascular disease—risk benefits of clean fuel technology and policy: A statistical analysis, Energ. Policy, 38 (2010), 1210–1222. https://doi.org/10.1016/j.enpol.2009.11.013 doi: 10.1016/j.enpol.2009.11.013
    [4] D. C, Shin, Hazardous air pollutants: Case studies from Asia, 1 Eds., Boca Raton: Press, 2016. https://doi.org/10.1201/b19829
    [5] C. Mora, D. Spirandelli, E. C. Franklin, J. Lynham, M. B. Kantar, W. Miles, et. al., Broad threat to humanity fromcumulative climate hazards intensifiedby greenhouse gas emissions, Nat. Clim. Change, 8 (2018), 1062–1071. https://doi.org/10.1038/s41558-018-0315-6 doi: 10.1038/s41558-018-0315-6
    [6] H. X. Zhang, X. F. Cheng, R. H. Chen, Study on Spatio-temporal Distribution characteristics and key influencing factors of PM2.5 in Anhui Provinceg, Acta Sci. Circumstantiae, 38 (2018), 1080–1089.
    [7] Q. S. Zhu, C. W. Xie, J. B. Liu, On the impact of the digital economy on urban resilience based on a spatial Durbin model, AIMS Mathematics, 8 (2023), 12239–12256. https://doi.org/10.3934/math.202361 doi: 10.3934/math.202361
    [8] X. Dai, G. Song, X. Jiang, X. Yu, D. Yu, Impact of the new crown pneumonia outbreak on air quality in Xianyang City, China Environ. Sci., 41 (2021), 3106–3114. https://doi.org/10.19674/j.cnki.issn1000-6923.20210331.004 doi: 10.19674/j.cnki.issn1000-6923.20210331.004
    [9] H. Liu, W. Xu, M. Wei, P. Xu, M. Li, M. Zhang, Simulation of the impact of epidemic control on air quality in Shandong Province in early 2020, Environ. Sci., 42 (2021), 1215–1227. https://doi.org/10.13227/j.hjkx.202007246 doi: 10.13227/j.hjkx.202007246
    [10] C. Fang, lmportant progress and prospects of China's urbanization and urban agglomeration in thepast 40 years of reform and opening-up, Econ. Geogr., 38 (2018), 38: 1–9. https://doi.org/10.15957/j.cnki.jjdl.2018.09.001 doi: 10.15957/j.cnki.jjdl.2018.09.001
    [11] Q. Wan, X. Luo, F. Pan, G. Jin, Spatio-temporal evolution and convergence trend of air quality in urban agglomeration in China, Geoscience, 2242 (2022), 1943–1953. https://doi.org/10.13249/j.cnki.sgs.2022.11.009 doi: 10.13249/j.cnki.sgs.2022.11.009
    [12] J. B. Liu, X. B. Peng, J. Zhao, Analyzing the spatial association of household consumption carbon emission structure based on social network, J. Comb. Optim., 79 (2023), 45–79. https://doi.org/10.1007/s10878-023-01004-x doi: 10.1007/s10878-023-01004-x
    [13] J. B. Liu, B. Y. Zhao, Study on environmental efficiency of Anhui province based on SBM-DEA model and fractal theory, Fractals, 31, (2023), 2340072. https://doi.org/10.1007/s10878-023-01004-x doi: 10.1007/s10878-023-01004-x
    [14] N. Huang, S. Zhu, The report card of the ten years of industrial development in Hefei, Available from: http://hfdx.hfzhi.com/index/index/index/id/4#magazine/page66-page67.
    [15] W. Huang, D. Li, Y. Huang, A spatio-temporal hybrid prediction model for air quality, Comput. Appl., 40 (2020), 3385–3392. https://doi.org/10.11772/j.issn.1001-9081.2020040471 doi: 10.11772/j.issn.1001-9081.2020040471
    [16] Y. Zhou, Prediction of air quality in Nanjing based on ARIMA and long-term and short-term memory model, Master thesis, Nanjing Audit University, 2021. https://doi.org/10.27835/d.cnki.gnjsj.2021.000124
    [17] S. Gautam, A. Yadav, C. J. Tsai, P. Kumar, A review on recent progress in observations, sources, classification and regulations of PM$_{2.5}$ in Asian environments, Environ. Sci. Pollut. Res., 23 (2016), 2116–2117. https://doi.org/10.1007/s11356-016-7515-2 doi: 10.1007/s11356-016-7515-2
    [18] G. E. Kulkarni, A. A. Muley, N. K. Deshmukh, P. U. Bhalchandra, Modeling Eart Autoregressive integrated moving average time series model for forecasting air pollution in Nanded city, Model. Earth Syst. Environ., 4 (2018), 1435–1444. https://doi.org/10.1007/s40808-018-0493-2 doi: 10.1007/s40808-018-0493-2
    [19] V. Naveen, N. Anu, Time Series Analysis to Forecast Air Quality Indices in Thiruvananthapuram District, Kerala, India, Int. J. Eng. Res. Appl., 7 (2017), 66–84. https://doi.org/10.9790/9622-0706036684 doi: 10.9790/9622-0706036684
    [20] H. Zhang, S. Zhang, P. Wang, Y. Qin, H. Wang, Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, J. Air Waste Manage. Assoc., 67 (2017), 776–788. https://doi.org/10.1080/10962247.2017.1292968 doi: 10.1080/10962247.2017.1292968
    [21] E. Aladağ, Forecasting of particulate matter with a hybrid ARIMA model based on wavelet transformation and seasonal adjustment, Urban Clim., 39 (2021), 100930. https://doi.org/10.1016/j.uclim.2021.100930 doi: 10.1016/j.uclim.2021.100930
    [22] H. Gong, H. Wang, W. Liang, X. Ma, L. Yang, F. Guo, Factor analysis of haze formation in Beijing-Tianjin-Hebei region, China Environ. Protec. Ind., 269 (2020), 34–39. https://doi.org/10.3969/j.issn.1006-5377.2020.11.005 doi: 10.3969/j.issn.1006-5377.2020.11.005
    [23] X. Huang, T. Shao, J. Zhao, J. Cao, D. Yue, X. Lu, Temporal and spatial distribution characteristics and influencing factors of air quality in the Yangtze River economic belt, China Environ. Sci., 40 (2020), 874–884. https://doi.org/10.19674/j.cnki.issn1000-6923.2020.0149 doi: 10.19674/j.cnki.issn1000-6923.2020.0149
    [24] L. Jiang, H. Zhou, L. Bai, Z. Chen, Analysis of socio-economic influencing factors of Air quality Index (AQI) – from the perspective of exponential attenuation effect, J. Environ. Sci., 38 (2018), 390–398. https://doi.org/10.13671/j.hjkxxb.2017.0181 doi: 10.13671/j.hjkxxb.2017.0181
    [25] G. B. Christopher, H. H. Scott, C. M. Brian, Comparison of X-12-ARIMA Trading Day and Holiday Regressors with Country Specific Regressors, J. Off. Stat., 26 (2010), 371–394.
    [26] W. M. Persons, An Index of General Business Conditions, Rev. Econ. Stat., 9 (1919), 20–29. https://doi.org/10.2307/1928562 doi: 10.2307/1928562
    [27] C. Chatfield, D. Prothrto, Box-Jenkins seasonal forecasting: Problems in a casestudy, J. Roy. Stat. Soc., 136 (1973), 295–336. https://doi.org/10.2307/2344994 doi: 10.2307/2344994
    [28] S. Markidakis, A survey of time series, Int. Stat. Rev., 44 (1976), 29–70. https://doi.org/10.2307/1402964 doi: 10.2307/1402964
    [29] J. Tang, X. Zhong, J. Liu, T. Li, Short-term prediction of rail transit passenger flow based on time series seasonal classification model, J. Chongqing Jiaotong Univ., 40 (2021), 31–38. https://doi.org/10.3969/j.issn.1674-0696.2021.07.05 doi: 10.3969/j.issn.1674-0696.2021.07.05
    [30] L. Dominique, B. Quennevill, Seasonal Adjustment with the X-11 Method, New York: Springer, 2001. https://doi.org/10.1007/978-1-4613-0175-2
    [31] W. Fan, L. Zhang, G. Shi, Summary and comparison of seasonal adjustment methods, Stat. Res., 2 (2006), 70–73. https://doi.org/10.19343/j.cnki.11-1302/c.2006.02.018 doi: 10.19343/j.cnki.11-1302/c.2006.02.018
    [32] W. P. Cleveland, G. C. Tiao, Decomposition of Seasonal Time Series: A Model for the Census X-11 Program, J. Am. Stat. Assoc., 71 (1974), 581–587. https://doi.org/10.6092/issn.1973-2201/3597 doi: 10.6092/issn.1973-2201/3597
    [33] J. Shiskin, The Census Bureau Seasonal Adjustment Program, Bus. Econ., 4 (1969), 71–73.
    [34] X. Liu, The application and enlightenment of seasonal adjustment method in western countries, Jiangsu Stat., 11 (1999), 32–34.
    [35] R. J. Hyndman, Moving Averages, Int. Encycl. Stat. Sci., eds (2011), 866—869. https://doi.org/10.1007/978-3-642-04898-2_380
    [36] S. Liu, On the Seasonal Adjustment of Time Series Data, the Derivation of Quarterly Change Rate and Annual Change Rate and the Annualization Method, Res. World Econ. Stat., 1 (2003), 15–21.
    [37] D. F. Findley, B. C. Monsell, W. R. Bell, M. C. Otto, B. Chen, New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program, J. Bus. Econ. Stat., 16 (1998), 127–152. https://doi.org/10.1080/07350015.1998.10524743 doi: 10.1080/07350015.1998.10524743
    [38] L. He, M. Zhou, Y. Zhu, X. Meng, D. Hu, Q. Fu, et. al., Study on the changing trend of air quality in Hefei from 2001–2020, China Environ. Monit., 38 (2022), 65–73. https://doi.org/10.19316/j.issn.1002-6002.2022.04.08 doi: 10.19316/j.issn.1002-6002.2022.04.08
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1660) PDF downloads(98) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog