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Abstract: With the rapid development of the economy, the air quality is facing increasingly severe
pollution challenges. The air quality is related to public health and the sustainable development of the
environment of China. In this paper, we first investigate the changes in the monthly air quality index
data of Hefei from 2014 to 2020. Second, we analyze whether the Spring Festival factors lead to the
deterioration of the air quality index according to the time sequence. Third, we construct an improved
model to predict the air quality index of Hefei. There are three primary discoveries: (1) The air quality
index of Hefei has obvious periodicity and a trend of descent. (2) The influencing factors of Spring
Festival have no significant effect on the air quality index series. (3) The air quality index of Hefei will
maintain a fluctuating and descending trend for a period of time. Finally, some recommendations for
the air quality management policy in Hefei are presented based on the obtained results.
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1. Introduction

With the development of the economy and technology, the world climate and environment are
facing more and more challenges. Thus, countries of the world have to pay more attention to the air
pollution. With the gradual globalization of the economy, many countries have begun to advocate for
ecological globalization. Air quality has become a concern of many environmentalists at home and
abroad. Studies have confirmed that the long-term inhalation of air pollutants increases health risks,
such as cardiovascular, respiratory and lung effects [1–5]. In order to improve the technical level of
environmental monitoring, modern environmental monitoring technology and equipment are used to
monitor the overall air quality and pollutant emissions. It ensures the implementation of air pollution
prevention and control to a certain extent. With the use of computer software to examine data, one can
control the air quality index (AQI) more effectively. Meanwhile, we can evaluate the effectiveness of
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existing air control policies, use projected data to correct the existing policies and improve it.
The AQI describes the cleanliness and pollution degree of the air. The U. S. EPA uses five main

pollution standards to calculate the air quality: ground ozone, particulate matter pollution, carbon
monoxide, sulfur dioxide and nitrogen dioxide. The main factors that affect air quality are vegetation
coverage and pollutant emissions. Population urbanization rate, annual average temperature, power
consumption and industrial waste gas treatment facilities are strong driving factors, which play a
fundamental role in reducing the concentration of pollutants [6]. The influence factors vary in
different regions since the different conditions in different cities, such as the promotional effect of the
digital economy on urban resilience levels vary significantly across regions [7]. At the beginning of
the large-scale spread of the epidemic in 2020, scholars modeled the changes of air quality in various
provinces and cities. The results showed that the emissions of primary and secondary pollutants were
reduced under the constraints of residents’ work and life. The air quality during that period was
significantly improved. It means that the residual pollutants have great ramifications on air
quality [8, 9].

Since the 21st century, the economy in China has been rapidly developing. The prompt rise of the
secondary industry and the acceleration of urbanization made China overtake Germany, Japan and other
developed countries hastily, becoming the second largest country in terms of economic output. China
has completed more than the 200 years of urbanization and industrialization of developed countries
during the past 40 years, which will inevitably bring corresponding air pollution problems. More and
more serious haze has appeared in the Yangtze River Delta, Beijing-Tianjin-Hebei and other economic
zones.

Scholars most focus on the urban agglomerations, the economic zones and the regional
characteristics of the AQI while investigating the air quality and energy consumption of
China [10–12]. As one of the constituent provinces of the Yangtze River Delta Economic Zone,
Anhui Province has developed rapidly in recent years. As the provincial capital city, Hefei has been
included in the scope of the new first-tier cities in 2020. In the past decade, the city’s regulated
industrial added value has maintained an average annual medium-to-high growth rate of 12.2%,
which is nearly 6 percentage points higher than that of the whole country. Industrial investment grew
at an average annual rate of 12.1%, which is 6.2 points percentage higher than that of the whole
country. While developing the economy, Hefei City is also controlling pollutant emissions, insisting
on green and low-carbon technology, leading the development. The overall environmental efficiency
development of Hefei was at a higher level than other prefecture-level cities of Anhui Province during
2015–2020 [13]. The energy consumption of industrial added value in the city has decreased by
66.76% in the past decade [14].

It is of great significance to predict the trend of AQI of Hefei. To predict the AQI, scholars have
used a BP neural network, grey prediction model and LSTM-network to forecast the index [15], and
all of them have achieved ideal prediction results. The autoregressive (AR) model is a model that
uses its own historical data as regression variables. The advantage of autoregressive model is that
it requires a small amount of data and it is suitable for situations that affected by its own historical
factors greatly [16]. The ARIMA model has achieved ideal fitting results when applied to predict air
quality-related indicators, such as PM2.5, PM10, NO2, etc. [17–19]. At the same time, the combination
of ARIMA model and other models also shows good results in the prediction of air pollutant-related
indicators, such as a hybrid model using MODWT and ARIMA, a wavelet-ARMA/ARIMA model
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and so on [20, 21]. These indicators are significant factors affecting the AQI and important causes of
aggravation of air pollution [22–24].

The above cases have some defects when predicted by the ARIMA model, that is, they cannot take
into account the impact of special external factors on the data. Some series show obvious periodicity
and seasonality, but the period lengths of different series are not the same. If the observation time is
not long enough, some periodicity may be missed. Due to the influence of some social and economic
development factors, there may be some fixed changes in the time series on some special dates.
Therefore, these specific time series usually contain various elements that must be adjusted in order to
forecast the data correctly. One of these elements is called the trading day effect (also called the
day-of-week effect). Thus, the combination of periodicity and special trading days is likely to have a
considerable impact on the time series, making it difficult to analyze the data properly unless these
effects are adequately considered [25]. Therefore, in order to grasp the changing trend of the time
series more accurately, the periodicity factor in the time series decomposition factor can be redefined
as a special trading day factor to improved adaptation to the different characteristics of the series.
Regression analysis can be used to determine whether the influence of special trading day factors on
time series is significant.The X-11 model uses three different moving average methods to calculate the
factorization of time series, and it fits the seasonal adjustment program of time series through the
factorization of three stages. To avoid the data loss caused by the moving average, the ARIMA
process is used to model the data to supplement the serial values before X-11 processing. On this
basis, the same pretreatment of time series is strengthened, which is called the X-12-ARIMA model.

In this paper, we use the new model to analyze the trading days of the AQI of Hefei. The main
contents of this paper are as follows: In Section 2.1, we introduce the deterministic factor
decomposition of time series. In Section 2.2, we explain the seasonal adjustment model and three
moving average models. In Section 2.3, the improved model that considers a special trading day is
introduced, and we give the modeling process of X-12-ARIMA completely. In the third section, the
X-12-ARIMA model is used to examine whether the influential factors of the Spring Festival will
affect the AQI of Hefei or not. The model is used to predict the AQI as well.

2. Methodology

2.1. Deterministic factor decomposition

For deterministic time series, factor decomposition methods are commonly used for analysis.
Statisticians believe that all time series can be decomposed into four components: long-term trends,
cyclical fluctuations, seasonal variations and random fluctuations. When performing deterministic
time-series analysis, the series may contain one of these four influencing factors, or it may be a
composite series with a mixture of several components. But, the four factors above can be used to
describe all of the time series, meaning that all time series can be fitted with a function as
X = f (Tt,Ct, S t, It) [26].

The commonly used functions are additive and multiplicative functions, and the corresponding
factor decomposition models are constructed as additive models and multiplicative models. The
multiplicative seasonal model of time-series is called a multiplicative seasonal autoregressive
differential moving average model. It is a time series model that constructed by introducing the idea
of multiplicative seasons based on the basic autoregressive differential moving average model
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(ARMA model) [27]. The ARMA model represents the time series model as three parts: difference,
autoregression and moving average [28]. The model is often used in series with complex interactions,
such as seasonal effects, long-term trends and random fluctuations. Compared with the ARIMA
model, it pays more attention to the periodic fluctuation state reflected by the data and the seasonality
in the series [29]. The multiplicative model can be expressed as

X = Tt ×Ct × S t × It.

In social and economic life, it is difficult to distinguish cyclical factors and trend factors when the
observation period is not long enough. Some socioeconomic phenomena will be significantly affected
by some special dates. Based on the multiplicative model, economists improved the deterministic factor
decomposition model, changing the cyclical factor to a special trading day factor. The new factors are
as follows: long-term trend, seasonal factor, trading day factor and random fluctuation. That means
that the time series can be fitted as Xt = f (Tt,Dt, S t, It).

2.2. Seasonal adjustment model

In 1954, Shiskin applied the moving average method to seasonal adjustment, which is called X-
1 [30]. After that, Shisskin continuously improved the method and successively developed the seasonal
adjustment program from X-3 to X-10. The famous X-11 seasonal adjustment program was launched
in 1965, and it has been widely used in the official and commercial departments of the USA because
of its excellent adaptability and effectiveness [31].

For the models with obvious seasonal factors, the seasonal factors will cover up the long-term
development trend, so it is necessary to decompose the factors when studying the development of
socioeconomic phenomena and excluding the influence of seasonal fluctuations. The moving average
is often used to eliminate the seasonality of time-series data, and the moving average ratio can
effectively extract the seasonal effect. However, the fitting of high-order polynomial functions by a
simple moving average is not accurate enough. The X-11 model uses three different moving average
methods to calculate the factorization of time series, and it fits the seasonal adjustment program
through the factorization of three stages [32].

The X-11 seasonal adjustment model is the most commonly used standard method for statistical
and commercial organizations to use for decomposition. The X-11 method was developed by the
United States Census Bureau and dates back to the 1950s [33]. The estimated value of the trend period
obtained by this method can be used for all observations, including the end point, and it allows the
seasonal components to change slowly with time. The X-11 model also has some complex ways to
deal with trading day changes, holiday effects and the effects of known predictors. It deals with additive
and multiplicative decomposition at the same time, and it robust against outliers and horizontal offsets
in time series.

The following are three moving average methods for seasonality adjustment using the X-11 model.
(1) Moving average method
The core of the X-11 program is the moving average method. One of its important features is that

it can select functions according to the characteristics of the sequence, such as the number of moving
average terms, outliers and so on which can be determined by the program itself [34].

The moving average method is one of the most commonly used smoothing methods. The moving
average method can be used to eliminate random fluctuations and seasonal effects, yielding the
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changing trend of time series. The moving average method is calculated with the Eq (2.1):

M

xt =

f∑
i=−k

θixt−i

 ,∀k, f > 0, (2.1)

where M(xt) is called the k + f + 1 period moving average function of the series xt and θi is called the
moving average coefficient or the moving average operator.

(2) Henderson weighted moving average
The simple central moving average can well extract the information of the primary function and

the quadratic function when extracting the trend information. But, for the curves with more than a
quadratic degree, it is not enough to extract the trend information. The X-11 process needs to further
use the Henderson weighted moving average on the basis of the simple moving average [35].

The Henderson weighted moving average means that S 2 =
∑ f

i=−k

(
∇3θi

)2
is minimized under the

constraints of
∑k

i=−k θixt−i = 1 and
∑k

i=−k iθi = 0. θi is the weighting coefficient of the moving average.
Among them, S 2 is equal to the square sum of the third-order difference of the moving average
coefficient. It is equivalent to taking a cubic polynomial as an index of smoothness, which requires S 2

to be minimized to make the smoothing value as close to a cubic curve as possible.
(3) Musgrave asymmetric moving average
The above two moving average methods can well eliminate the trend and extract linear or nonlinear

trend information, but they are all central moving averages. If the moving average period is 2k+1, then
the moving average fitting will lead to the loss of the front k-period and the last k-period information
of the sequence. Therefore, in 1964, the statistician Musgrave constructed the Musgrave asymmetric
moving average method to solve this problem to supplement the smooth fitting of the final k-period
data [30]. Taking the ratio-to-moving average method as the theoretical basis, a simple treatment of
the end value, the asymmetric moving average, is adopted in the X-11 model [31].

The construction idea of the Musgrave asymmetric moving average is that a set of central moving
average coefficients is known, which satisfies the premise constraints, such as the minimum variance
and optimal smoothness of

∑k
I=−k θi = 1. Now we need to find another set of non-central moving

average coefficients min
{
E

(∑k
i=−k θixt−i −

∑k
i=−(k−d) ϕixt−i

)}2
, where d is the number of terms for

supplementary smoothing. This coefficient set also satisfies the constraint
∑k−d

i=−k ϕi = 1 with a sum of
1, and its fitting value can be infinitely close to the fitting value of the central moving average. That is,
the modification to the existing estimated value of the central moving average is minimal.

With this guiding idea, Musgrave applied the concept of noise-to-signal ratio R = Ī
C̄ to calculate

the coefficients of the moving averages, where Ī is the sample mean of the absolute difference Î of the
irregular part

∣∣∣Īt − Īt−1

∣∣∣ of the series and C̄ is the sample mean of the absolute difference
∣∣∣C̄t − C̄t−1

∣∣∣ of
the trend one cycle part Ĉ of the series.

Based on the ratio R and the central moving average coefficient, Musgrave gives the formula for the
asymmetric moving average coefficient:

ϕ j = θ j +
1
M

N∑
i=M+1

θ1 +

[
j − M+1

2

]
D

1 +
M(M−1)(M+1)

12

N∑
i=M+1

[
i −

m + 1
2

]
θi,−(k − d) � j � k, (2.2)

where N = 2K + 1, M = N − d, D = 4
πR2 .
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We can obtain the asymmetric moving average coefficient through the use of Eq (2.2), and then get
the smooth estimation of the missing term.

2.3. The X-12-ARIMA model

X-11 is the core of X-11-ARIMA and X-12-ARIMA [36]. In the process of applying the simple
central moving average and Henderson weighted moving average, some fitting values may be missing.
The X-11-ARIMA process is to construct the ARIMA model to fill the missing data during the moving
average process before establishing the X-11 model. On this basis, the United States Census Bureau
strengthened the preprocessing of the sequence and developed the X-12-ARIMA model in 1998 [37].
Figure 1 shows the flow of the X-12-ARIMA process.
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Figure 1. The process of X-12-ARIMA model.

Step 1: Check whether there are any deterministic outliers have an impact on the series values.
The new model strengthens the preprocessing of sequence values by detecting the influence of

special factors on the sequence through regression.
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Step 2: Construct an ARIMA model according to the fitting results of the regression model.
If the regression equation is significant, construct an ARIMA model with the residual series.

Otherwise, construct an ARIMA model with the original sequence.
Step 3: Construct the prediction model by using the expanded data in step 2.
In order to fill the missing data points, the system will use the fitted ARIMA model to predict the

data automatically, and then construct the prediction model.
Step 4: Predict the research object with the X-12-ARIMA model.

3. Application of the X-12-ARIMA model

As one of the components of the Yangtze River Delta, the development speed of Anhui Province
has remained high in recent years, and the air quality problem is becoming more and more serious. In
2020, Hefei was classified as a new first-tier city. At the same time as economic development, Hefei
has contributed to the control of air pollution.

In 2020, the proportion of days with good air quality in Hefei was 84.7%, of which PM2.5 exceeded
the standard and the air quality did not meet the standard. According to the ranking of urban air quality,
Hefei ranks 84th among which is 168 key cities, in the middle level. It ranks 234 among 337 cities at
prefecture level and above, which is lower than the national average. Concerned about the standard-
exceeding rate of pollutants and the days of primary pollutants, the standard-exceeding rates of O3,
PM2.5 and NO2 were 4.9%, 8.8% and 3.0% respectively. The emissions of sulfides and carbides did
not exceed the standard. The pollution days with PM2.5, NO and PM as the primary pollutant were 30
days, 5 days and 3 days respectively [38].

The prediction of the Hefei AQI can consider the effectiveness of the existing atmospheric
prevention and control policies to some extent, as well as correct the existing policies through
forecasting data and models. Here, we selected the monthly data of the Hefei AQI from 2014 to 2021.
Taking 30 days before and after the Spring Festival as “special trading days” to analyze whether the
policy of fireworks and firecrackers is effective or not.

Figure 2 shows the change of the AQI in Hefei from 2014 to 2021. Figure 3 gives the change of
the annual average of the AQI in Hefei during the same period. It can be seen that the AQI roughly
shows a downward trend of periodic fluctuations during the study period. Affected by seasonal and
diurnal changes, the AQI is generally high in autumn and winter and low in spring and summer. If the
policy of banning fireworks during the Spring Festival is useful, then the selected “special trading day”
factors will not be significant in the regression analysis. On the contrary, if the influencing factors of
the Spring Festival are significant, it shows that the control of fireworks and firecrackers alone can not
effectively prevent and control air pollution.

The influential factor of the Chinese New Year is obtained by dividing the number of days in the
Spring Festival influential period of each month by the total number of days of the month. Table 1
shows the sequence of influencing factors for the Spring Festival based on the AQI data before and
after the Spring Festival.

Based on the influential factors for the Spring Festival in Table 1, the regression model is established
by taking the sequence valuea of the influential factors as independent variables and the AQI of the
current month as dependent variables. By determining whether the influencing factor is significant in
the regression model, we can judge whether the Spring Festival has a significant impact on the AQI.
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Figure 2. The change of AQI between 2012–2022.
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Figure 3. The change in annual average of AQI between 2012–2014.
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Table 1. January-March Spring Festival influential factor values during 2014–2020.

Year Jan. Feb. Mar.
2014 16/31 14/28 0
2015 0 25/28 5/31
2016 8/31 22/29 0
2017 0 1 2/31
2018 11/31 19/28 0
2019 0 1 2/31
2020 22/31 8/29 0
2021 4/31 21/29 0

Table 2 shows the fitting values of the influencing factors of the Lunar New Year. It can be seen that
the p-value of the influential factor is 0.719, which is significantly higher than the given significance
level α = 0.05. Therefore, the regression equation cannot be established significantly. In other words,
the Spring Festival effect will not affect the AQI sequence of Hefei. There may be changes in the
AQI caused by the increase of traffic volume during the Spring Festival, but the impact is not serious.
Therefore the Spring Festival effect is not a significant factor affecting the AQI sequence in Hefei.
From practical experience, a large number of fireworks and firecrackers will inevitably lead to a serious
increase in the AQI.

Thus it can be inferred that the policy of banning fireworks and firecrackers in Hefei has a certain
effect on controlling air pollution.

Table 2. The fitting results of the Spring Festival influential factors during 2014–2021.

Models
Unstandardized factor Standardized factor

t Significance
B Standard error Beta

Constant 95.886 17.640 - 5.435 0.000
Index 11.358 30.884 0.98 0.368 0.719

Therefore, before building the X-11 model, we used the original sequence to build the ARIMA
model to supplement the sequence values that will be missing in the moving average.

Figure 2 shows the time sequence chart of the AQI, which present that the AQI as a whole has a
downward trend of fluctuation , and that the time series is judged to be obviously seasonal. In order
to verify the composition of the composite time series, the smoothness analysis and white noise test of
the time series were carried out.

The autocorrelation coefficient is not less than twice the standard deviation, which means that the
sequence is not smooth. Considering the seasonality and periodicity of the AQI time series, the first-
order twelve-step difference was carried out to eliminate the seasonality and periodicity of the series.
Then, the white noise test, unit root test and smoothness test were carried out to get the output results
of Table 3, Table 4 and Figure 4, respectively.
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Figure 4. The trend and correlation result for dif12 (AQI).

Table 3. The autocorrelation results after the first-order 12-step differencing of the AQI.

To Lag Chi-Square DF Pr >ChiSq Autocorrelations
6 15.33 6 0.0178 -0.323 -0.017 0.022 -0.195 0.155 -0.026

12 37.14 12 0.0002 -0.024 0.056 -0.016 -0.032 0.259 -0.375
18 47.02 18 0.0002 0.073 0.135 -0.168 0.185 -0.074 -0.005

Table 4. The unit root test outcome for dif12 (AQI).

Type Lags Rho Pr <Rho Tau Pr <Tau F Pr >F
Zero Mean 0 -113.534 0.0001 -13.45 <.0001

1 -170.259 0.0001 -10.50 <.0001
Single Mean 0 -113.785 0.0001 -13.39 <.0001 89.70 0.0010

1 -171.045 0.0001 -10.43 <.0001 54.56 0.0010
Trend 0 -114.321 0.0001 -13.36 <.0001 89.36 0.0010

1 -172.336 0.0001 -10.34 <.0001 53.87 0.0010

AIMS Mathematics Volume 8, Issue 8, 18717–18733.
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The result in Figure 4 is a relatively typical ACF result of smooth time series.
Similarly, the p-values in the unit root test result output from Table 4 were all less than 0.01, and it

is judged that the sequence has been classified as a smooth time series. Table 3 shows that the p-values
of the differential time series in the white noise test were all less than 0.1, so the series has passed the
white noise test and is considered to be a non-white noise series.

After the model was fitted, a residual test was performed to check the fit. If the residual sequence
showed pure randomness, it means that the model fit well and there is no need for secondary
information extraction of the residual sequence.

Table 5. The residual series test outcome for dif12(AQI).

To Lag Chi-Square DF Pr >ChiSq Autocorrelations
6 5.93 5 0.3127 -0.043 -0.127 -0.048 -0.176 0.112 0.017

12 21.59 11 0.0277 -0.017 0.055 -0.010 0.050 0.174 -0.341
18 26.63 17 0.0637 0.005 0.133 -0.092 0.141 -0.026 0.003
24 29.86 23 0.1536 0.054 -0.147 0.039 0.011 -0.026 -0.029

For this sequence, the residual was analyzed by using autoregression to get Table 5. It can be seen
that the p-values of the residual test statistics were all greater than 0.01, and the residual series is
considered to be a series of white noise. Therefore, the original model fitting is effective.

Table 6. The fitting value for the ARIMA process.

Parameter Lag Estimate
Standard
Error

t Value Pr >|t|

Nonseasonal AR 1 -0.42878 0.10409 -4.12 <.0001
Seasonal AR 12 -0.36934 0.10710 -3.45 0.0009

After getting the ARIMA model, we performed a three-stage and 10-step iterative operation on the
supplementary sequence, i.e. the X-11 process. After the above steps, one can obtain the seasonal
adjustment model of X-12-ARIMA. The AQI series of Hefei has significant seasonal variation
characteristics. It increases significantly in winter every year especially from December to February
of the following year (i.e. three months in winter), and decreases obviously in summer, reaching the
lowest point in June every year.

After excluding seasonal influences, the trend effect series had a downward trend as a whole. It
indicates that the AQI in Hefei decreased significantly from 2014 to 2020. In 2020, the environmental
pollution gradually improved and the air quality became better and better during this period.

The fitted values of X-12-ARIMA and its test results are given in Table 6, which shows that the
non-seasonal AR1 coefficients and seasonal coefficients are significant. It means that the model is
significant. According to the output results, the final fitting model is given by Eq (3.1).

(1 − B) (1 − B)12 =
εt

1 + 0.36934B
. (3.1)
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Table 7. The prediction value of the X-12-ARIMA model.

Month Data Forecast Forecast Error Month Data Forecast Forecast Error
Sep. 2016 84.000 77.399 6.601 Jun. 2019 96.000 92.246 3.754
Oct. 2016 59.000 115.019 -56.019 Jul. 2019 78.000 70.623 7.377
Nov. 2016 82.000 87.727 -5.727 Aug. 2019 85.000 69.771 15.229
Dec. 2016 118.000 95.666 22.334 Sep. 2019 85.000 82.393 2.607
Jan. 2017 119.000 111.179 7.821 Oct. 2019 77.000 94.934 -17.934
Feb. 2017 114.000 102.467 11.533 Nov. 2019 77.000 96.488 -19.488
Mar. 2017 90.000 105.382 -15.382 Dec. 2019 86.000 101.926 -15.926
Apr. 2017 92.000 74.272 17.728 Jan. 2020 90.000 101.335 -11.335
May. 2017 109.000 84.641 24.359 Feb. 2020 55.000 63.708 -8.708
Jun. 2017 103.000 89.790 13.210 Mar. 2020 62.000 45.676 16.324
Jul. 2017 76.000 92.063 -16.063 Apr. 2020 71.000 52.466 18.534
Aug. 2017 63.000 96.216 -33.216 May. 2020 84.000 65.997 18.003
Sep. 2017 67.000 74.200 -7.200 Jun. 2020 58.000 97.170 -39.170
Oct. 2017 70.000 63.801 6.199 Jul. 2020 53.000 55.618 -2.618
Nov. 2017 100.000 78.490 21.510 Aug. 2020 60.000 50.560 9.440
Dec. 2017 131.000 136.366 -5.366 Sep. 2020 79.000 59.524 19.476
Jan. 2018 119.000 126.361 -7.361 Oct. 2020 71.000 71.352 -0.352
Feb. 2018 88.000 112.156 -24.156 Nov. 2020 72.000 74.689 -2.689
Mar. 2018 66.000 87.579 -21.579 Dec. 2020 102.000 81.773 20.227
Apr. 2018 82.000 56.406 25.594 Jan. 2021 94.000 106.235 -12.235
May. 2018 60.000 80.857 -20.857 Feb. 2021 59.000 70.918 -11.918
Jun. 2018 91.000 67.286 23.714 Mar. 2021 70.000 62.395 7.605
Jul. 2018 63.000 55.625 7.375 Apr. 2021 67.000 66.283 0.717
Aug. 2018 65.000 66.213 -1.213 May. 2021 72.000 81.770 -9.770
Sep. 2018 66.000 66.118 -0.118 Jun. 2021 85.000 64.572 20.428
Oct. 2018 79.000 58.324 20.676 Jul. 2021 48.000 64.257 -16.257
Nov. 2018 79.000 96.900 -17.900 Aug. 2021 56.000 66.669 -10.669
Dec. 2018 91.000 123.866 -32.866 Sep. 2021 70.000 66.908 3.092
Jan. 2019 117.000 93.401 23.599 Oct. 2021 62.000 60.842 1.158
Feb. 2019 89.000 82.190 6.810 Nov. 2021 74.000 62.597 11.403
Mar. 2019 84.000 69.454 14.546 Dec. 2021 87.000 90.567 -3.567
Apr. 2019 71.000 86.595 -15.595 Jan. 2022 94.000 87.558 6.442
May. 2019 85.000 74.899 10.101

Table 7 shows the prediction and prediction errors made during the X-12-ARIMA process, which
translates into percentages indicating that there are still some prediction errors. The disadvantage of
the ARIMA model is that it only reflects the short-term autocorrelation of sequences and has some
deficiencies in long-term prediction. However, in this case, most of the prediction errors are less than
20%, so the improved ARIMA model based on the seasonally adjusted model has certain applicability
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and accuracy.
The backward prediction image of the X-12-ARIMA process is shown in Figure 5 which shows

that the AQI in Hefei still has a certain fluctuation trend, and that the AQI in Hefei has fluctuated and
decreased for more than seven years. It indicates that the air quality control in Hefei has achieved
remarkable results in recent years.

Figure 5. The results of the X-12-ARIMA model prediction.

4. Conclusions and suggestions

4.1. Conclusions

When predicting the AQI, scholars have used different prediction models. Among them, the
ARIMA model has a mature theoretical system. To interpret the change of the AQI, scholars take into
account the impact of seasonal factors on the time series, but ignore some regular special dates that
affect the series value. Such dates are called “special trading days”. In order to overcome the
ignorance of the special influential factors, the X-12-ARIMA model pays attention to the impact of
special trading days when predicting the AQI series. Furthermore, this model also uses three moving
average methods to estimate the periodicity, including the special trading days, to predict the
changing trend of time series.

We applied the novel model to predict the AQI of Hefei. In 2018, Hefei issued a policy that banned
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the discharge of fireworks during the Spring Festival. According to the practical experience, the
discharge of the fireworks will lead to higher air pollution, making the air quality more severe. We
regarded the 30 days before and after the Spring Festival as a special trading days to examine the
effectiveness of the fire ban policy in Hefei. Based on the finding, we constructed the improved
model, the X-12-ARIMA model, to predict the change of AQI series. The research results can be used
to evaluate the air quality prevention policy in Hefei and adjust it on time.

Through the above analysis, we can gain several main conclusions including the following.

(1) The air quality of Hefei shows a trend of fluctuating descent and becomes higher in autumn and
winter. In the regression model with the Spring Festival influential factors as the independent variable
and the monthly AQI as the dependent variable, the independent variable is not significant. It means
that the impact of social behavior on the AQI during the Spring Festival is not obvious. The reason is
that Hefei is located in southern area and does not belong to the city that provides heater. Hefei has
implemented the control policy on fireworks during recent years, the results of analysis imply that the
policy of controlling the emission of pollutants is effective.

(2) The fitting results of the X-12-ARIMA model show that the AQI of Hefei has an obvious
descending trend during the study period. It indicates that the prevention and control of air pollution
in Hefei is valuable. Hefei has made contributions to energy conservation. It can be seen that this city
will still maintain the reduction of pollutant emission while developing the economically.

(3) The AQI is an important indicator is that closely related to human health. The prediction result
shows that the AQI of Hefei will continue to show a trend of fluctuating decline in the near future.
Economic development is always accompanied with technological growth. Hefei insists on
innovation-driven development and reducing primary and secondary pollutants, and it will still drive
the improvement of the air quality.

4.2. Suggestions

Based on the analysis above, we present related suggestions and solutions to implement below.

(1) The increase in air pollution in autumn and winter indicates that the pollutant emissions are
higher during these seasons. Therefore, Hefei needs to strengthen the control of the pollutant discharge
in autumn and winter. For example, it can run heating equipment with new types of energy rather than
energy-intensive sources.

(2) It is clear to see that the prevention and control of air pollution in Hefei is appropriate according
to the results of the discussion. Hefei can not only ensure its economic development, but also control
the degree of air pollution. We suppose that Hefei can continue to implement the existing policies of
air pollution prevention and control.

(3) It is necessary to speed up the transformation of the industrial and energy structure. The
government should improve its innovation ability, develops the clean energy vigorously and
strengthens the new technologies for energy saving and emission reduction.

(4) Anhui Province can take the development mode of Hefei as a reference for green development
since it has demonstrated excellent performance. It can ensure the common development of the whole
province.
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