Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

The generalized circular intuitionistic fuzzy set and its operations

  • Received: 30 July 2023 Revised: 22 August 2023 Accepted: 24 August 2023 Published: 19 September 2023
  • MSC : 03E72, 47S40

  • The circular intuitionistic fuzzy set (CIFS) is an extension of the intuitionistic fuzzy set (IFS), where each element is represented as a circle in the IFS interpretation triangle (IFIT) instead of a point. The center of the circle corresponds to the coordinate formed by membership (M) and non-membership (N) degrees, while the radius, r, represents the imprecise area around the coordinate. However, despite enhancing the representation of IFS, CIFS remains limited to the rigid IFIT space, where the sum of M and N cannot exceed one. In contrast, the generalized IFS (GIFS) allows for a more flexible IFIT space based on the relationship between M and N degrees. To address this limitation, we propose a generalized circular intuitionistic fuzzy set (GCIFS) that enables the expansion or narrowing of the IFIT area while retaining the characteristics of CIFS. Specifically, we utilize the generalized form introduced by Jamkhaneh and Nadarajah. First, we provide the formal definitions of GCIFS along with its relations and operations. Second, we introduce arithmetic and geometric means as basic operators for GCIFS and then extend them to the generalized arithmetic and geometric means. We thoroughly analyze their properties, including idempotency, inclusion, commutativity, absorption and distributivity. Third, we define and investigate some modal operators of GCIFS and examine their properties. To demonstrate their practical applicability, we provide some examples. In conclusion, we primarily contribute to the expansion of CIFS theory by providing generality concerning the relationship of imprecise membership and non-membership degrees.

    Citation: Dian Pratama, Binyamin Yusoff, Lazim Abdullah, Adem Kilicman. The generalized circular intuitionistic fuzzy set and its operations[J]. AIMS Mathematics, 2023, 8(11): 26758-26781. doi: 10.3934/math.20231370

    Related Papers:

    [1] Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki, Fawad Hussain . q-Spherical fuzzy rough sets and their usage in multi-attribute decision-making problems. AIMS Mathematics, 2023, 8(4): 8210-8248. doi: 10.3934/math.2023415
    [2] Changlin Xu, Yaqing Wen . New measure of circular intuitionistic fuzzy sets and its application in decision making. AIMS Mathematics, 2023, 8(10): 24053-24074. doi: 10.3934/math.20231226
    [3] Admi Nazra, Jenizon, Yudiantri Asdi, Zulvera . Generalized hesitant intuitionistic fuzzy N-soft sets-first result. AIMS Mathematics, 2022, 7(7): 12650-12670. doi: 10.3934/math.2022700
    [4] Rana Muhammad Zulqarnain, Xiao Long Xin, Muhammad Saeed . Extension of TOPSIS method under intuitionistic fuzzy hypersoft environment based on correlation coefficient and aggregation operators to solve decision making problem. AIMS Mathematics, 2021, 6(3): 2732-2755. doi: 10.3934/math.2021167
    [5] Shichao Li, Zeeshan Ali, Peide Liu . Prioritized Hamy mean operators based on Dombi t-norm and t-conorm for the complex interval-valued Atanassov-Intuitionistic fuzzy sets and their applications in strategic decision-making problems. AIMS Mathematics, 2025, 10(3): 6589-6635. doi: 10.3934/math.2025302
    [6] Doaa Al-Sharoa . (α1, 2, β1, 2)-complex intuitionistic fuzzy subgroups and its algebraic structure. AIMS Mathematics, 2023, 8(4): 8082-8116. doi: 10.3934/math.2023409
    [7] Tareq M. Al-shami, José Carlos R. Alcantud, Abdelwaheb Mhemdi . New generalization of fuzzy soft sets: (a,b)-Fuzzy soft sets. AIMS Mathematics, 2023, 8(2): 2995-3025. doi: 10.3934/math.2023155
    [8] Atiqe Ur Rahman, Muhammad Saeed, Hamiden Abd El-Wahed Khalifa, Walaa Abdullah Afifi . Decision making algorithmic techniques based on aggregation operations and similarity measures of possibility intuitionistic fuzzy hypersoft sets. AIMS Mathematics, 2022, 7(3): 3866-3895. doi: 10.3934/math.2022214
    [9] Wajid Ali, Tanzeela Shaheen, Iftikhar Ul Haq, Hamza Toor, Faraz Akram, Harish Garg, Md. Zia Uddin, Mohammad Mehedi Hassan . Aczel-Alsina-based aggregation operators for intuitionistic hesitant fuzzy set environment and their application to multiple attribute decision-making process. AIMS Mathematics, 2023, 8(8): 18021-18039. doi: 10.3934/math.2023916
    [10] Muhammad Akram, Sumera Naz, Feng Feng, Ghada Ali, Aqsa Shafiq . Extended MABAC method based on 2-tuple linguistic T-spherical fuzzy sets and Heronian mean operators: An application to alternative fuel selection. AIMS Mathematics, 2023, 8(5): 10619-10653. doi: 10.3934/math.2023539
  • The circular intuitionistic fuzzy set (CIFS) is an extension of the intuitionistic fuzzy set (IFS), where each element is represented as a circle in the IFS interpretation triangle (IFIT) instead of a point. The center of the circle corresponds to the coordinate formed by membership (M) and non-membership (N) degrees, while the radius, r, represents the imprecise area around the coordinate. However, despite enhancing the representation of IFS, CIFS remains limited to the rigid IFIT space, where the sum of M and N cannot exceed one. In contrast, the generalized IFS (GIFS) allows for a more flexible IFIT space based on the relationship between M and N degrees. To address this limitation, we propose a generalized circular intuitionistic fuzzy set (GCIFS) that enables the expansion or narrowing of the IFIT area while retaining the characteristics of CIFS. Specifically, we utilize the generalized form introduced by Jamkhaneh and Nadarajah. First, we provide the formal definitions of GCIFS along with its relations and operations. Second, we introduce arithmetic and geometric means as basic operators for GCIFS and then extend them to the generalized arithmetic and geometric means. We thoroughly analyze their properties, including idempotency, inclusion, commutativity, absorption and distributivity. Third, we define and investigate some modal operators of GCIFS and examine their properties. To demonstrate their practical applicability, we provide some examples. In conclusion, we primarily contribute to the expansion of CIFS theory by providing generality concerning the relationship of imprecise membership and non-membership degrees.



    The intuitionistic fuzzy set (IFS) [1] was introduced by Atanassov in 1986 as an extension of the fuzzy set (FS) theory [2]. In FS, each element is characterized only by the membership degree. However, in IFS, each element is indicated by both membership (M) and non-membership (N) degrees, as well as a hesitancy degree. Additionally, various extension forms of FS have been proposed, including interval valued FS (IVFS) [3], type-2 FS [4], Hesitant FS [5,6] and others. These extensions aim to provide generality in representing imprecise membership degrees instead of precise membership degrees. Similarly, IFS has been expanded to include interval valued IFS (IVIFS) [7], type-2 IFS (T2IFS) [8] and hesitant IFS [9]. These extensions address problems related to imprecise membership and non-membership degrees. IFS has been reported to be better at presenting a higher level of complexity and uncertainty compared to FS due to its flexibility. Since its introduction, numerous studies have been carried out on IFS, especially its applications in various decision-making models (see [10,11,12,13,14]). Furthermore, research focusing on advancing IFS theoretically has also emerged, including studies on algebraic aspects of IFS in group theory [15], graph theory [16,17], topology [18], aggregation operators [19,20,21], distance, similarity and entropy measures [22,23,24,25], to mention a few.

    In addition to that, another research direction on generalizing IFS has emerged to solve problems beyond the existing constraint of IFS, i.e., M+N1. The generalizations of IFS are normally conducted with respect to the relation between M and N degrees. One of the representations of IFS that has been mostly studied is the IFS interpretation triangle (IFIT). Based on this interpretation, numerous developments of generalized IFS (GIFS) have been proposed (see Table 1). Mondal and Samanta [26] were the first to propose GIFSMS, introducing an additional condition to the existing IFS and allowing for cases where M+N>1 to be considered. However, it is still limited to M+N1.5. Then, Liu [27] defined GIFSL through linear extension for interpretational surface. Hence, other cases beyond M+N>1.5 are also established. Furthermore, this GIFSL includes GIFSMS as a special case. In another study, Despi et al. [28] proposed six types of GIFS (GIFS1DOYGIFS6DOY), which extended various possible combinations between M and N. All the proposed GIFSs provide flexibility in dealing with the possible cases of M+N>1. Another GIFS has been proposed by Jamkhaneh and Nadarajah, GIFSJN [29] based on power and root-type of M and N. They modify the relation between M and N functions to expand and narrow the IFS surface interpretation area under the IFIT. This type of GIFSJN covers some of the well-known extensions of IFS in the literature (see, [30,31,32,33,34]). In general, the above generalizations aim to enhance the expressive power of M and N degrees by extending the definition of IFS in terms of the IFIT.

    Table 1.  Comparison of some GIFSs.
    GIFS Condition Relation
    GIFSMS [26] MN0.5 IFS GIFSMS
    GIFSL [27] M+N1+L where L[0,1] IFS GIFSMS GIFSL
    GIFSDOY [28]
    GIFS1DOY (1) M+N1 -
    GIFS2DOY (2) MN -
    GIFS3DOY (3) MN -
    GIFS4DOY (1) and (3) or
    (2) and M+N1 -
    GIFS5DOY (1) and (2) or
    (3) and M+N1 -
    GIFS6DOY M2+N21 -
    GIFSJN [29] Mδ+Nδ1 if δ=n then IFS GIFSJN
    where δ=n or 1n for nZ+ if δ=1n then GIFSJN IFS

     | Show Table
    DownLoad: CSV

    It is evident that GIFSJN concept is the most natural expression to overcome the problems mentioned above and covers a lot of special cases of the existing extensions of IFS. In its formal definition, M and N are parameterized by δ. This concept holds true in several forms, for example: if δ=1, then it reduces to IFS; if δ=2, then it will be IFS 2-type (IFS2T) [30] or Pythagorean FS (PFS) [33]; if δ=3, then it represents Fermatean FS (FFS) [35]; if δ=n, for a positive integer n, then it represents IFS n-type (IFS-nT) or generalized orthopair FS [34]. Moreover, if δ=12, then it will be reduced to the IFS root type (IFSRT) [32]. The existence of these generalizations has sparked numerous further studies, such as the proposal of generalized IVIFS [36], new operations in GIFS [37], defining level operators for GIFS [38] and determining reliability analysis based on GIFS two-parameter Pareto distribution [39].

    In recent years, Atanassov [40] proposed another extension of IFS known as circular IFS (CIFS). In CIFS, each element is represented as a circle in the IFIT instead of a point. The center of the circle corresponds to the coordinate formed by (M, N), while the radius, r, represents the imprecise area around the coordinate. Initially, the radius takes values from the unit interval [0,1] [40] and it has later been expanded to [0,2] [41] to cover the whole area of IFIT. Though still in the early research stage, the theory of CIFS has already attracted significant research attention. Several studies have begun to explore both the theoretical aspects and applications of CIFS. Researchers have expanded the use of CIFS in various domains, including introducing distance and divergence measures for CIFS [41,42,43], applying it in decision-making models [44,45,46] and utilizing it in present worth analysis [47]. The only distinction between CIFS and IFS resides in the radius component; when the radius equals zero, CIFS reverts to IFS.

    However, as CIFS is a direct extension of the IFS, its representation is still limited to the existing IFIT. Considering this limitation, it becomes interesting to extend CIFS based on a more flexible interpretation area, which allows increasing or decreasing the interpretation of IFIT. Following the same idea, a generalization of CIFS is proposed here, specifically using the GIFS concept proposed by Jamkhaneh and Nadarajah [48]. Here, instead of representing M and N degrees of an element as a point, a circular region is allowed. These considerations lead us to the objectives of this study:

    (1) To introduce the generalized CIFS (GCIFS) along with its corresponding relations and operations.

    (2) To propose arithmetic and geometric means of GCIFS as the aggregation operators and extend them to generalized arithmetic mean and generalized geometric mean and verify their applicable algebraic properties.

    (3) To examine some modal operators of GCIFS and combine them with the previously proposed main operations.

    The remaining parts of this paper are summarized as follows: Section 2 provides an outline of fundamental concepts related to IFS, GIFS and CIFS. In Section 3, the generalized CIFS (GCIFS) is presented in a general form, along with its basic relations and operations. Section 4 introduces the arithmetic and geometric means of GCIFS and the generalized arithmetic mean and generalized geometric mean are defined. Section 5 examines some modal operators, which are then applied in conjunction with the arithmetic and geometric means. Finally, Section 6 presents the conclusions and suggestions derived from this paper.

    In this section, some basic definitions are given, in particular IFS, GIFS and CIFS. It is defined that M(x) represents the degree of membership and N(x) denotes the degree of non-membership of xX within the unit interval, I=[0,1]. Atanassov [1] defined the IFS as the following.

    Definition 2.1. [1] An IFS A in X is defined as an object of the form A={x,MA(x),NA(x)|xX}, where MA:XI and NA:XI that satisfy 0MA(x)+NA(x)1 for each xX. The collection of all IFSs is denoted by IFS(X).

    Furthermore, Jamkhaneh and Nadarajah [29] proposed the generalized IFS by modifying the relationship between M and N functions on IFS and obtain the following definition.

    Definition 2.2. [29] A generalized IFS A (denoted GIFSJN A) in X is defined as an object of the form A={x,MA(x),NA(x)|xX}, where MA:XI and NA:XI that satisfy 0MAδ(x)+NAδ(x)1 for each xX with δ=n or 1n, for nZ+. The collection of all generalized IFSs is denoted by GIFSJN(δ,X).

    The interpretation area of GIFSJN is depicted such in Figure 1 and some special cases of it with respect to δ are shown in Table 2.

    Figure 1.  Geometric interpretation of GIFSJN for δ=n or δ=1n.
    Table 2.  Special cases of GIFSJN.
    IFS extention type Condition Relation
    IFS [1] δ=1 GIFSJN(1,X)=IFS
    PFS [33] or IFS-2T [5] δ=2 IFS GIFSJN(2,X)
    FFS [35] δ=3 IFS GIFSJN(2,X) GIFSJN(3,X)
    IFS-nT [31] or q-ROFS [34] δ=n,nZ+ IFS GIFSJN(2,X) GIFSJN(3,X) GIFSJN(n,X)
    IFSRT [32] δ=12 GIFSJN(12,X) IFS IFSRT

     | Show Table
    DownLoad: CSV

    In the following, for simplicity, the notation GIFSJN is referred to GIFS. In 2020, Atanassov [40] expanded the representation of the elements in IFS from points to circles and introduced the concept of circular intuitionistic fuzzy set (CIFS).

    Definition 2.3. [40] A circular IFS Ar (denoted CIFS Ar) in X is defined as an object of the form Ar={x,MA(x),NA(x);r|xX}, where MA:XI and NA:XI that satisfy 0MA(x)+NA(x)1 for each xX and r[0,2] is a radius of the circle around each element xX.

    The collection of all CIFSs is denoted by CIFS(X). There is clear that if r=0, then A0 is IFS, but for r>0 it cannot be represented by IFS. Let L={p,q|p,q[0,1] and p+q1}, then Ar can also be written in the form,

    Ar={x,Or(MA,NA);r|xX}

    where Or(MAr,NAr)={p,q|p,q[0,1] and (MA(x)p)2+(NA(x)q)2r}L.

    Remark 2.1. Based on the definition and interpretation of L, it is clear that the region is triangular with corner coordinates (0,0),(1,0) and (0,1). The region can be modified to be wider or narrower by adding powers to the relation between p and q. This is the basic form of GIFS from Jamkhaneh and Nadarajah's concept. In the next section, we will use the same concept but applied to CIFS.

    In this section, we propose the Generalized Circular Intuitionistic Fuzzy Set (GCIFS) based on the concepts of GIFSJN and CIFS.

    Definition 3.1. A generalized CIFS Ar (denoted GCIFS Ar) in X is defined as an object of the form, Ar={x,MA(x),NA(x);r|xX}, where MA:XI and NA:XI denoted, respectively the degrees of membership and non-membership of x, radius r[0,2] that satisfy 0MδA(x)+NδA(x)1 for each xX, with δ=n or 1n, for nZ+. The collection of all of the generalized CIFSs is denoted by GCIFS(δ,X) with the interpretation shown on Figure 2.

    Figure 2.  Geometric interpretation of GCIFS for (a) δ=n and (b) δ=1n.

    Remark 3.1. It is known that for all real numbers p,q[0,1] and δ=n or 1n with nZ+, the following conditions apply:

    Let δ1, if 0p+q1 then 0pδ+qδ1. It means if Ar CIFS(X) then Ar GCIFS(δ,X).

    Let δ<1, if 0pδ+qδ1 then 0p+q1. It means if Ar GCIFS (δ,X) then Ar CIFS(X).

    For special case, if δ=1 then GCIFS(1,X) = CIFS(X). Fundamentally, the relations in GCIFS correspond to those in CIFS [40] and thus, they are redefined as follows.

    Definition 3.2. Let Ar,Bs GCIFS(δ,X). For every xX, the relations between Ar and Bs are defined as follows:

    ArρBs(r<s) (MA(x)=MB(x) and NA(x)=NB(x)).

    ArνBs(r=s) and one of the conditions below is met,

    ●                     MA(x)<MB(x) and NA(x)NB(x),

    ●                     MA(x)MB(x) and NA(x)>NB(x),

    ●                     MA(x)<MB(x) and NA(x)>NB(x).

    ArBs(r<s) and one of the conditions below is satisfied,

    ●                     MA(x)<MB(x) and NA(x)NB(x),

    ●                     MA(x)MB(x) and NA(x)>NB(x),

    ●                     MA(x)<MB(x) and NA(x)>NB(x).

    Ar=ρBsr=s.

    Ar=νBsMA(x)=MB(x) and NA(x)=NB(x).

    Ar=Bs(r=s) (MA(x)=MB(x) and NA(x)=NB(x)).

    In the previous work, Atanassov [40] defined radius operations as max and min within [0,1] domain. Here, we expand these operations to [0,2] and introduce four more : algebraic product, algebraic sum, arithmetic mean and geometric mean, denoted as ,, and , respectively. Note that this expansion of the domain covers the entire IFS interpretation triangle, as extreme case.

    Definition 3.3. Let r,s[0,2] and δ=n or 1n for nZ+. The operations ,, and on radius are defined respectively as follows,

    (r,s)=rs2,(r,s)=(rδ+sδ(rs2)δ)1δ,(r,s)=(rδ+sδ2)1δ,(r,s)=(rδsδ)1δ.

    Theorem 3.1. The operations in Definition 3.3 have the closure property.

    Proof. To prove the validity of these operations, we need to demonstrate that, for r,s[0,2] and δ=n or 1n for any nZ+, the closure property holds true for ,,,[0,2] and within [0,2]. Let's begin with the operation (r,s). When 0r,s2, it is evident that 0rs222=2. Moving on to the operation (r,s), our aim is to prove rδ+sδ(rs2)δ2δ. Using the contradiction, suppose it is true for rδ+sδ(rs2)δ>2δ such that,

    rδ+sδ(rs2)δ2δ>0,2δrδ+2δsδrδsδ22δ>0,rδ(2δsδ)2δ(2δsδ)<0,(rδ2δ)(2δsδ)>0.

    For any δ=n and 1n, it is obtained (rδ2δ)(2δsδ)0. Therefore, it is contradicted, hence 0(rδ+sδ(rs2)δ)1δ(2δ)1δ=2. For operation (r,s), since rδ2δ and sδ2δ then, 0(r,s)=(rδ+sδ2)1δ(22δ2)1δ=2. Lastly, for the operation (r,s), it follows that 0(r,s)=(rδsδ)1δ(22δ)1δ=2.

    The operations defined in Definition 3.3 are the operations that will take effect at GCIFS radius. Next, we will define the general operations that apply to GCIFS.

    Definition 3.4. Let Ar,Bs GCIFS(δ,X), with r,s[0,2] and δ=n or 1n for nZ+. For every xX, ∝∈{min,max,,,,} be the radius operators, the operations between Ar and Bs can be defined as follows:

    ¬Ar={x,NA(x),MA(x);r|xX}.

    ArBs={x,min[MA(x),MB(x)],max[NA(x),NB(x)];(r,s)|xX}.

    ArBs={x,max[MA(x),MB(x)],min[NA(x),NB(x)];(r,s)|xX}.

    Ar+Bs={x,(MδA(x)+MδB(x)MδA(x)MδB(x))1δ,NA(x)NB(x);(r,s)|xX}.

    ArBs={x,MA(x)MB(x),(NδA(x)+NδB(x)NδA(x)NδB(x))1δ;(r,s)|xX}.

    Theorem 3.2. For Ar,Bs GCIFS, φ{,,+,} and ∝∈{min,max,,,,}, it holds that ArφBs GCIFS.

    Proof. The proofs for the radius have already been established in Theorem 3.1. To demonstrated this theorem, we will divide it into two types of operations: (1) For operations and , considering the case ArBs where max{NA(x),NB(x)}=NA(x), we have,

    0(MArBs(x))δ+(NArBs(x))δ=(min{MA(x),MB(x)})δ+(NA(x))δ(MA(x))δ+(NA(x))δ1.

    If max{NA(x),NB(x)}=NB(x), then similarly to the previous proof we obtain,

    0(min{MA(x),MB(x)})δ+(NA(x))δ(MB(x))δ+(NB(x))δ1.

    The same approach is applied for ArBs. Moving on to (2) operations + and , in the case of Ar+Bs we have,

    0(MAr+Bs(x))δ+(NAr+Bs(x))δMδA(x)+MδB(x)MδA(x)MδB(x)+(1MδA(x))(1MδA(x))=MδA(x)+MδB(x)MδA(x)MδB(x)+1MδA(x)MδB(x)+MδA(x)MδB(x)=1.

    Similarly, this holds for ArBs. Therefore, it is proven that the operations defined in Definition 3.4 also GCIFS.

    Previously, arithmetic and geometric mean operations were introduced in the context of IFS. These operations were subsequently extended to GIFSJN [48] and explored in other studies [49]. Similarly, these operations have also been proposed for CIFS [40]. In the following, we extend these operations, contributing to establishment of generalized operations for arithmetic and geometric means within GCIFS.

    Definition 4.1. Let Ar,Bs GCIFS(δ,X), with r,s[0,2] and δ=n or 1n for nZ+. For every xX and ∝∈{min,max,,,,} be the radius operators, the arithmetic mean, @ and geometric mean, between Ar and Bs can be defined as follows:

    Ar@Bs={x,(MδA(x)+MδB(x)2)1δ,(NδA(x)+NδB(x)2)1δ;(r,s)|xX}.

    ArBs={x,(MδA(x)MδB(x))1δ,(NδA(x)NδB(x))1δ;(r,s)|xX}.

    Theorem 4.1. The operations in Definition 4.1 have also the closure property.

    Proof. To prove these operations, we must show that for r,s[0,2] and δ=n or 1n for any nZ+, the closure property for @ and is valid. For operation @ we obtain,

    0(MAr@Bs(x))δ+(NAr@Bs(x))δ=MδA(x)+MδB(x)2+NδA(x)+NδB(x)212+12=1.

    Likewise for ArBs, we have,

    0(MArBs(x))δ+(NArBs(x))δ=MδA(x)MδB(x)+NδA(x)NδB(x)MδA(x)+MδB(x)2+NδA(x)+NδB(x)21.

    It is proven that the operations defined in Definition 4.1 have the closure property.

    Example 4.1. Let Ar={x1,0.01,0.8;0.02,x2,0.2,0.3;0.02,x3,0.1,0.1;0.02} and Bs={x1,0.71,0.02;0.07,x2,0.05,0.2;0.07,x3,0.32,0.12;0.07} are two CIFSs. The operations Ar@Bs and ArBs with δ=13 and δ=3 are demonstrated in Table 3.

    Table 3.  Results of @ and on GCIFS with δ=13 (No 1. and 2.) and δ=3 (No 3. and 4.).
    No Result
    (1) Ar@Bs={x1,0.170,0.216;0.040,x2,0.108,0.247;0.040,x3,0.189,0.110;0.040}
    (2) ArBs={x1,0.084,0.126;0.037,x2,0.100,0.245;0.037,x3,0.179,0.110;0.037}
    (3) Ar@Bs={x1,0.564,0.635;0.056,x2,0.160,0.260;0.056,x3,0.257,0.111;0.056}
    (4) ArBs={x1,0.084,0.126;0.037,x2,0.100,0.245;0.037,x3,0.179,0.110;0.037}

     | Show Table
    DownLoad: CSV

    Remark 4.1. It can be shown that ArBs={x,MA(x)MB(x),NA(x)NB(x);(r,s)|xX}. This indicates the existence of δ parameter, but its significance in this operation is eliminated.

    The following discussion concerns the algebraic properties that apply to these operations. The properties are evidenced in, among others, idempotency, inclusion, commutativity, distributivity and absorption.

    Theorem 4.2. (Idempotency) Let Ar be GCIFS, φ{@,} and ∝∈{min,max,,,,}, then ArφAr=Ar.

    Proof. The proof is immediately fulfilled by using Definitions 3.3 and 4.1.

    Lemma 4.1. Let r,s[0,2] and δ=n or 1n for nZ+, then the following expressions hold:

    (1) (r,s)<r or s.

    (2) (r,s)>r or s.

    Proof. We prove this lemma by contradiction.

    (1) Suppose that (r,s)=rs2>r, then,

             rs2r=r2(s2)>0.

    Note that, since s[0,2] then we have (s2)0. Therefore, the assumption is wrong and (r,s)<r. Similarly, we can prove the same way for (r,s)<s.

    (2) Suppose that (r,s)=(rδ+sδ(rs2)δ)1δ<r, then,

             sδ(rs2)δ=sδ2δ(2δrδ)<0.

    Since s[0,2] then we have (2δrδ)0. Therefore (r,s)>r and it applies in a similar manner to (r,s)>s.

    The proof is now completed.

    Lemma 4.1 is used to determine the consistency of inclusion property in GCIFS.

    Theorem 4.3. (Inclusion) For every two GCIFSs Ar and Bs with ∝∈{min,max,,,,}, we have:

    (1) If ArBs, then Ar@BsBs.

    (2) If ArBs, then ArBsBs.

    Proof. Let ArBs such that (xX)(rs) and assume that MA(x)MB(x) and NA(x)NB(x). Thus for operation Ar@Bs, we can show that,

    (MδA(x)+MδB(x)2)1δ(MδB(x)+MδB(x)2)1δ=MB(x).

    Analogously,

    (NδA(x)+NδB(x)2)1δ(NδB(x)+NδB(x)2)1δ=NB(x).

    This condition is promptly satisfied for the radius operations with each ∝∈{min,max,,,,}, as per Definition 3.3 and Theorem 3.1. Hence, it is proven. Likewise, we can demonstrate the same for ArBsBs.

    Theorem 4.4. (Commutativity) For every two GCIFSs Ar and Bs,φ{@,} and ∝∈{min,max,,,,}, we have ArφBs=BsφAr.

    Proof. Based on Definition 4.1 and Theorem 3.1, for r,s[0,2] it is clear that (r,s)=∝(s,r); in other words, it is commutative for radius. Now we will prove the M and N parts for φ{@,}. We start from Ar@Bs and thus we obtain,

    Ar@Bs=x,(MδA(x)+MδB(x)2)1δ,(NδA(x)+NδB(x)2)1δ;(r,s)=x,(MδB(x)+MδA(x)2)1δ,(NδB(x)+NδA(x)2)1δ;(r,s)=Bs@Ar.

    Whereas for ArBs we get,

    ArBs=x,(MδA(x).MδB(x))1δ,(NδA(x).NδB(x))1δ;(r,s)=x,(MδB(x).MδA(x))1δ,(NδB(x).NδA(x))1δ;(r,s)=BsAr.

    The proof is now completed.

    Theorem 4.5. (Distributivity) For every two GCIFSs Ar and Bs,φ{@,} and ∝∈{min,max,,,,}, then the following relations apply:

    (1) Arφ(Bsmin/maxCt)=(ArφBs)min/max(ArφCt).

    (2) Arφ(BsCt)=(ArφBs)(ArφCt).

    (3) Arφ(BsCt)=(ArφBs)(ArφCt).

    (4) Arφ(Bsmin/maxCt)=(ArφBs)min/max(ArφCt).

    (5) Arφ(BsCt)=(ArφBs)(ArφCt).

    (6) Arφ(BsCt)=(ArφBs)(ArφCt).

    (7) Ar@(Bsmin/maxCt)=(Ar@Bs)min/max(Ar@Ct).

    (8) Ar@(Bs@Ct)=(Ar@Bs)@(Ar@Ct).

    (9) Ar@(Bs@Ct)=(Ar@Bs)@(Ar@Ct).

    (10) Ar(Bsmin/maxCt)=(ArBs)min/max(ArCt).

    (11) Ar(BsCt)=(ArBs)(ArCt).

    (12) Ar(BsCt)=(ArBs)(ArCt).

    Proof. The proofs are provided for parts (1), (4), (8) and (12), and it can be shown analogously for the remaining parts with certain operator assumptions. For any two GCIFSs Ar and Bs with r,s[0,2] and δ=n or 1n where nZ+ then we can demonstrate the following results.

    (1) Assume that φ=@ and ∝=max, so it is obtained as follows,

    Ar@max(BsminCt)=Ar@max{x,min{MB(x),MC(x)}, max{NB(x),NC(x)};min{s,t}}

    ={x,[MδA(x)+(min{MB(x),MC(x)})δ2]1δ, [NδA(x)+(max{NB(x),NC(x)})δ2]1δ;

    max{r,min{s,t}}}

    ={x,min[(MδA(x)+MδB(x)2)1δ,(MδA(x)+MδC(x)2)1δ], max[(NδA(x)+NδB(x)2)1δ,(NδA(x)+NδC(x)2)1δ];

    min[max{r,s},max{r,t}]}

    =(Ar@maxBs)min(Ar@maxCt).

    (4) Assume that φ=@ and ∝=, then it can be derived as follows,

    Ar@(BsmaxCt)=Ar@{x,max{MB(x), MC(x)},min{NB(x),NC(x)};max{s,t}}

    ={x,[MδA(x)+(max{MB(x),MC(x)})δ2]1δ, [NδA(x)+(min{NB(x),NC(x)})δ2]1δ;

    r.max{s,t}2}

    ={x,max[(MδA(x)+MδB(x)2)1δ,(MδA(x)+MδC(x)2)1δ], min[(NδA(x)+NδB(x)2)1δ,(NδA(x)+NδC(x)2)1δ];

    max[rs2,rt2]}

    =(Ar@Bs)max(Ar@Ct).

    (8) Ar@(Bs@Ct)=Ar@{x,(MδA(x)+MδB(x)2)1δ, (NδA(x)+NδB(x)2)1δ;(sδ+tδ2)1δ}

    ={x,(MδA(x)+MδB(x)+MδC(x)22)1δ, (NδA(x)+NδB(x)+NδC(x)22)1δ;(rδ+sδ+tδ22)1δ}

    ={x,(MδA(x)+MδB(x)2+MδA(x)+MδC(x)22)1δ, (NδA(x)+NδB(x)2+NδA(x)+NδC(x)22)1δ;(rδ+sδ2+rδ+tδ22)1δ}

    =(Ar@Bs)@(Ar@Ct).

    (12) Ar(BsCt)=Ar{MδA(x)MδB(x)1δ, NδA(x)NδB(x)1δ;sδtδ1δ}

    ={x,(MδA(x)MδB(x).MδC(x))1δ, (NδA(x)NδB(x).NδC(x))1δ;(rδsδ.tδ)1δ}

    ={x,(MδA(x).MδB(x).MδA(x).MδC(x))1δ, (NδA(x).NδB(x).NδA(x).NδC(x))1δ;

    (rδ.sδ.rδ.tδ)1δ}

    =(ArBs)(ArCt).

    The proof is now completed.

    Lemma 4.2. Let Ar and Bs are GCIFSs and δ=n or 1n for nZ+, then the following relations hold:

    (1) ArArmaxBsρArBs.

    (2) ArAr+maxBsρAr+Bs.

    (3) ArBsρArminBsAr.

    (4) ArBsρArminBsAr.

    Proof. The validity of this lemma follows from Lemma 4.1. Given r,s[0,2] and δ=n or 1n for nZ+, then the following properties apply,

    rmax{r,s}rδ+sδ(rs2)δ.

    Analogously,

    rs2min{r,s}r.

    The proof is now completed.

    Theorem 4.6. (Absorption) For every two GCIFSs Ar and Bs,φ{,+},φ and \propto \in \{\min, \max, \otimes, \oplus, \circledast, \circledcirc\} , then the following relations hold:

    (1) \mathcal{A}_{r}^{*} @_{\propto} (\mathcal{A}_{r}^{*} \varphi'_{\max} \mathcal{B}_{s}^{*}) \subseteq \mathcal{A}_{r}^{*} \varphi'_{\max} \mathcal{B}_{s}^{*} ; \mathcal{A}_{r}^{*} @_{\propto} (\mathcal{A}_{r}^{*} \varphi'_{\oplus} \mathcal{B}_{s}^{*}) \subseteq \mathcal{A}_{r}^{*} \varphi'_{\oplus} \mathcal{B}_{s}^{*} .

    (2) (\mathcal{A}_{r}^{*} \varphi''_{\min} \mathcal{B}_{s}^{*}) @_{\propto} \mathcal{A}_{r}^{*} \subseteq \mathcal{A}_{r}^{*} ; (\mathcal{A}_{r}^{*} \varphi''_{\otimes} \mathcal{B}_{s}^{*}) @_{\propto} \mathcal{A}_{r}^{*} \subseteq \mathcal{A}_{r}^{*} .

    Proof. The proof of this theorem can be demonstrated by utilizing Lemma 4.2 and inclusion law (Theorem 4.3).

    Furthermore, based on the previous studies [29,48], we aim to develop general aggregation operators for aggregating multiple GCIFSs. Specifically, we will explore operations involving generalized arithmetic mean, @ and generalized geometric mean, on a family of GCIFSs denoted as \mathcal{A}_{r_i}^{*} = \lbrace \langle x, \mathcal{M}_{\mathcal{A}_{i}^{*}}(x), \mathcal{N}_{\mathcal{A}_{i}^{*}}(x); r_{i} \rangle \vert x \in X \rbrace, i = \{1, 2, 3, \cdots, k\} .

    Definition 4.2. Let \mathcal{A}_{r_i}^{*} be a family of GCIFSs with i = \{1, 2, 3, \cdots, k\} and \delta = n or \frac{1}{n} for n \in \mathbb{Z}^{+} . The generalized arithmetic mean and generalized geometric mean are defined as follows:

    (1) {@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) = \lbrace \langle x, \left(\frac{\Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}\right)^{\frac{1}{\delta}}, \left(\frac{\Sigma_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}\right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}\right)^{\frac{1}{\delta}} \rangle \vert x \in X \rbrace .

    (2) {$_{\circledcirc}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) = \lbrace \langle x, \left(\sqrt[k]{\Pi_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)} \right)^{\frac{1}{\delta}}, \left(\sqrt[k]{\Pi_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)} \right)^{\frac{1}{\delta}}; \left(\sqrt[k]{\Pi_{i = 1}^{k} r_{i}^{\delta}} \right)^{\frac{1}{\delta}} \rangle \vert x \in X \rbrace .

    Theorem 4.7. The generalized arithmetic and geometric means exhibit the closure property.

    Proof. For operation @_{\circledast} , it is proven that {@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) \in GCIFS since,

    \begin{gather} 0 \leq \frac{\Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}+\frac{\Sigma_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k} \\ = \frac{\mathcal{M}_{\mathcal{A}_{1}^{*}}^{\delta}(x)+\mathcal{M}_{\mathcal{A}_{2}^{*}}^{\delta}(x)+\cdots+\mathcal{M}_{\mathcal{A}_{k}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}_{1}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}_{2}^{*}}^{\delta}(x)+\cdots+\mathcal{N}_{\mathcal{A}_{k}^{*}}^{\delta}(x)}{k} \\ = \frac{[\mathcal{M}_{\mathcal{A}_{1}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}_{1}^{*}}^{\delta}(x)]+[\mathcal{M}_{\mathcal{A}_{2}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}_{2}^{*}}^{\delta}(x)]+\cdots+[\mathcal{M}_{\mathcal{A}_{k}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}_{k}^{*}}^{\delta}(x)]}{k} \leq \frac{k}{k} = 1. \end{gather}

    Likewise for $_{\circledcirc} ,

    \begin{gather} 0 \leq \sqrt[k]{\Pi_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}+\sqrt[k]{\Pi_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)} \\ = \sqrt[k]{\mathcal{M}_{\mathcal{A}_{1}^{*}}^{\delta}(x) \times \mathcal{M}_{\mathcal{A}_{2}^{*}}^{\delta}(x) \times \cdots \times \mathcal{M}_{\mathcal{A}_{k}^{*}}^{\delta}(x)} + \sqrt[k]{\mathcal{N}_{\mathcal{A}_{1}^{*}}^{\delta}(x) \times \mathcal{N}_{\mathcal{A}_{2}^{*}}^{\delta}(x) \times \cdots \times \mathcal{N}_{\mathcal{A}_{k}^{*}}^{\delta}(x)} \\ \leq \frac{\mathcal{M}_{\mathcal{A}_{1}^{*}}^{\delta}(x)+\mathcal{M}_{\mathcal{A}_{2}^{*}}^{\delta}(x)+\cdots+\mathcal{M}_{\mathcal{A}_{k}^{*}}^{\delta}(x)}{k}+ \frac{\mathcal{N}_{\mathcal{A}_{1}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}_{2}^{*}}^{\delta}(x)+\cdots+\mathcal{N}_{\mathcal{A}_{k}^{*}}^{\delta}(x)}{k} \\ = \frac{[\mathcal{M}_{\mathcal{A}_{1}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}_{1}^{*}}^{\delta}(x)]+[\mathcal{M}_{\mathcal{A}_{2}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}_{2}^{*}}^{\delta}(x)]+\cdots+[\mathcal{M}_{\mathcal{A}_{k}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}_{k}^{*}}^{\delta}(x)]}{k} \leq \frac{k}{k} = 1. \end{gather}

    Hence, it is proven that the generalized arithmetic and geometric means have the closure property.

    Example 4.2. Next, we will illustrate some examples of the generalized arithmetic and geometric means of the GCIFSs. Suppose that \mathcal{A}_{r_1}^{*}, \cdots, \mathcal{A}_{r_5}^{*} \in GCIFS\{3, X\} for x_1, x_2, x_3 \in X , given as follows:

    \begin{align} &\mathcal{A}_{r_1}^{*} = \lbrace \langle x_1, 0.32, 0.43; 0.2 \rangle, \langle x_2, 0.23, 0.18; 0.2 \rangle, \langle x_3, 0.42, 0.77; 0.2 \rangle \rbrace, \\ &\mathcal{A}_{r_2}^{*} = \lbrace \langle x_1, 0.25, 0.30; 0.08 \rangle, \langle x_2, 0.76, 0.54; 0.08 \rangle, \langle x_3, 0.28, 0.16; 0.08 \rangle \rbrace, \\ &\mathcal{A}_{r_3}^{*} = \lbrace \langle x_1, 0.64, 0.55; 0.32 \rangle, \langle x_2, 0.45, 0.12; 0.32 \rangle, \langle x_3, 0.33, 0.83; 0.32 \rangle \rbrace, \\ &\mathcal{A}_{r_4}^{*} = \lbrace \langle x_1, 0.31, 0.59; 0.1 \rangle, \langle x_2, 0.86, 0.48; 0.1 \rangle, \langle x_3, 0.86, 0.40; 0.1 \rangle \rbrace, \\ &\mathcal{A}_{r_5}^{*} = \lbrace \langle x_1, 0.16, 0.77; 0.25 \rangle, \langle x_2, 0.24, 0.47; 0.25 \rangle, \langle x_3, 0.31, 0.65; 0.25 \rangle \rbrace. \end{align}

    For k = 5 , the operations {@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) and {$_{\circledcirc}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) of these GCIFSs are,

    {@_{\circledast}}_{i = 1}^{5} (\mathcal{A}_{r_i}^{*}) = \lbrace \langle x, \left(\frac{\Sigma_{i = 1}^{5} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{3}(x)}{5}\right)^{\frac{1}{3}}, \left(\frac{\Sigma_{i = 1}^{5} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{3}(x)}{5}\right)^{\frac{1}{3}}; \left(\frac{\Sigma_{i = 1}^{5} r_{i}^{3}}{5}\right)^{\frac{1}{3}} \rangle \vert x \in \{x_1, x_2, x_3\} \rbrace .

    \qquad \qquad \quad = \lbrace \langle x_1, 0.410, 0.572;0.226 \rangle, \langle x_2, 0.620, 0.423;0.226 \rangle, \langle x_3, 0.542, 0.650;0.226 \rangle \rbrace .

    {$_{\circledcirc}}_{i = 1}^{5} (\mathcal{A}_{r_i}^{*}) = \lbrace \langle x, \left(\sqrt[5]{\Pi_{i = 1}^{5} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{3}(x)} \right)^{\frac{1}{3}}, \left(\sqrt[5]{\Pi_{i = 1}^{5} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{3}(x)} \right)^{\frac{1}{3}}; \left(\sqrt[5]{\Pi_{i = 1}^{5} r_{i}^{3}} \right)^{\frac{1}{3}} \rangle \vert x \in \{x_1, x_2, x_3\} \rbrace .

    \qquad \qquad \quad = \lbrace \langle x_1, 0.303, 0.503;0.167 \rangle, \langle x_2, 0.439, 0.305;0.167 \rangle, \langle x_3, 0.401, 0.484;0.167 \rangle \rbrace .

    If we change \delta = \frac{1}{3} , then it can be proved that \mathcal{A}_{r_1}^{*}, \cdots, \mathcal{A}_{r_5}^{*} \notin GCIFS\{\frac{1}{3}, X\} . Suppose that \mathcal{B}_{s_1}^{*}, \cdots, \mathcal{B}_{s_4}^{*} \in GCIFS\{\frac{1}{3}, X\} for x_1, x_2, x_3 \in X as follows:

    \begin{align} &\mathcal{B}_{s_1}^{*} = \lbrace \langle x_1, 0.11, 0.02; 0.02 \rangle, \langle x_2, 0.20, 0.07; 0.02 \rangle, \langle x_3, 0.02, 0.22; 0.02 \rangle \rbrace, \\ &\mathcal{B}_{s_2}^{*} = \lbrace \langle x_1, 0.05, 0.15; 0.30 \rangle, \langle x_2, 0.01, 0.30; 0.30 \rangle, \langle x_3, 0.08, 0.16; 0.30 \rangle \rbrace, \\ &\mathcal{B}_{s_3}^{*} = \lbrace \langle x_1, 0.09, 0.04; 0.17 \rangle, \langle x_2, 0.32, 0.02; 0.17 \rangle, \langle x_3, 0.33, 0.02; 0.17 \rangle \rbrace, \\ &\mathcal{B}_{s_4}^{*} = \lbrace \langle x_1, 0.12, 0.13; 0.32 \rangle, \langle x_2, 0.03, 0.25; 0.32 \rangle, \langle x_3, 0.24, 0.05; 0.32 \rangle \rbrace, \end{align}

    then for k = 4 , the operations {@_{\circledast}}_{i = 1}^{k} (\mathcal{B}_{r_i}^{*}) and {$_{\circledcirc}}_{i = 1}^{k} (\mathcal{B}_{r_i}^{*}) are,

    {@_{\circledast}}_{i = 1}^{4} (\mathcal{B}_{s_i}^{*}) = \lbrace \langle x, \left(\frac{\Sigma_{i = 1}^{4} \mathcal{M}_{\mathcal{B}_{i}^{*}}^{\frac{1}{3}}(x)}{4}\right)^{3}, \left(\frac{\Sigma_{i = 1}^{4} \mathcal{N}_{\mathcal{B}_{i}^{*}}^{\frac{1}{3}}(x)}{4}\right)^{3};\left(\frac{\Sigma_{i = 1}^{4} s_{i}^{\frac{1}{3}}}{4}\right)^{3} \rangle \vert x \in \{x_1, x_2, x_3\} \rbrace .

    \qquad \qquad \quad = \lbrace \langle x_1, 0.089, 0.070;0.162 \rangle, \langle x_2, 0.090, 0.122;0.162 \rangle, \langle x_3, 0.128, 0.089;0.162 \rangle \rbrace .

    {$_{\circledcirc}}_{i = 1}^{4} (\mathcal{B}_{s_i}^{*}) = \lbrace \langle x, \left(\sqrt[4]{\Pi_{i = 1}^{4} \mathcal{M}_{\mathcal{B}_{i}^{*}}^{\frac{1}{3}}(x)} \right)^{3}, \left(\sqrt[4]{\Pi_{i = 1}^{4} \mathcal{N}_{\mathcal{B}_{i}^{*}}^{\frac{1}{3}}(x)} \right)^{3};\left(\sqrt[4]{\Pi_{i = 1}^{4} s_{i}^{\frac{1}{3}}} \right)^{3} \rangle \vert x \in \{x_1, x_2, x_3\} \rbrace .

    \qquad \qquad \quad = \lbrace \langle x_1, 0.088, 0.063;0.134 \rangle, \langle x_2, 0.066, 0.101;0.134 \rangle, \langle x_3, 0.106, 0.077;0.134 \rangle \rbrace .

    Remark 4.2. For any n\in \mathbb{Z}^{+} and n\neq 1 , if \mathcal{A}_{r}^{*}\in GCIFS(\frac{1}{n}, X) then \mathcal{A}_{r}^{*}\in GCIFS(n, X) . But it does not hold otherwise, if \mathcal{A}_{r}^{*}\in GCIFS(n, X) then \mathcal{A}_{r}^{*} is not necessarily GCIFS (\frac{1}{n}, X) . For the generalized geometric mean, it can be shown that {$_{\circledcirc}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) = \lbrace \langle x, \left(\sqrt[k]{\Pi_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}(x)} \right), \left(\sqrt[k]{\Pi_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}(x)} \right); \left(\sqrt[k]{\Pi_{i = 1}^{k} r_{i}} \right) \rangle \vert x \in X \rbrace . This is the general form of the geometric mean operation in Remark 4.1.

    In this section, some other modal operators and their corresponding properties are defined for GCIFS over the universal set X . Atanassov [40] previously defined the notions of "necessity" and "possibility" and introduced modal operators in CIFS. Other studies have also defined modal operators, such as type-2 modal operators, which apply to IFS [50]. Therefore, in the following, the type-2 modal operator in GCIFS is propossed along with its corresponding properties.

    Definition 5.1. For any GCIFS \mathcal{A}_{r}^{*} , \delta = n or \frac{1}{n} for n \in \mathbb{Z}^{+} and real number \lambda, \gamma \in [0, 1] for \lambda+\gamma \leq 1 . Let x\in X , modal operator type-2 over GCIFS are defined as follows:

    (1) \boxplus (\mathcal{A}_{r}^{*}) = \lbrace \langle x, \left(\frac{\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)}{2}\right)^{\frac{1}{\delta}}, \left(\frac{\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+1}{2}\right)^{\frac{1}{\delta}}; r \rangle \rbrace .

    (2) \boxtimes (\mathcal{A}_{r}^{*}) = \lbrace \langle x, \left(\frac{\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+1}{2}\right)^{\frac{1}{\delta}}, \left(\frac{\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)}{2}\right)^{\frac{1}{\delta}}; r \rangle \rbrace .

    (3) \boxplus_{\lambda} (\mathcal{A}_{r}^{*}) = \lbrace \langle x, \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x), \left(\lambda \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+(1-\lambda)\right)^{\frac{1}{\delta}}; r \rangle \rbrace .

    (4) \boxtimes_{\lambda} (\mathcal{A}_{r}^{*}) = \lbrace \langle x, \left(\lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+(1-\lambda)\right)^{\frac{1}{\delta}}, \lambda^{\frac{1}{\delta}} \mathcal{N}_{\mathcal{A}^{*}}(x); r \rangle \rbrace .

    (5) \boxplus_{\lambda, \gamma} (\mathcal{A}_{r}^{*}) = \lbrace \langle x, \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x), \left(\lambda \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma\right)^{\frac{1}{\delta}}; r \rangle \rbrace .

    (6) \boxtimes_{\lambda, \gamma} (\mathcal{A}_{r}^{*}) = \lbrace \langle x, \left(\lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma\right)^{\frac{1}{\delta}}, \lambda^{\frac{1}{\delta}} \mathcal{N}_{\mathcal{A}^{*}}(x); r \rangle \rbrace .

    (7) \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) = \lbrace \langle x, \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x), \left(\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}; r \rangle \rbrace for any \gamma \in [0, 1] and \max(\lambda, \gamma)+\eta \leq 1 .

    (8) \boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) = \lbrace \langle x, \left(\lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}, \gamma^{\frac{1}{\delta}} \mathcal{N}_{\mathcal{A}^{*}}(x); r \rangle \rbrace for any \gamma \in [0, 1] and \max(\lambda, \gamma)+\eta \leq 1 .

    It must be confirmed that some modal operators type-2 specified in Definition 5.1 are also GCIFS.

    Theorem 5.1. The operations defined in Definition 5.1 for GCIFS are also GCIFS.

    Proof. For \mathcal{A}_{r}^{*} \in GCIFS such that \mathcal{A}_{r}^{*} = \lbrace \langle x, \mathcal{M}_{\mathcal{A}^{*}}(x), \mathcal{N}_{\mathcal{A}^{*}} (x); r \rangle \vert x \in X \rbrace , \delta = n or \frac{1}{n} for n \in \mathbb{Z}^{+} and \lambda, \gamma \in [0, 1] for \lambda+\gamma \leq 1 , then for each x \in X we have,

    (1) Since 0 \leq \mathcal{M}_{\mathcal{A}^{*}}(x), \mathcal{N}_{\mathcal{A}^{*}}(x) \leq 1 and \delta = n or \frac{1}{n} for n \in \mathbb{Z}^{+} then,

    \mathcal{M}_{\boxplus (\mathcal{A}_{r}^{*})}^{\delta}(x)+\mathcal{N}_{\boxplus (\mathcal{A}_{r}^{*})}^{\delta}(x) = \left[\left(\frac{\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)}{2}\right)^{\frac{1}{\delta}} \right]^\delta+\left[\left(\frac{\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+1}{2}\right)^{\frac{1}{\delta}} \right]^\delta = \frac{\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)}{2}+\left(\frac{\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+1}{2}\right) \leq 1.

    (2) The operator \boxtimes (\mathcal{A}_{r}^{*}) is proved analogously.

    (3) For any real number \lambda \in [0, 1] and GCIFS \mathcal{A}_{r}^{*} , we have 0 \leq \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x) \leq 1 . Since

    \mathcal{M}_{\boxplus_{\lambda}(\mathcal{A}_{r}^{*})}(x) = \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x) and \mathcal{N}_{\boxplus_{\lambda}(\mathcal{A}_{r}^{*})}(x) = (\lambda \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+(1-\lambda))^{\frac{1}{\delta}} then,

    \mathcal{M}_{\boxplus_{\lambda}(\mathcal{A}_{r}^{*})}^{\delta}(x)+\mathcal{N}_{\boxplus_{\lambda}(\mathcal{A}_{r}^{*})}^{\delta}(x) = \left[\lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}_{r}^{*}}(x) \right]^\delta+\left[\left(\lambda \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+(1-\lambda)\right)^{\frac{1}{\delta}} \right]^\delta

    \quad \qquad \qquad \qquad \qquad \quad = \lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\lambda \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+(1-\lambda)

    \quad \qquad \qquad \qquad \qquad \quad = \lambda (\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x))+(1-\lambda) \leq 1 .

    (4) Can be proved in a manner analogous to (3).

    (5) For any real number \lambda, \gamma \in [0, 1] and GCIFS \mathcal{A}_{r}^{*} , we have 0 \leq \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x) \leq 1 . Since

    \mathcal{M}_{\boxplus_{\lambda, \gamma}(\mathcal{A}_{r}^{*})}(x) = \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x) and \mathcal{N}_{\boxplus_{\lambda, \gamma}(\mathcal{A}_{r}^{*})}(x) = (\lambda \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma)^{\frac{1}{\delta}} then,

    \mathcal{M}_{\boxplus_{\lambda, \gamma}(\mathcal{A}_{r}^{*})}^{\delta}(x)+\mathcal{N}_{\boxplus_{\lambda, \gamma}(\mathcal{A}_{r}^{*})}^{\delta}(x) = \left[\lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x) \right]^\delta+\left[\left(\lambda \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma\right)^{\frac{1}{\delta}} \right]^\delta

    \qquad \qquad \qquad \qquad \qquad \quad = \lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\lambda \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma

    \qquad \qquad \qquad \qquad \qquad \quad = \lambda (\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x))+\gamma \leq 1 .

    (6) Analogous to (5).

    (7) Let \eta \in [0, 1] and \max(\lambda, \gamma)+\eta \leq 1 . Since \mathcal{M}_{\boxplus_{\lambda, \gamma, \eta}(\mathcal{A}_{r}^{*})}(x) = \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x) and \mathcal{N}_{\boxplus_{\lambda, \gamma, \eta}(\mathcal{A}_{r}^{*})}(x) = (\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta)^{\frac{1}{\delta}} then,

    \mathcal{M}_{\boxplus_{\lambda, \gamma, \eta}(\mathcal{A}_{r}^{*})}^{\delta}(x)+\mathcal{N}_{\boxplus_{\lambda, \gamma, \eta}(\mathcal{A}_{r}^{*})}^{\delta}(x) = \left[\lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x) \right]^\delta+\left[\left(\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}} \right]^\delta = \lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta .

    If \max(\lambda, \gamma) = \lambda then \lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x) + \eta \leq \gamma (\mathcal{M}_{\mathcal{A}^{*}}^{\delta}+\mathcal{N}_{\mathcal{A}^{*}}^{\delta})+\eta \leq 1 . So are, if \max(\lambda, \gamma) = \gamma then \lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \leq 1 .

    (8) Similar to (7).

    So it is proven that the modal operators type-2 defined in Definition 5.1 are also GCIFS.

    There are special cases for modal operators type-2:(1) if \lambda = 0.5 then \boxplus_{\lambda} (\mathcal{A}_{r}^{*}) = \boxplus (\mathcal{A}_{r}^{*}) ; and (2) if \gamma = 1-\lambda then \boxplus_{\lambda, \gamma} (\mathcal{A}_{r}^{*}) = \boxplus_{\lambda}(\mathcal{A}_{r}^{*}) , if \gamma = \lambda = 0.5 then \boxplus_{\lambda, \gamma} (\mathcal{A}_{r}^{*}) = \boxplus (\mathcal{A}_{r}^{*}) . Moreover, (3) if \gamma = \lambda then \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) = \boxplus_{\lambda, \eta} (\mathcal{A}_{r}^{*}) , if \gamma = 1-\lambda and \eta = 1-\gamma then \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) = \boxplus_{\lambda} (\mathcal{A}_{r}^{*}) and if \gamma = \lambda = \eta = 0.5 then \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) = \boxplus (\mathcal{A}_{r}^{*}) . This condition also applies to operator " \boxtimes ".

    Theorem 5.2. For any GCIFS \mathcal{A}_{r}^{*} and every \lambda, \gamma, \eta \in [0, 1] we obtain:

    (1) \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \subseteq_{\nu} \boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) .

    (2) \neg \boxplus_{\lambda, \gamma, \eta} (\neg \mathcal{A}_{r}^{*}) = \boxtimes_{\gamma, \lambda, \eta} (\mathcal{A}_{r}^{*}) and \neg \boxtimes_{\lambda, \gamma, \eta} (\neg \mathcal{A}_{r}^{*}) = \boxplus_{\gamma, \lambda, \eta} (\mathcal{A}_{r}^{*}) .

    (3) \boxplus_{\lambda, \gamma, \eta} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}))\subseteq_{\nu} \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \Leftrightarrow \gamma+\eta = 1 .

    (4) \boxtimes_{\lambda, \gamma, \eta} (\boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}))\supseteq_{\nu} \boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \Leftrightarrow \lambda+\eta = 1 .

    (5) \boxplus_{\lambda, \gamma, \eta} (\boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*})) = \boxtimes_{\lambda, \gamma, \eta} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*})) \Leftrightarrow \lambda = \gamma \text{ or } \eta = 0 .

    Proof. The proof of this theorem will be provided as follows:

    (1) For the Definition 5.1 and \lambda, \gamma, \eta \in [0, 1] where \max(\lambda, \gamma)+\eta \leq 1 we have,

    \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) = \lbrace \langle x, \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x), \left(\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}}; r \rangle \rbrace and

    \boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) = \lbrace \langle x, \left(\lambda \mathcal{M}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}}, \gamma^{\frac{1}{\delta}} \mathcal{N}_{\mathcal{A}^{*}}(x); r \rangle \rbrace .

    Obviously, the following expressions hold \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x) \leq \left(\lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}} and \left(\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}} \geq \gamma^{\frac{1}{\delta}} \mathcal{N}_{\mathcal{A}^{*}}(x) , thus concluding the proof.

    (2) \neg \boxplus_{\lambda, \gamma, \eta} (\neg \mathcal{A}_{r}^{*}) = \neg \boxplus_{\lambda, \gamma, \eta} \lbrace \langle x, \mathcal{N}_{\mathcal{A}^{*}}(x), \mathcal{M}_{\mathcal{A}^{*}}(x); r \rangle \rbrace

    \qquad \qquad \qquad = \neg \lbrace \langle x, \lambda^{\frac{1}{\delta}} \mathcal{N}_{\mathcal{A}^{*}}(x), \left(\gamma \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x) +\eta \right)^{\frac{1}{\delta}}; r\rangle \rbrace

    \qquad \qquad \qquad = \lbrace \langle x, \left(\gamma \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x) +\eta \right)^{\frac{1}{\delta}}, \lambda^{\frac{1}{\delta}} \mathcal{N}_{\mathcal{A}^{*}}(x); r\rangle \rbrace = \boxtimes_{\gamma, \lambda, \eta} (\mathcal{A}_{r}^{*}) .

    Similarly with \neg \boxtimes_{\lambda, \gamma, \eta} (\neg \mathcal{A}_{r}^{*}) = \boxplus_{\gamma, \lambda, \eta} (\mathcal{A}_{r}^{*}).

    (3) (\Rightarrow) \boxplus_{\lambda, \gamma, \eta} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*})) = \boxplus_{\lambda, \gamma, \eta} \lbrace \langle x, \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x), \left(\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}; r \rangle \rbrace

    \qquad \qquad \qquad \qquad = \lbrace \langle x, \lambda^{\frac{1}{\delta}}\left(\lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x)\right), \left(\gamma(\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta)+\eta\right)^{\frac{1}{\delta}}; r \rangle \rbrace

    \qquad \qquad \qquad \qquad = \lbrace \langle x, \lambda^{\frac{2}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x), \left(\gamma^{2} \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma \eta+\eta\right)^{\frac{1}{\delta}}; r \rangle \rbrace .

    Should be noted that \boxplus_{\lambda, \gamma, \eta} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*})) \subseteq_{\nu} \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) , therefore for non-membership we obtain,

    \begin{gather} \left(\gamma^{2} \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma \eta + \eta \right)^{\frac{1}{\delta}} \geq \left( \gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}} \\ \gamma^{2} \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma \eta + \eta \geq \gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \\ \gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \geq \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x) \\ \eta \geq \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)(1-\gamma). \end{gather}

    This is true if 1-\gamma = \eta , so that \gamma+\eta = 1 .

    (\Leftarrow) Let \lambda, \gamma, \eta \in [0, 1] , then:

    \begin{gather} \boxplus_{\lambda, \gamma, \eta} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*})) = \lbrace \langle x, \lambda^{\frac{2}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x), \left( \gamma^{2} \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma \eta+\eta \right)^{\frac{1}{\delta}};r \rangle \rbrace. \end{gather}

    If we have \gamma+\eta = 1 , then it can be proved that \boxplus_{\lambda, \gamma, \eta} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*})) \subseteq_{\nu} \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) as follows:

    (membership degree) \lambda^{\frac{2}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x)-\lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x) = \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}{x}\left(\lambda^{\frac{1}{\delta}}-1\right) \leq 0 ,

    (non-membership degree) \gamma^{2} \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma(1-\gamma)+(1-\gamma) = \gamma^{2} \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)-\gamma^{2}+1 \geq \gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta .

    So it is clear that \boxplus_{\lambda, \gamma, \eta} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}))\subseteq_{\nu} \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \Leftrightarrow \gamma+\eta = 1 .

    (4) Similarly with (3).

    (5) (\Rightarrow) \boxplus_{\lambda, \gamma, \eta} \left(\boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \right) = \boxplus_{\lambda, \gamma, \eta} \lbrace \langle x, \left(\lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}}, \gamma^{\frac{1}{\delta}} \mathcal{N}_{\mathcal{A}^{*}}(x); r \rangle \rbrace

    \qquad \qquad \qquad \qquad = \lbrace \langle x, \lambda^{\frac{1}{\delta}} \left(\lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}}, \left(\gamma(\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x))+\eta \right)^{\frac{1}{\delta}}; r \rbrace \rangle

    \qquad \qquad \qquad \qquad = \lbrace \langle x, \left(\lambda^{2} \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\lambda\eta\right)^{\frac{1}{\delta}}, \left(\gamma^{2} \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}}; r \rangle \rbrace ,

    \boxtimes_{\lambda, \gamma, \eta} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*})) = \boxtimes_{\lambda, \gamma, \eta} \lbrace \langle x, \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x), \left(\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}}; r \rangle \rbrace

    \qquad \qquad \qquad \qquad = \lbrace \langle x, \left(\lambda(\lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x))+\eta \right)^{\frac{1}{\delta}}, \gamma^{\frac{1}{\delta}}\left(\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}; r \rangle \rbrace

    \qquad \qquad \qquad \qquad = \lbrace \langle x, \left(\lambda^{2} \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}, \left(\gamma^{2} \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma \eta \right)^{\frac{1}{\delta}}; r \rangle \rbrace .

    Let \boxplus_{\lambda, \gamma, \eta} \left(\boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \right) = \boxtimes_{\lambda, \gamma, \eta} \left(\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*})\right) , then in terms of membership value, \eta(\lambda-1) = 0 and for non-membership value \eta(\gamma-1) = 0 . Hence, it is evident that \lambda = \gamma or \eta = 0 .

    (\Leftarrow) Let \lambda, \gamma, \eta \in [0, 1] , based on Definition 5.1 equation \boxplus_{\lambda, \gamma, \eta} \left(\boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \right) is,

    \boxplus_{\lambda, \gamma, \eta} \left( \boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \right) = \lbrace \langle x, \left( \lambda^{2} \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\lambda\eta\right)^{\frac{1}{\delta}}, \left( \gamma^{2} \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta \right)^{\frac{1}{\delta}};r \rangle \rbrace.

    Whereas for \boxtimes_{\lambda, \gamma, \eta} \left(\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \right) we attain,

    \boxtimes_{\lambda, \gamma, \eta} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*})) = \lbrace \langle x, \left(\lambda^{2} \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}, \left(\gamma^{2} \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma \eta \right)^{\frac{1}{\delta}};r \rangle \rbrace.

    Since \eta = 0 , this makes \boxplus_{\lambda, \gamma, \eta} \left(\boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \right) and \boxtimes_{\lambda, \gamma, \eta} \left(\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \right) are equal. Hence, we can conclude that \boxplus_{\lambda, \gamma, \eta} \left(\boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \right) = \boxtimes_{\lambda, \gamma, \eta} \left(\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) \right) .

    The proof is now completed.

    Next, we will examine the relationship between the modal operators type-2 and the arithmetic and geometric means that have been defined previously.

    Theorem 5.3. For every two GCIFSs \mathcal{A}_{r}^{*} and \mathcal{B}_{s}^{*} and \propto \in \{\min, \max, \otimes, \oplus, \circledast, \circledcirc\} then, the following expressions hold true:

    (1) \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*} @_{\propto} \mathcal{B}_{s}^{*}) = \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) @_{\propto} \boxplus_{\lambda, \gamma, \eta}(\mathcal{B}_{s}^{*}) .

    (2) \boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*} @_{\propto} \mathcal{B}_{s}^{*}) = \boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) @_{\propto} \boxtimes_{\lambda, \gamma, \eta} (\mathcal{B}_{s}^{*}) .

    Proof. Using Definitions 5.1 and 4.1, for every x \in X we have,

    (1) \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*} @_{\propto} \mathcal{B}_{s}^{*}) = \boxplus_{\lambda, \gamma, \eta} \lbrace \langle x, \left(\frac{\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}{2} \right)^{\frac{1}{\delta}}, \left(\frac{\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}{2} \right)^{\frac{1}{\delta}}; \propto(r, s) \rangle \rbrace

    \qquad \qquad \qquad \quad = \lbrace \langle x, \lambda^{\frac{1}{\delta}} \left(\frac{\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}{2} \right)^{\frac{1}{\delta}}, \left(\gamma \left(\frac{\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}{2} +\eta\right) \right)^{\frac{1}{\delta}}; \propto(r, s)\rangle \rbrace

    \qquad \qquad \qquad \quad = \lbrace \langle x, \left(\frac{\lambda\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\lambda\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}{2} \right)^{\frac{1}{\delta}}, \left(\frac{[\gamma\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta]+[\gamma\mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)+\eta]}{2} \right)^{\frac{1}{\delta}}; \propto(r, s)\rangle \rbrace

    \qquad \qquad \qquad \quad = \lbrace \langle x, \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}^{*}}(x), \left(\gamma \mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}; r \rangle \rbrace @_{\propto} \lbrace \langle x, \lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{B}^{*}}(x), \left(\gamma \mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}; s \rangle \rbrace

    \qquad \qquad \qquad \quad = \boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) @_{\propto} \boxplus_{\lambda, \gamma, \eta} (\mathcal{B}_{s}^{*}) .

    (2) \boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*} @_{\propto} \mathcal{B}_{s}^{*}) = \boxtimes_{\lambda, \gamma, \eta} \lbrace \langle x, \left(\frac{\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}{2} \right)^{\frac{1}{\delta}}, \left(\frac{\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}{2} \right)^{\frac{1}{\delta}}; \propto(r, s) \rangle \rbrace

    \qquad \qquad \qquad \quad = \lbrace \langle x, \left(\lambda \left(\frac{\mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}{2} +\eta\right) \right)^{\frac{1}{\delta}}, \gamma^{\frac{1}{\delta}} \left(\frac{\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}{2} \right)^{\frac{1}{\delta}}; \propto(r, s)\rangle \rbrace

    \qquad \qquad \qquad \quad = \lbrace \langle x, \left(\frac{[\lambda\mathcal{M}_{\mathcal{A}^{*}}^{\lambda}(x)+\eta]+[\lambda\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)+\eta]}{2} \right)^{\frac{1}{\delta}}, \left(\frac{\gamma\mathcal{N}_{\mathcal{A}^{*}}^{\delta}(x)+\gamma\mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}{2} \right)^{\frac{1}{\delta}}; \propto(r, s)\rangle \rbrace

    \qquad \qquad \qquad \quad = \lbrace \langle x, \left(\lambda \mathcal{M}_{\mathcal{A}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}, \gamma^{\frac{1}{\delta}} \mathcal{N}_{\mathcal{A}^{*}}(x); r \rangle \rbrace @_{\propto} \lbrace \langle x, \left(\lambda \mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}, \gamma^{\frac{1}{\delta}} \mathcal{N}_{\mathcal{B}^{*}}(x); s \rangle \rbrace

    \qquad \qquad \qquad \quad = \boxtimes_{\lambda, \gamma, \eta} (\mathcal{A}_{r}^{*}) @_{\propto} \boxtimes_{\lambda, \gamma, \eta} (\mathcal{B}_{s}^{*}) .

    Based on the Definition 4.1, the following is a generalization of the properties that apply to the generalized arithmetic and geometric means of GCIFS.

    Theorem 5.4. Given a family of GCIFSs \mathcal{A}_{r_i} for i = 1, 2, 3, \cdots, k and real number \lambda, \gamma, \eta \in [0, 1] then the following expressions hold:

    (1) \left({@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) \right) @_{\circledast} \mathcal{B}_{s}^{*} = {@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*} @_{\circledast} \mathcal{B}_{s}^{*}) for any \mathcal{B}_{s}^{*} \in GCIFS.

    (2) \boxplus \left({@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) \right) = {@_{\circledast}}_{i = 1}^{k} (\boxplus (\mathcal{A}_{r_i}^{*})) .

    (3) \boxplus_{\lambda} \left({@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) \right) = {@_{\circledast}}_{i = 1}^{k} (\boxplus_{\lambda} (\mathcal{A}_{r_i}^{*}))

    (4) \boxplus_{\lambda, \gamma} \left({@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) \right) = {@_{\circledast}}_{i = 1}^{k} (\boxplus_{\lambda, \gamma} (\mathcal{A}_{r_i}^{*})) .

    (5) \boxplus_{\lambda, \gamma, \eta} \left({@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) \right) = {@_{\circledast}}_{i = 1}^{k} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r_i}^{*})) .

    Proof. Let \mathcal{A}_{r_i}^{*} be a family of GCIFSs and \delta = n or \frac{1}{n} for n \in \mathbb{Z}^{+} , then based on Definitions 4.1 and 5.1 the proof of this theorem will be provided as follows:

    (1) Let \mathcal{B}_{s}^{*} \in GCIFS, then it applies, \left({@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) \right) @_{\circledast} \mathcal{B}_{s}^{*} = \lbrace \langle x, \left(\frac{\Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}\right)^{\frac{1}{\delta}}, \left(\frac{\Sigma_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}\right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}\right)^{\frac{1}{\delta}} \rangle \rbrace @_{\circledast} \mathcal{B}_{s}^{*}

    \qquad \qquad \quad = \lbrace \langle x, \left(\frac{\frac{\Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}+\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}{2}\right)^{\frac{1}{\delta}}, \left(\frac{\frac{\Sigma_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}+\mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}{2}\right)^{\frac{1}{\delta}}; \left(\frac{\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}+s^{\delta}}{2}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = \lbrace \langle x, \left(\frac{ \mathcal{M}_{\mathcal{A}_{1}^{*}}^{\delta}(x)+\cdots+\mathcal{M}_{\mathcal{A}_{k}^{*}}^{\delta}(x)+k \cdot \mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}{2k}\right)^{\frac{1}{\delta}}, \left(\frac{ \mathcal{N}_{\mathcal{A}_{1}^{*}}^{\delta}(x)+\cdots+\mathcal{N}_{\mathcal{A}_{k}^{*}}^{\delta}(x)+k \cdot \mathcal{N}_{B}^{\delta}(x)}{2k}\right)^{\frac{1}{\delta}};

    \qquad \qquad \qquad \left(\frac{ r_{1}^{\delta}+\cdots+r_{k}^{\delta}+k \cdot s^{\delta}}{2k}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = \lbrace \langle x, \left(\frac{\Sigma_{i = 1}^{k} \frac{\mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)+\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}{2}}{k} \right)^{\frac{1}{\delta}}, \left(\frac{\Sigma_{i = 1}^{k} \frac{\mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}{2}}{k} \right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} \frac{r_{i}^{\delta}+s^{\delta}}{2}}{k} \right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = {@_{\circledast}}_{i = 1}^{k} \lbrace \langle x, \left(\frac{\mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)+\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}{2} \right)^{\frac{1}{\delta}}, \left(\frac{\mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)+\mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}{2} \right)^{\frac{1}{\delta}}; \left(\frac{r_{i}^{\delta}+s^{\delta}}{2} \right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = {@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*} @_{\circledast} \mathcal{B}_{s}^{*}) .

    (2) \boxplus ({@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*})) = \boxplus \lbrace \langle x, \left(\frac{\Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}\right)^{\frac{1}{\delta}}, \left(\frac{\Sigma_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}\right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = \lbrace \langle x, \left(\frac{\frac{\Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}}{2} \right)^{\frac{1}{\delta}}, \left(\frac{\frac{\Sigma_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}+1}{2} \right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = \lbrace \langle x, \left(\frac{\frac{\Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{2}}{k} \right)^{\frac{1}{\delta}}, \left(\frac{\frac{\Sigma_{i = 1}^{k} [\mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)+1]}{2}}{k} \right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = {@_{\circledast}}_{i = 1}^{k} \lbrace \langle x, \left(\frac{\mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{2}\right)^{\frac{1}{\delta}}, \left(\frac{\mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)+1}{2}\right)^{\frac{1}{\delta}}; r_i \rangle \rbrace

    \qquad \qquad \quad = {@_{\circledast}}_{i = 1}^{k} (\boxplus(\mathcal{A}_{r_i}^{*})) .

    (3) \boxplus_{\lambda} ({@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*})) = \boxplus_{\lambda} \lbrace \langle x, \left(\frac{\Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}\right)^{\frac{1}{\delta}}, \left(\frac{\Sigma_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}\right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = \lbrace \langle x, \left(\frac{\lambda \Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k} \right)^{\frac{1}{\delta}}, \left(\frac{\lambda \Sigma_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}+(1-\lambda) \right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = \lbrace \langle x, \left(\frac{\lambda \Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k} \right)^{\frac{1}{\delta}}, \left(\frac{\Sigma_{i = 1}^{k} [\lambda \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)+(1-\lambda)]}{k} \right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = {@_{\circledast}}_{i = 1}^{k} \lbrace \langle x, \left(\lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}_{i}^{*}}(x)\right), \left(\lambda \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)+(1-\lambda)\right)^{\frac{1}{\delta}}; r_i \rangle \rbrace

    \qquad \qquad \quad = {@_{\circledast}}_{i = 1}^{k} (\boxplus_{\lambda} (\mathcal{A}_{r_i}^{*})) .

    (4) Analogously we can prove (4) by replacing 1-\lambda = \gamma .

    (5) \boxplus_{\lambda, \gamma, \eta} ({@_{\circledast}}_{i = 1}^{k} (\mathcal{A}_{r_i})) = \boxplus_{\lambda, \gamma, \eta} \lbrace \langle x, \left(\frac{\Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}\right)^{\frac{1}{\delta}}, \left(\frac{\Sigma_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}\right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = \lbrace \langle x, \left(\frac{\lambda \Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k} \right)^{\frac{1}{\delta}}, \left(\frac{\gamma \Sigma_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k}+\eta \right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{n}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = \lbrace \langle x, \left(\frac{\lambda \Sigma_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}{k} \right)^{\frac{1}{\delta}}, \left(\frac{\Sigma_{i = 1}^{k} [\gamma \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)+\eta]}{k} \right)^{\frac{1}{\delta}}; \left(\frac{\Sigma_{i = 1}^{k} r_{i}^{\delta}}{k}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad \qquad \quad = {@_{\circledast}}_{i = 1}^{k} \lbrace \langle x, \left(\lambda^{\frac{1}{\delta}} \mathcal{M}_{\mathcal{A}_{i}^{*}}(x)\right), \left(\gamma \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)+\eta\right)^{\frac{1}{\delta}}; r_i \rangle \rbrace

    \qquad \qquad \quad = {@_{\circledast}}_{i = 1}^{k} (\boxplus_{\lambda, \gamma, \eta} (\mathcal{A}_{r_i}^{*})).

    The proof is now completed.

    Theorem 5.5. Given a family of GCIFSs \mathcal{A}_{r_i}^{*} for i = 1, 2, 3, \cdots, k and real number \lambda, \gamma \in [0, 1] then we have:

    \begin{gather} \left( {$_{\circledcirc}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) \right) $_{\circledcirc} \mathcal{B}_{s}^{*} = {$_{\circledcirc}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*} $_{\circledcirc} \mathcal{B}_{s}^{*}) {\text{ for any }} \mathcal{B}_{s}^{*} \in GCIFS. \end{gather}

    Proof. Let \mathcal{A}_{r_i}^{*} be a family of GCIFSs and \delta = n or \frac{1}{n} for n \in \mathbb{Z}^{+} . Based on Definitions 4.1 and 5.1 the following result is obtained. Let \mathcal{B}_{s}^{*} \in GCIFS, then it applies,

    \left({$_{\circledcirc}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*}) \right) $_{\circledcirc} \mathcal{B}_{s}^{*} = \lbrace \langle x, \left(\sqrt[k]{\Pi_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)} \right)^{\frac{1}{\delta}}, \left(\sqrt[k]{\Pi_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{i}^{*}}^{\delta}(x)} \right)^{\frac{1}{\delta}}; \left(\sqrt[k]{\Pi_{i = 1}^{k} r_{i}^{\delta}} \right)^{\frac{1}{\delta}} \rangle \rbrace $_{\circledcirc} \mathcal{B}_{s}^{*}

    \qquad = \lbrace \langle x, \left(\sqrt{\sqrt[k]{\Pi_{i = 1}^{k} \mathcal{M}_{\mathcal{A}_{i}^{*}}^{\delta}(x)}\times\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}\right)^{\frac{1}{\delta}}, \left(\sqrt{\sqrt[k]{\Pi_{i = 1}^{k} \mathcal{N}_{\mathcal{A}_{r_i}^{*}}^{\delta}(x)}\times \mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}\right)^{\frac{1}{\delta}}; \left(\sqrt{\sqrt[k]{\Pi_{i = 1}^{k} r_{i}^{\delta}}\times s^{\delta}}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad = \lbrace \langle x, \left(\sqrt{\sqrt[k]{\mathcal{M}_{\mathcal{A}_{1}^{*}}^{\delta}(x) \times \cdots \times \mathcal{M}_{\mathcal{A}_{k}^{*}}^{\delta}(x)}\times\mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}\right)^{\frac{1}{\delta}}, \left(\sqrt{\sqrt[k]{\mathcal{N}_{\mathcal{A}_{1}^{*}}^{\delta}(x) \times \cdots \times \mathcal{N}_{\mathcal{A}_{k}^{*}}^{\delta}(x)}\times\mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}\right)^{\frac{1}{\delta}};

    \qquad \quad \left(\sqrt{\sqrt[k]{r_{1}^{\delta} \times \cdots \times r_{k}^{\delta}}\times s^{\delta}}\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad = \lbrace \langle x, \left(\sqrt{\sqrt[k]{[\mathcal{M}_{\mathcal{A}_{1}^{*}}^{\delta}(x) \times \mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)] \times \cdots \times [\mathcal{M}_{\mathcal{A}_{k}^{*}}^{\delta}(x) \times \mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)]} }\right)^{\frac{1}{\delta}},

    \qquad \quad \left(\sqrt{\sqrt[k]{[\mathcal{N}_{\mathcal{A}_{1}^{*}}^{\delta}(x) \times \mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)] \times \cdots \times [\mathcal{N}_{\mathcal{A}_{k}^{*}}^{\delta}(x) \times \mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)]} }\right)^{\frac{1}{\delta}}; \left(\sqrt{\sqrt[k]{[r_{1}^{\delta} \times s^{\delta}] \times \cdots \times [r_{k}^{\delta} \times s^{\delta}]} }\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad = \lbrace \langle x, \left(\sqrt[k]{\sqrt{[\mathcal{M}_{\mathcal{A}_{1}^{*}}^{\delta}(x) \times \mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)] \times \cdots \times [\mathcal{M}_{\mathcal{A}_{k}^{*}}^{\delta}(x) \times \mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)]} }\right)^{\frac{1}{\delta}},

    \qquad \quad \left(\sqrt[k]{\sqrt{[\mathcal{N}_{\mathcal{A}_{1}^{*}}^{\delta}(x) \times \mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)] \times \cdots \times [\mathcal{N}_{\mathcal{A}_{k}^{*}}^{\delta}(x) \times \mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)]} }\right)^{\frac{1}{\delta}}; \left(\sqrt[k]{\sqrt{[r_{1}^{\delta} \times s^{\delta}] \times \cdots \times [r_{k}^{\delta} \times s^{\delta}]} }\right)^{\frac{1}{\delta}} \rangle \rbrace

    \qquad = {@_{\circledast}}_{i = 1}^{k} \lbrace \langle x, \sqrt{\mathcal{M}_{\mathcal{A}_{r_i}^{*}}^{\delta}(x) \mathcal{M}_{\mathcal{B}^{*}}^{\delta}(x)}^{\frac{1}{\delta}}, \sqrt{\mathcal{N}_{\mathcal{A}_{r_i}^{*}}^{\delta}(x) \mathcal{N}_{\mathcal{B}^{*}}^{\delta}(x)}^{\frac{1}{\delta}}; \sqrt{r_{i}^{\delta} s^{\delta}}^{\frac{1}{\delta}} \rangle \rbrace

    \qquad = {$_{\circledcirc}}_{i = 1}^{k} (\mathcal{A}_{r_i}^{*} $_{\circledcirc} \mathcal{B}_{s}^{*}) .

    The proof is now completed.

    This study significantly enriches and deepens the existing CIFS theory by introducing GCIFS as an extension of CIFS. We define the basic operations and relations of GCIFS, along with their algebraic properties. Furthermore, we examine two operations, the arithmetic mean and geometric mean, on GCIFS, demonstrating their desirable properties through theoretical proofs, including idempotency, inclusion, commutativity, distributivity and absorption. Additionally, we introduce modal operators applicable to GCIFS and apply them to arithmetic and geometric means. In the final section, we develop aggregation operations, namely the generalized arithmetic and geometric means, extending the capabilities of these two operators. These properties are further applied to the modal operators in context of GCIFS.

    However, it is essential to note that we do not fully explore several aspects of GCIFS. For instance, distance and similarity measurements, entropy, aggregation functions and other components require additional investigation for practical use in decision-making models. Furthermore, from a theoretical perspective, a deeper exploration is needed to understand the specific operating characteristics and relations of GCIFS. Future research should be to prioritize these areas to fully unlock the potential of GCIFS across various applications.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are thankful to the anonymous reviewers for their valuable remarks that improved the quality of the paper. Support from Ministry of Higher Education Malaysia and Universiti Malaysia Terengganu (UMT) are gratefully acknowledged.

    The authors declare no conflict of interest.



    [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. http://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [2] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [3] D. Dubois, H. Prade, Interval-valued fuzzy sets, possibility theory and imprecise probability, In: Proceedings of the joint 4th conference of the European society for fuzzy logic and technology and the 11th rencontres francophones surla logique floue et ses applications, 2005,314–319.
    [4] J. M. Mendel, Uncertain rule-based fuzzy logic systems, Cham: Springer, 2017.
    [5] V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, In: Proceedings of the IEEE international conference on fuzzy systems, 2009, 1378–1382.
    [6] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
    [7] K. T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1989), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4 doi: 10.1016/0165-0114(89)90205-4
    [8] S. Singh, H. Garg, Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process, Appl. Intell., 46 (2017), 788–799. https://doi.org/10.1007/s10489-016-0869-9 doi: 10.1007/s10489-016-0869-9
    [9] J. J. Peng, J. Q. Wang, X. H. Wu, H. Y. Zhang, X. Hong The fuzzy cross-entropy for intuitionistic hesitant fuzzy sets and their application in multi-criteria decision-making, Int. J. Syst. Sci., 46 (2015), 2335–2350. http://doi.org/10.1080/00207721.2014.993744 doi: 10.1080/00207721.2014.993744
    [10] L. Abdullah, N. A. Awang, Weight for TOPSIS method combined with intuitionistic fuzzy sets in multi-criteria decision making, Recent advances in soft computing and data mining, Cham: Springer, 2022. https://doi.org/10.1007/978-3-031-00828-3_20
    [11] H. Hashemi, S. M. Mousavi, E. K. Zavadskas, A. Chalekaee, Z. Turskis, A new group decision model based on grey-intuitionistic fuzzy-ELECTRE and VIKOR for contractor assessment problem, Sustainability, 10 (2018), 1635. http://doi.org/10.3390/su10051635 doi: 10.3390/su10051635
    [12] J. Jin, H. Garg, Intuitionistic fuzzy three-way ranking-based TOPSIS approach with a novel entropy measure and its application to medical treatment selection, Adv. Eng. Soft., 180 (2023), 103459. https://doi.org/10.1016/j.advengsoft.2023.103459 doi: 10.1016/j.advengsoft.2023.103459
    [13] F. Dammak, L. Baccour, A. M. Alimi, Intuitionistic fuzzy PROMETHEE Ⅱ technique for multi-criteria decision making problems based on distance and similarity measures, IEEE Int. Conf. Fuzzy Syst., 2020. https://doi.org/10.1109/FUZZ48607.2020.9177619 doi: 10.1109/FUZZ48607.2020.9177619
    [14] E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications, In: Computational intelligence theory and applications, Berlin, Heidelberg: Springer, 2001. http://doi.org/10.1007/3-540-45493-4_19
    [15] U. Shuaib, H. Alolaiyan, A. Razaq, S. Dilbar, F. Tahir, On some algebraic aspects of \eta-intuitionistic fuzzy subgroups, J. Taibah Univ. Sci., 14 (2020), 463–469. http://doi.org/10.1080/16583655.2020.1745491 doi: 10.1080/16583655.2020.1745491
    [16] N. K. Akula, S. S Basha, Regression coefficient measure of intuitionistic fuzzy graphs with application to soil selection for the best paddy crop, AIMS Mathematics, 8 (2023), 17631–17649. https://doi.org/10.3934/math.2023900 doi: 10.3934/math.2023900
    [17] M. Akram, R. Akmal, Operations on intuitionistic fuzzy graph structures, Fuzzy Inf. Eng., 8 (2016), 389–410. https://doi.org/10.1016/j.fiae.2017.01.001 doi: 10.1016/j.fiae.2017.01.001
    [18] Z. W. Wei, L. Zhou, On intuitionistic fuzzy topologies based on intuitionistic fuzzy reflexive and transitive relations, Soft Comput., 15 (2011), 1183–1194. https://doi.org/10.1007/s00500-010-0576-0 doi: 10.1007/s00500-010-0576-0
    [19] Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Inter. J. General Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
    [20] H. Zhao, Z. Xu, M. Ni, S. Liu, Generalized aggregation operators for intuitionistic fuzzy sets, Inter. J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386 doi: 10.1002/int.20386
    [21] W. Azeem, W. Mahmood, T. Mahmood, Z. Ali, M. Naeem, Analysis of Einstein aggregation operators based on complex intuitionistic fuzzy sets and their applications in multi-attribute decision-making, AIMS Mathematics, 8 (2023), 6036–6063. https://doi.org/10.3934/math.2023305 doi: 10.3934/math.2023305
    [22] G. Deschrijver, E. E. Kerre, A generalisation of operators on intuitionistic fuzzy sets using triangular norms and conorms, Notes Intuitionistic Fuzzy Sets, 8 (2002), 19–27.
    [23] B. Yusoff, I. Taib, L. Abdullah, A. F. Wahab, A new similarity measure on intuitionistic fuzzy sets, Inter. J. Math. Comput. Sci., 5 (2011), 819–823. https://doi.org/10.5281/zenodo.1054905 doi: 10.5281/zenodo.1054905
    [24] R. R. Yager, A note on measuring fuzziness for intuitionistic and interval-valued fuzzy sets, Inter. J. Gen. Syst., 4 (2013), 889–901. https://doi.org/10.1080/03081079.2015.1029472 doi: 10.1080/03081079.2015.1029472
    [25] W. S. Du, Subtraction and division operations on intuitionistic fuzzy sets derived from the Hamming distance, Inform. Sci., 571 (2021), 206–224. https://doi.org/10.1016/j.ins.2021.04.068 doi: 10.1016/j.ins.2021.04.068
    [26] T. K. Mondal, S. K. Samanta, Generalized intuitionistic fuzzy sets, J. Fuzzy Math., 10 (2002), 839–862. https://doi.org/10.3390/math9172115 doi: 10.3390/math9172115
    [27] H. C. Liu, Liu's generalized intuitionistic fuzzy sets, J. Educ. Meas. Stat., 18 (2010), 1–14.
    [28] I. Despi, D. Opris, E. Yalcin, Generalised Atanassov Intuitionistic Fuzzy Sets, In: Proceedings of the fifth international conference on information, process and knowledge management, 2013, 51–56.
    [29] E. B. Jamkhaneh, S. Nadarajah, A new generalized intuitionistic fuzzy set, Hacettepe J. Math. Stat., 44 (2015), 111–122. http://doi.org/10.15672/HJMS.2014367557 doi: 10.15672/HJMS.2014367557
    [30] K. T. Atanassov, A second type of intuitionistic fuzzy sets, BUSEFAL, 56 (1993), 66–70.
    [31] K. T. Atanassov, P. Vassilev, On the intuitionistic fuzzy sets of n-th type, In: Advances in data analysis with computational intelligence methods, Cham: Springer, 2018. http://doi.org/10.1007/978-3-319-67946-4_10
    [32] R. Srinivasan, N. Palaniappan, Some operations on intuitionistic fuzzy sets of root type, Ann. Fuzzy Math. Inform., 4 (2012), 377–383.
    [33] R. R. Yager, Pythagorean fuzzy subsets, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, 2013. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [34] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [35] T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Ambient Intell. Human. Comput., 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0
    [36] E. B. Jamkhaneh, New operations over generalized interval valued intuitionistic fuzzy sets, Gazi Univ. J. Sci., 29 (2016), 667–674.
    [37] E. B. Jamkhaneh, A. N. Ghara, Four new operators over the generalized intuitionistic fuzzy sets, J. New Theory, 18 (2017), 12–21.
    [38] D. Sadhanaa, P. Prabakaran, Level operators on generalized intuitionistic fuzzy sets, Inter. J. Math. Trends Tech., 62 (2018), 152–157.
    [39] Z. Roohanizadeh, E. B. Jamkhaneh, The reliability analysis based on the generalized intuitionistic fuzzy two-parameter Pareto distribution, Soft Comput., 27 (2022), 3095–3113. https://doi.org/10.1007/s00500-022-07494-x doi: 10.1007/s00500-022-07494-x
    [40] K. T. Atanassov, Circular intuitionistic fuzzy sets, J. Intell. Fuzzy Syst., 39 (2020), 5981–5986. http://doi.org/10.3233/JIFS-189072 doi: 10.3233/JIFS-189072
    [41] K. T. Atanassov, E. Marinov, Four distances for circular intuitionistic fuzzy sets, Mathematics, 9 (2021), 1121. http://doi.org/10.3390/math9101121 doi: 10.3390/math9101121
    [42] T. Y. Chen, Evolved distance measures for circular intuitionistic fuzzy sets and their exploitation in the technique for order preference by similarity to ideal solutions, Artif. Intell. Rev., 56 (2022), 7347–7401. http://doi.org/10.1007/s10462-022-10318-x doi: 10.1007/s10462-022-10318-x
    [43] M. J. Khan, W. Kumam, N. A. Alreshidi, Divergence measures for circular intuitionistic fuzzy sets and their applications, Eng. Appl. Artif. Intell., 116 (2022), 105455. https://doi.org/10.1016/j.engappai.2022.105455 doi: 10.1016/j.engappai.2022.105455
    [44] C. Kahraman, N. Alkan, Circular intuitionistic fuzzy TOPSIS method with vague membership functions: Supplier selection application context, Notes Intuitionistic Fuzzy Sets, 27 (2021), 24–52. http://doi.org/10.7546/nifs.2021.27.1.24-52 doi: 10.7546/nifs.2021.27.1.24-52
    [45] I. Otay, C. Kahraman, A novel circular intuitionistic fuzzy AHP and VIKOR methodology: An application to a multi-expert supplier evaluation problem, Pamukkale Univ. J. Eng. Sci., 28 (2021), 194–207. https://doi.org/10.5505/pajes.2021.90023 doi: 10.5505/pajes.2021.90023
    [46] N. Alkan, C. Kahraman, Circular intuitionistic fuzzy TOPSIS method: Pandemic hospital location selection, J. Intell. Fuzzy Syst., 42 (2022), 295–316. http://doi.org/10.3233/JIFS-219193 doi: 10.3233/JIFS-219193
    [47] E. Bolturk, C. Kahraman, Interval-valued and circular intuitionistic fuzzy present worth analyses, Informatica, 33 (2022), 693–711. http://doi.org/10.15388/22-INFOR478 doi: 10.15388/22-INFOR478
    [48] E. B. Jamkhaneh, H. Garg, Some new operations over the generalized intuitionistic fuzzy sets and their application to decision-making process, Granul. Comput., 3 (2018), 111–122. http://doi.org/10.1007/s41066-017-0059-0 doi: 10.1007/s41066-017-0059-0
    [49] P. Dutta, B. Saikia, Arithmetic operations on normal semi elliptic intuitionistic fuzzy numbers and their application in decision making, Granul. Comput., 6 (2021), 163–179. https://doi.org/10.1007/s41066-019-00175-5 doi: 10.1007/s41066-019-00175-5
    [50] K. T. Atanassov, On one type of intuitionistic fuzzy modal operators, Notes Intuitionistic Fuzzy Sets, 11 (2005), 24–28.
  • This article has been cited by:

    1. Binyamin Yusoff, Dian Pratama, Adem Kilicman, Lazim Abdullah, Circular Intuitionistic Fuzzy ELECTRE III Model for Group Decision Analysis, 2023, 0868-4952, 881, 10.15388/23-INFOR536
    2. Muhammad Wasim, Awais Yousaf, Hanan Alolaiyan, Muhammad Azeem Akbar, Alhanouf Alburaikan, Hamiden Abd El-Wahed Khalifa, Optimizing decision-making with aggregation operators for generalized intuitionistic fuzzy sets and their applications in the tech industry, 2024, 14, 2045-2322, 10.1038/s41598-024-57461-9
    3. Dian Pratama, Binyamin Yusoff, Lazim Abdullah, Adem Kilicman, Nor Hanimah Kamis, Extension operators of circular intuitionistic fuzzy sets with triangular norms and conorms: Exploring a domain radius, 2024, 9, 2473-6988, 12259, 10.3934/math.2024599
    4. Xiangnuo Kong, Complex Circular Intuitionistic Fuzzy Heronian Mean Aggregation for Dynamic Air Quality Monitoring and Public Health Risk Prediction, 2024, 2169-3536, 1, 10.1109/ACCESS.2024.3458172
    5. Ting-Yu Chen, Enhanced Multi-Attribute Ideal-Real comparative analysis with the circular intuitionistic fuzzy framework: Application to hybrid cloud services, 2025, 65, 14740346, 103184, 10.1016/j.aei.2025.103184
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1999) PDF downloads(173) Cited by(5)

Figures and Tables

Figures(2)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog