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Abstract: The circular intuitionistic fuzzy set (CIFS) is an extension of the intuitionistic fuzzy set
(IFS), where each element is represented as a circle in the IFS interpretation triangle (IFIT) instead
of a point. The center of the circle corresponds to the coordinate formed by membership (M) and
non-membership (N) degrees, while the radius, r, represents the imprecise area around the coordinate.
However, despite enhancing the representation of IFS, CIFS remains limited to the rigid IFIT space,
where the sum of M and N cannot exceed one. In contrast, the generalized IFS (GIFS) allows for
a more flexible IFIT space based on the relationship between M and N degrees. To address this
limitation, we propose a generalized circular intuitionistic fuzzy set (GCIFS) that enables the expansion
or narrowing of the IFIT area while retaining the characteristics of CIFS. Specifically, we utilize the
generalized form introduced by Jamkhaneh and Nadarajah. First, we provide the formal definitions of
GCIFS along with its relations and operations. Second, we introduce arithmetic and geometric means
as basic operators for GCIFS and then extend them to the generalized arithmetic and geometric means.
We thoroughly analyze their properties, including idempotency, inclusion, commutativity, absorption
and distributivity. Third, we define and investigate some modal operators of GCIFS and examine their
properties. To demonstrate their practical applicability, we provide some examples. In conclusion,
we primarily contribute to the expansion of CIFS theory by providing generality concerning the
relationship of imprecise membership and non-membership degrees.
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1. Introduction

The intuitionistic fuzzy set (IFS) [1] was introduced by Atanassov in 1986 as an extension of
the fuzzy set (FS) theory [2]. In FS, each element is characterized only by the membership degree.
However, in IFS, each element is indicated by both membership (M) and non-membership (N)
degrees, as well as a hesitancy degree. Additionally, various extension forms of FS have been proposed,
including interval valued FS (IVFS) [3], type-2 FS [4], Hesitant FS [5,6] and others. These extensions
aim to provide generality in representing imprecise membership degrees instead of precise membership
degrees. Similarly, IFS has been expanded to include interval valued IFS (IVIFS) [7], type-2 IFS
(T2IFS) [8] and hesitant IFS [9]. These extensions address problems related to imprecise membership
and non-membership degrees. IFS has been reported to be better at presenting a higher level of
complexity and uncertainty compared to FS due to its flexibility. Since its introduction, numerous
studies have been carried out on IFS, especially its applications in various decision-making models
(see [10–14]). Furthermore, research focusing on advancing IFS theoretically has also emerged,
including studies on algebraic aspects of IFS in group theory [15], graph theory [16,17], topology [18],
aggregation operators [19–21], distance, similarity and entropy measures [22–25], to mention a few.

In addition to that, another research direction on generalizing IFS has emerged to solve problems
beyond the existing constraint of IFS, i.e., M + N ≤ 1. The generalizations of IFS are normally
conducted with respect to the relation betweenM and N degrees. One of the representations of IFS
that has been mostly studied is the IFS interpretation triangle (IFIT). Based on this interpretation,
numerous developments of generalized IFS (GIFS) have been proposed (see Table 1). Mondal and
Samanta [26] were the first to propose GIFSMS, introducing an additional condition to the existing IFS
and allowing for cases whereM+N > 1 to be considered. However, it is still limited toM+N ≤ 1.5.
Then, Liu [27] defined GIFSL through linear extension for interpretational surface. Hence, other cases
beyond M + N > 1.5 are also established. Furthermore, this GIFSL includes GIFSMS as a special
case. In another study, Despi et al. [28] proposed six types of GIFS (GIFS1DOY−GIFS6DOY), which
extended various possible combinations betweenM andN . All the proposed GIFSs provide flexibility
in dealing with the possible cases ofM+N > 1. Another GIFS has been proposed by Jamkhaneh and
Nadarajah, GIFSJN [29] based on power and root-type ofM andN . They modify the relation between
M andN functions to expand and narrow the IFS surface interpretation area under the IFIT. This type
of GIFSJN covers some of the well-known extensions of IFS in the literature (see, [30–34]). In general,
the above generalizations aim to enhance the expressive power ofM and N degrees by extending the
definition of IFS in terms of the IFIT.

AIMS Mathematics Volume 8, Issue 11, 26758–26781.



26760

Table 1. Comparison of some GIFSs.

GIFS Condition Relation
GIFSMS [26] M∩N ≤ 0.5 IFS ⊂ GIFSMS

GIFSL [27] M +N ≤ 1 + L where L ∈ [0, 1] IFS ⊂ GIFSMS ⊂ GIFSL

GIFSDOY [28]
GIFS1DOY (1)M +N ≥ 1 -
GIFS2DOY (2)M ≤ N -
GIFS3DOY (3)M ≥ N -
GIFS4DOY (1) and (3) or

(2) andM +N ≤ 1 -
GIFS5DOY (1) and (2) or

(3) andM +N ≤ 1 -
GIFS6DOY M2 +N2 ≤ 1 -
GIFSJN [29] Mδ +Nδ ≤ 1 if δ = n then IFS ⊂ GIFSJN

where δ = n or 1
n for n ∈ Z+ if δ = 1

n then GIFSJN ⊂ IFS

It is evident that GIFSJN concept is the most natural expression to overcome the problems mentioned
above and covers a lot of special cases of the existing extensions of IFS. In its formal definition, M
and N are parameterized by δ. This concept holds true in several forms, for example: if δ = 1, then
it reduces to IFS; if δ = 2, then it will be IFS 2-type (IFS2T) [30] or Pythagorean FS (PFS) [33]; if
δ = 3, then it represents Fermatean FS (FFS) [35]; if δ = n, for a positive integer n, then it represents
IFS n-type (IFS-nT ) or generalized orthopair FS [34]. Moreover, if δ = 1

2 , then it will be reduced
to the IFS root type (IFSRT) [32]. The existence of these generalizations has sparked numerous
further studies, such as the proposal of generalized IVIFS [36], new operations in GIFS [37], defining
level operators for GIFS [38] and determining reliability analysis based on GIFS two-parameter Pareto
distribution [39].

In recent years, Atanassov [40] proposed another extension of IFS known as circular IFS (CIFS).
In CIFS, each element is represented as a circle in the IFIT instead of a point. The center of the circle
corresponds to the coordinate formed by (M,N), while the radius, r, represents the imprecise area
around the coordinate. Initially, the radius takes values from the unit interval [0, 1] [40] and it has later
been expanded to [0,

√
2] [41] to cover the whole area of IFIT. Though still in the early research stage,

the theory of CIFS has already attracted significant research attention. Several studies have begun to
explore both the theoretical aspects and applications of CIFS. Researchers have expanded the use of
CIFS in various domains, including introducing distance and divergence measures for CIFS [41–43],
applying it in decision-making models [44–46] and utilizing it in present worth analysis [47]. The only
distinction between CIFS and IFS resides in the radius component; when the radius equals zero, CIFS
reverts to IFS.

However, as CIFS is a direct extension of the IFS, its representation is still limited to the existing
IFIT. Considering this limitation, it becomes interesting to extend CIFS based on a more flexible
interpretation area, which allows increasing or decreasing the interpretation of IFIT. Following the
same idea, a generalization of CIFS is proposed here, specifically using the GIFS concept proposed by
Jamkhaneh and Nadarajah [48]. Here, instead of representing M and N degrees of an element as a
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point, a circular region is allowed. These considerations lead us to the objectives of this study:

(1) To introduce the generalized CIFS (GCIFS) along with its corresponding relations and operations.
(2) To propose arithmetic and geometric means of GCIFS as the aggregation operators and extend

them to generalized arithmetic mean and generalized geometric mean and verify their applicable
algebraic properties.

(3) To examine some modal operators of GCIFS and combine them with the previously proposed
main operations.

The remaining parts of this paper are summarized as follows: Section 2 provides an outline of
fundamental concepts related to IFS, GIFS and CIFS. In Section 3, the generalized CIFS (GCIFS)
is presented in a general form, along with its basic relations and operations. Section 4 introduces
the arithmetic and geometric means of GCIFS and the generalized arithmetic mean and generalized
geometric mean are defined. Section 5 examines some modal operators, which are then applied in
conjunction with the arithmetic and geometric means. Finally, Section 6 presents the conclusions and
suggestions derived from this paper.

2. Preliminaries

In this section, some basic definitions are given, in particular IFS, GIFS and CIFS. It is defined that
M(x) represents the degree of membership and N(x) denotes the degree of non-membership of x ∈ X
within the unit interval, I = [0, 1]. Atanassov [1] defined the IFS as the following.

Definition 2.1. [1] An IFSA in X is defined as an object of the formA = {⟨x,MA(x),NA(x)⟩|x ∈ X},
where MA : X → I and NA : X → I that satisfy 0 ≤ MA(x) + NA(x) ≤ 1 for each x ∈ X. The
collection of all IFSs is denoted by IFS(X).

Furthermore, Jamkhaneh and Nadarajah [29] proposed the generalized IFS by modifying the
relationship betweenM and N functions on IFS and obtain the following definition.

Definition 2.2. [29] A generalized IFS A∗ (denoted GIFSJN A
∗) in X is defined as an object of

the form A∗ = {⟨x,MA∗(x),NA∗(x)⟩|x ∈ X}, where MA∗ : X → I and NA∗ : X → I that
satisfy 0 ≤ MA∗δ(x) + NA∗δ(x) ≤ 1 for each x ∈ X with δ = n or 1

n , for n ∈ Z+. The collection
of all generalized IFSs is denoted by GIFSJN(δ, X).

The interpretation area of GIFSJN is depicted such in Figure 1 and some special cases of it with
respect to δ are shown in Table 2.
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Figure 1. Geometric interpretation of GIFSJN for δ = n or δ = 1
n .

Table 2. Special cases of GIFSJN .

IFS extention type Condition Relation
IFS [1] δ = 1 GIFSJN(1, X)=IFS
PFS [33] or IFS-2T [5] δ = 2 IFS ⊂ GIFSJN(2, X)
FFS [35] δ = 3 IFS ⊂ GIFSJN(2, X) ⊂ GIFSJN(3, X)
IFS-nT [31] or q-ROFS [34] δ = n, n ∈ Z+ IFS ⊂ GIFSJN(2, X) ⊂ GIFSJN(3, X) ⊂ GIFSJN(n, X)
IFSRT [32] δ = 1

2 GIFSJN(1
2 , X) ⊂ IFS ⊂ IFSRT

In the following, for simplicity, the notation GIFSJN is referred to GIFS. In 2020, Atanassov [40]
expanded the representation of the elements in IFS from points to circles and introduced the concept
of circular intuitionistic fuzzy set (CIFS).

Definition 2.3. [40] A circular IFSAr (denoted CIFSAr) in X is defined as an object of the formAr =

{⟨x,MA(x),NA(x); r⟩|x ∈ X},whereMA : X → I andNA : X → I that satisfy 0 ≤ MA(x)+NA(x) ≤ 1
for each x ∈ X and r ∈ [0,

√
2] is a radius of the circle around each element x ∈ X.

The collection of all CIFSs is denoted by CIFS(X). There is clear that if r = 0, then A0 is IFS, but
for r > 0 it cannot be represented by IFS. Let L = {⟨p, q⟩|p, q ∈ [0, 1] and p + q ≤ 1}, thenAr can also
be written in the form,

Ar = {⟨x,Or(MA,NA); r⟩|x ∈ X}

where Or(MAr ,NAr ) = {⟨p, q⟩|p, q ∈ [0, 1] and
√

(MA(x) − p)2 + (NA(x) − q)2 ≤ r} ∩ L.

Remark 2.1. Based on the definition and interpretation of L, it is clear that the region is triangular
with corner coordinates (0, 0), (1, 0) and (0, 1). The region can be modified to be wider or narrower by
adding powers to the relation between p and q. This is the basic form of GIFS from Jamkhaneh and
Nadarajah’s concept. In the next section, we will use the same concept but applied to CIFS.
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3. Generalized circular intuitionistic fuzzy set

In this section, we propose the Generalized Circular Intuitionistic Fuzzy Set (GCIFS) based on the
concepts of GIFSJN and CIFS.

Definition 3.1. A generalized CIFS A∗r (denoted GCIFS A∗r) in X is defined as an object of the form,
A∗r = {⟨x,MA∗(x),NA∗(x); r⟩|x ∈ X}, where MA∗ : X → I and NA∗ : X → I denoted, respectively
the degrees of membership and non-membership of x, radius r ∈ [0,

√
2] that satisfy 0 ≤ Mδ

A∗
(x) +

Nδ
A∗

(x) ≤ 1 for each x ∈ X, with δ = n or 1
n , for n ∈ Z+. The collection of all of the generalized CIFSs

is denoted by GCIFS(δ, X) with the interpretation shown on Figure 2.

Figure 2. Geometric interpretation of GCIFS for (a) δ = n and (b) δ = 1
n .

Remark 3.1. It is known that for all real numbers p, q ∈ [0, 1] and δ = n or 1
n with n ∈ Z+, the following

conditions apply:

• Let δ ≥ 1, if 0 ≤ p+q ≤ 1 then 0 ≤ pδ+qδ ≤ 1. It means ifA∗r ∈ CIFS(X) thenA∗r ∈ GCIFS(δ, X).
• Let δ < 1, if 0 ≤ pδ + qδ ≤ 1 then 0 ≤ p + q ≤ 1. It means if A∗r ∈ GCIFS (δ, X) then A∗r ∈

CIFS(X) .

For special case, if δ = 1 then GCIFS(1, X)=CIFS(X). Fundamentally, the relations in GCIFS
correspond to those in CIFS [40] and thus, they are redefined as follows.

Definition 3.2. Let A∗r ,B
∗
s ∈ GCIFS(δ, X). For every x ∈ X, the relations between A∗r and B∗s are

defined as follows:

• A∗r ⊂ρ B
∗
s ⇔ (r < s) (MA∗(x) =MB∗(x) and NA∗(x) = NB∗(x)).

• A∗r ⊂ν B
∗
s ⇔ (r = s) and one of the conditions below is met,

MA∗(x) <MB∗(x) and NA∗(x) ≥ NB∗(x),
MA∗(x) ≤ MB∗(x) and NA∗(x) > NB∗(x),
MA∗(x) <MB∗(x) and NA∗(x) > NB∗(x).

• A∗r ⊂ B
∗
s ⇔ (r < s) and one of the conditions below is satisfied,

MA∗(x) <MB∗(x) and NA∗(x) ≥ NB∗(x),
MA∗(x) ≤ MB∗(x) and NA∗(x) > NB∗(x),
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MA∗(x) <MB∗(x) and NA∗(x) > NB∗(x).
• A∗r =ρ B

∗
s ⇔ r = s.

• A∗r =ν B
∗
s ⇔MA∗(x) =MB∗(x) and NA∗(x) = NB∗(x).

• A∗r = B
∗
s ⇔ (r = s) (MA∗(x) =MB∗(x) and NA∗(x) = NB∗(x)).

In the previous work, Atanassov [40] defined radius operations as max and min within [0, 1] domain.
Here, we expand these operations to [0,

√
2] and introduce four more : algebraic product, algebraic

sum, arithmetic mean and geometric mean, denoted as ⊗,⊕,⊛ and ⊚, respectively. Note that this
expansion of the domain covers the entire IFS interpretation triangle, as extreme case.

Definition 3.3. Let r, s ∈ [0,
√

2] and δ = n or 1
n for n ∈ Z+. The operations ⊗,⊕, ⊛ and ⊚ on radius are

defined respectively as follows,

⊗(r, s) =
rs
√

2
,⊕(r, s) =

rδ + sδ −
(

rs
√

2

)δ 1
δ

,

⊛(r, s) =
(
rδ + sδ

2

) 1
δ

,⊚(r, s) =
(√

rδsδ
) 1
δ
.

Theorem 3.1. The operations in Definition 3.3 have the closure property.

Proof. To prove the validity of these operations, we need to demonstrate that, for r, s ∈ [0,
√

2] and
δ = n or 1

n for any n ∈ Z+, the closure property holds true for ⊗,⊕,⊛,⊚ ∈ [0,
√

2] and within [0,
√

2].
Let’s begin with the operation ⊗(r, s). When 0 ≤ r, s ≤

√
2, it is evident that 0 ≤ rs

√
2
≤ 2
√

2
=
√

2.

Moving on to the operation ⊕(r, s), our aim is to prove rδ + sδ −
(

rs
√

2

)δ
≤
√

2δ. Using the contradiction,

suppose it is true for rδ + sδ −
(

rs
√

2

)δ
>
√

2δ such that,

rδ + sδ −
(

rs
√

2

)δ
−
√

2δ > 0,
√

2δrδ +
√

2δsδ − rδsδ −
√

22δ > 0,

rδ
(√

2δ − sδ
)
−
√

2δ
(√

2δ − sδ
)
< 0,(

rδ −
√

2δ
) (√

2δ − sδ
)
> 0.

For any δ = n and 1
n , it is obtained

(
rδ −

√
2δ

) (√
2δ − sδ

)
≤ 0. Therefore, it is contradicted, hence 0 ≤(

rδ + sδ −
(

rs
√

2

)δ) 1
δ

≤
(√

2δ
) 1
δ
=
√

2. For operation ⊛(r, s), since rδ ≤
√

2δ and sδ ≤
√

2δ then, 0 ≤

⊛(r, s) =
(

rδ+sδ
2

) 1
δ
≤

(
2
√

2δ
2

) 1
δ
=
√

2. Lastly, for the operation ⊚(r, s), it follows that 0 ≤ ⊚(r, s) =(√
rδsδ

) 1
δ
≤

(√
√

22δ

) 1
δ

=
√

2. □

The operations defined in Definition 3.3 are the operations that will take effect at GCIFS radius.
Next, we will define the general operations that apply to GCIFS.

Definition 3.4. Let A∗r ,B
∗
s ∈ GCIFS(δ, X), with r, s ∈ [0,

√
2] and δ = n or 1

n for n ∈ Z+. For every
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x ∈ X, ∝∈ {min,max,⊗,⊕,⊛,⊚} be the radius operators, the operations between A∗r and B∗s can be
defined as follows:

• ¬A∗r = {⟨x,NA∗(x),MA∗(x); r⟩|x ∈ X}.
• A∗r ∩∝ B

∗
s = {⟨x,min [MA∗(x),MB∗(x)] ,max [NA∗(x),NB∗(x)] ;∝ (r, s)⟩|x ∈ X}.

• A∗r ∪∝ B
∗
s = {⟨x,max [MA∗(x),MB∗(x)] ,min [NA∗(x),NB∗(x)] ;∝ (r, s)⟩|x ∈ X}.

• A∗r +∝ B
∗
s = {⟨x,

(
Mδ
A∗

(x) +Mδ
B∗

(x) −Mδ
A∗

(x)Mδ
B∗

(x)
) 1
δ
,NA∗(x)NB∗(x);∝ (r, s)⟩|x ∈ X}.

• A∗r ◦∝ B
∗
s = {⟨x,MA∗(x)MB∗(x),

(
Nδ
A∗

(x) +Nδ
B∗

(x) − Nδ
A∗

(x)Nδ
B∗

(x)
) 1
δ ;∝ (r, s)⟩|x ∈ X}.

Theorem 3.2. For A∗r ,B
∗
s ∈ GCIFS, φ ∈ {∩,∪,+, ◦} and ∝∈ {min,max,⊗,⊕,⊛,⊚}, it holds that

A∗rφ∝B
∗
s ∈ GCIFS.

Proof. The proofs for the radius have already been established in Theorem 3.1. To demonstrated this
theorem, we will divide it into two types of operations: (1) For operations ∩∝ and ∪∝, considering the
caseA∗r ∩∝ B

∗
s where max{NA∗(x),NB∗(x)} = NA∗(x), we have,

0 ≤
(
MA∗r∩∝B∗s (x)

)δ
+

(
NA∗r∩∝B∗s (x)

)δ
= (min{MA∗(x),MB∗(x)})δ + (NA∗(x))δ ≤ (MA∗(x))δ + (NA∗(x))δ ≤ 1.

If max{NA∗(x),NB∗(x)} = NB∗(x), then similarly to the previous proof we obtain,

0 ≤ (min{MA∗(x),MB∗(x)})δ + (NA∗(x))δ ≤ (MB∗(x))δ + (NB∗(x))δ ≤ 1.

The same approach is applied for A∗r ∪∝ B
∗
s. Moving on to (2) operations +∝ and ◦∝, in the case of

A∗r +∝ B
∗
s we have,

0 ≤
(
MA∗r+∝B∗s (x)

)δ
+

(
NA∗r+∝B∗s (x)

)δ
≤ MδA∗(x) +Mδ

B∗
(x) −MδA∗(x)Mδ

B∗
(x) +

(
1 −MδA∗(x)

) (
1 −MδA∗(x)

)
=MδA∗(x) +Mδ

B∗
(x) −MδA∗(x)Mδ

B∗
(x) + 1 −MδA∗(x) −Mδ

B∗
(x) +MδA∗(x)Mδ

B∗
(x) = 1.

Similarly, this holds for A∗r ◦∝ B
∗
s. Therefore, it is proven that the operations defined in Definition 3.4

also GCIFS. □

4. Arithmetic and geometric mean operators for GCIFS

Previously, arithmetic and geometric mean operations were introduced in the context of IFS. These
operations were subsequently extended to GIFSJN [48] and explored in other studies [49]. Similarly,
these operations have also been proposed for CIFS [40]. In the following, we extend these operations,
contributing to establishment of generalized operations for arithmetic and geometric means within
GCIFS.

Definition 4.1. Let A∗r ,B
∗
s ∈ GCIFS(δ, X), with r, s ∈ [0,

√
2] and δ = n or 1

n for n ∈ Z+. For every
x ∈ X and ∝∈ {min,max,⊗,⊕,⊛,⊚} be the radius operators, the arithmetic mean, @∝ and geometric
mean, $∝ betweenA∗r and B∗s can be defined as follows:
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• A∗r@∝B
∗
s = {⟨x,

(
Mδ
A∗

(x) +Mδ
B∗

(x)
2

) 1
δ

,

(
Nδ
A∗

(x) +Nδ
B∗

(x)
2

) 1
δ

;∝ (r, s)⟩|x ∈ X}.

• A∗r$∝B∗s = {⟨x,
(√
Mδ
A∗

(x)Mδ
B∗

(x)
) 1
δ

,
(√
Nδ
A∗

(x)Nδ
B∗

(x)
) 1
δ

;∝ (r, s)⟩|x ∈ X}.

Theorem 4.1. The operations in Definition 4.1 have also the closure property.

Proof. To prove these operations, we must show that for r, s ∈ [0,
√

2] and δ = n or 1
n for any n ∈ Z+,

the closure property for @∝ and $∝ is valid. For operation @∝ we obtain,

0 ≤
(
MA∗r @∝B∗s (x)

)δ
+

(
NA∗r @∝B∗s (x)

)δ
=
Mδ
A∗

(x) +Mδ
B∗

(x)
2

+
Nδ
A∗

(x) +Nδ
B∗

(x)
2

≤
1
2
+

1
2
= 1.

Likewise forA∗r$∝B∗s, we have,

0 ≤
(
MA∗r $∝B∗s (x)

)δ
+

(
NAr$∝Bs(x)

)δ
=

√
Mδ
A∗

(x)Mδ
B∗

(x) +
√
Nδ
A∗

(x)Nδ
B∗

(x)

≤
Mδ
A∗

(x) +Mδ
B∗

(x)
2

+
Nδ
A∗

(x) +Nδ
B∗

(x)
2

≤ 1.

It is proven that the operations defined in Definition 4.1 have the closure property. □

Example 4.1. Let A∗r = {⟨x1, 0.01, 0.8; 0.02⟩, ⟨x2, 0.2, 0.3; 0.02⟩, ⟨x3, 0.1, 0.1; 0.02⟩} and B∗s =
{⟨x1, 0.71, 0.02; 0.07⟩, ⟨x2, 0.05, 0.2; 0.07⟩, ⟨x3, 0.32, 0.12; 0.07⟩} are two CIFSs. The operations
A∗r@⊛B

∗
s andA∗r$⊚B∗s with δ = 1

3 and δ = 3 are demonstrated in Table 3.

Table 3. Results of @ and $ on GCIFS with δ = 1
3 (No 1. and 2.) and δ = 3 (No 3. and 4.).

No Result
(1) A∗r@⊛B

∗
s = {⟨x1, 0.170, 0.216; 0.040⟩, ⟨x2, 0.108, 0.247; 0.040⟩, ⟨x3, 0.189, 0.110; 0.040⟩}

(2) A∗r$⊚B∗s = {⟨x1, 0.084, 0.126; 0.037⟩, ⟨x2, 0.100, 0.245; 0.037⟩, ⟨x3, 0.179, 0.110; 0.037⟩}
(3) A∗r@⊛B

∗
s = {⟨x1, 0.564, 0.635; 0.056⟩, ⟨x2, 0.160, 0.260; 0.056⟩, ⟨x3, 0.257, 0.111; 0.056⟩}

(4) A∗r$⊚B∗s = {⟨x1, 0.084, 0.126; 0.037⟩, ⟨x2, 0.100, 0.245; 0.037⟩, ⟨x3, 0.179, 0.110; 0.037⟩}

Remark 4.1. It can be shown that A∗r$∝B∗s = {⟨x,
√
MA∗(x)MB∗(x),

√
NA∗(x)NB∗(x);∝ (r, s)⟩|x ∈ X}.

This indicates the existence of δ parameter, but its significance in this operation is eliminated.
The following discussion concerns the algebraic properties that apply to these operations. The

properties are evidenced in, among others, idempotency, inclusion, commutativity, distributivity and
absorption.

Theorem 4.2. (Idempotency) Let A∗r be GCIFS, φ ∈ {@, $} and ∝∈ {min,max,⊗,⊕,⊛,⊚}, then
A∗rφ∝A

∗
r = A

∗
r .

Proof. The proof is immediately fulfilled by using Definitions 3.3 and 4.1. □

Lemma 4.1. Let r, s ∈ [0,
√

2] and δ = n or 1
n for n ∈ Z+, then the following expressions hold:
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(1) ⊗(r, s) < r or s.
(2) ⊕(r, s) > r or s.

Proof. We prove this lemma by contradiction.

(1) Suppose that ⊗(r, s) = rs
√

2
> r, then,

rs
√

2
− r = r

√
2
(s −

√
2) > 0.

Note that, since s ∈ [0,
√

2] then we have (s −
√

2) ≤ 0. Therefore, the assumption is wrong and
⊗(r, s) < r. Similarly, we can prove the same way for ⊗(r, s) < s.

(2) Suppose that ⊕(r, s) =
(
rδ + sδ −

(
rs
√

2

)δ) 1
δ

< r, then,

sδ −
(

rs
√

2

)δ
= sδ
√

2δ

(√
2δ − rδ

)
< 0.

Since s ∈ [0,
√

2] then we have (
√

2δ − rδ) ≥ 0. Therefore ⊕(r, s) > r and it applies in a similar
manner to ⊗(r, s) > s.

The proof is now completed. □

Lemma 4.1 is used to determine the consistency of inclusion property in GCIFS.

Theorem 4.3. (Inclusion) For every two GCIFSsA∗r and B∗s with ∝∈ {min,max,⊗,⊕,⊛,⊚}, we have:

(1) IfA∗r ⊆ B
∗
s, thenA∗r@∝B

∗
s ⊆ B

∗
s.

(2) IfA∗r ⊆ B
∗
s, thenA∗r$∝B∗s ⊆ B

∗
s.

Proof. Let A∗r ⊆ B
∗
s such that (∀x ∈ X)(r ≤ s) and assume that MA∗(x) ≤ MB∗(x) and NA∗(x) ≥

NB∗(x). Thus for operationA∗r@∝B
∗
s, we can show that,

(
Mδ
A∗

(x) +Mδ
B∗

(x)
2

) 1
δ

≤

(
Mδ
B∗

(x) +Mδ
B∗

(x)
2

) 1
δ

=MB∗(x).

Analogously, (
Nδ
A∗

(x) +Nδ
B∗

(x)
2

) 1
δ

≥

(
Nδ
B∗

(x) +Nδ
B∗

(x)
2

) 1
δ

= NB∗(x).

This condition is promptly satisfied for the radius operations with each ∝∈ {min,max,⊗,⊕,⊛,⊚}, as
per Definition 3.3 and Theorem 3.1. Hence, it is proven. Likewise, we can demonstrate the same for
A∗r$∝B∗s ⊆ B

∗
s. □

Theorem 4.4. (Commutativity) For every two GCIFSs A∗r and B∗s, φ ∈ {@, $} and ∝∈
{min,max,⊗,⊕,⊛,⊚}, we haveA∗rφ∝B

∗
s = B

∗
sφ∝A

∗
r .

Proof. Based on Definition 4.1 and Theorem 3.1, for r, s ∈ [0,
√

2] it is clear that ∝ (r, s) =∝ (s, r); in
other words, it is commutative for radius. Now we will prove theM and N parts for φ ∈ {@, $}. We
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start fromA∗r@∝B
∗
s and thus we obtain,

A∗r@∝B
∗
s = ⟨x,

(
Mδ
A∗

(x) +Mδ
B∗

(x)
2

) 1
δ

,

(
Nδ
A∗

(x) +Nδ
B∗

(x)
2

) 1
δ

;∝ (r, s)⟩

= ⟨x,
(
Mδ
B∗

(x) +Mδ
A∗

(x)
2

) 1
δ

,

(
Nδ
B∗

(x) +Nδ
A∗

(x)
2

) 1
δ

;∝ (r, s)⟩

= B∗s@∝A
∗
r .

Whereas forA∗r$∝B∗s we get,

A∗r$∝B∗s = ⟨x,
(√
Mδ
A∗

(x).Mδ
B∗

(x)
) 1
δ

,
(√
Nδ
A∗

(x).Nδ
B∗

(x)
) 1
δ

;∝ (r, s)⟩

= ⟨x,
(√
Mδ
B∗

(x).Mδ
A∗

(x)
) 1
δ

,
(√
Nδ
B∗

(x).Nδ
A∗

(x)
) 1
δ

;∝ (r, s)⟩

= B∗s$∝A
∗
r .

The proof is now completed. □

Theorem 4.5. (Distributivity) For every two GCIFSs A∗r and B∗s, φ ∈ {@, $} and ∝∈
{min,max,⊗,⊕,⊛,⊚}, then the following relations apply:

(1) A∗rφ∝(B
∗
s ∩min /max C

∗
t ) = (A∗rφ∝B

∗
s) ∩min /max (A∗rφ∝C

∗
t ).

(2) A∗rφ⊛(B
∗
s ∩⊛ C

∗
t ) = (A∗rφ⊛B

∗
s) ∩⊛ (A∗rφ⊛C

∗
t ).

(3) A∗rφ⊚(B
∗
s ∩⊚ C

∗
t ) = (A∗rφ⊚B

∗
s) ∩⊚ (A∗rφ⊚C

∗
t ).

(4) A∗rφ∝(B
∗
s ∪min /max C

∗
t ) = (A∗rφ∝B

∗
s) ∪min /max (A∗rφ∝C

∗
t ).

(5) A∗rφ⊛(B
∗
s ∪⊛ C

∗
t ) = (A∗rφ⊛B

∗
s) ∪⊛ (A∗rφ⊛C

∗
t ).

(6) A∗rφ⊚(B
∗
s ∪⊚ C

∗
t ) = (A∗rφ⊚B

∗
s) ∪⊚ (A∗rφ⊚C

∗
t ).

(7) A∗r@∝(B∗s ∩min /max C
∗
t ) = (A∗r@∝B

∗
s) ∩min /max (A∗r@∝C

∗
t ).

(8) A∗r@⊛(B∗s@⊛C
∗
t ) = (A∗r@⊛B

∗
s)@⊛(A∗r@⊛C

∗
t ).

(9) A∗r@⊚(B∗s@⊚C
∗
t ) = (A∗r@⊚B

∗
s)@⊚(A∗r@⊚C

∗
t ).

(10) A∗r$∝(B∗s ∩min /max C
∗
t ) = (A∗r$∝B∗s) ∩min /max (A∗r$∝C∗t ).

(11) A∗r$⊛(B∗s$⊛C
∗
t ) = (A∗r$⊛B∗s)$⊛(A

∗
r$⊛C∗t ).

(12) A∗r$⊚(B∗s$⊚C
∗
t ) = (A∗r$⊚B∗s)$⊚(A

∗
r$⊚C∗t ).

Proof. The proofs are provided for parts (1), (4), (8) and (12), and it can be shown analogously for the
remaining parts with certain operator assumptions. For any two GCIFSsA∗r and B∗s with r, s ∈ [0,

√
2]

and δ = n or 1
n where n ∈ Z+ then we can demonstrate the following results.

(1) Assume that φ = @ and ∝= max, so it is obtained as follows,
A∗r@max(B∗s ∩min C

∗
t ) = A∗r@max{⟨x,min{MB∗(x),MC∗(x)},max{NB∗(x),NC∗(x)}; min{s, t}⟩}

= {⟨x,
[
Mδ
A∗

(x) + (min{MB∗(x),MC∗(x)})δ

2

] 1
δ

,

[
Nδ
A∗

(x) + (max{NB∗(x),NC∗(x)})δ

2

] 1
δ

;

max{r,min{s, t}}⟩}

= {⟨x,min
[(
Mδ
A∗

(x)+Mδ
B∗

(x)
2

) 1
δ

,
(
Mδ
A∗

(x)+Mδ
C∗

(x)
2

) 1
δ

]
,max

[(
Nδ
A∗

(x)+Nδ
B∗

(x)
2

) 1
δ

,
(
Nδ
A∗

(x)+Nδ
C∗

(x)
2

) 1
δ

]
;
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min [max{r, s},max{r, t}]⟩}
= (A∗r@maxB

∗
s) ∩min (A∗r@maxC

∗
t ).

(4) Assume that φ = @ and ∝= ⊗, then it can be derived as follows,
A∗r@⊗(B∗s ∪max C

∗
t ) = A∗r@⊗{⟨x,max{MB∗(x),MC∗(x)},min{NB∗(x),NC∗(x)}; max{s, t}⟩}

= {⟨x,
[
Mδ
A∗

(x) + (max{MB∗(x),MC∗(x)})δ

2

] 1
δ

,

[
Nδ
A∗

(x) + (min{NB∗(x),NC∗(x)})δ

2

] 1
δ

;

r.max{s, t}
√

2
⟩}

= {⟨x,max
[(
Mδ
A∗

(x)+Mδ
B∗

(x)
2

) 1
δ

,
(
Mδ
A∗

(x)+Mδ
C∗

(x)
2

) 1
δ

]
,min

[(
Nδ
A∗

(x)+Nδ
B∗

(x)
2

) 1
δ

,
(
Nδ
A∗

(x)+Nδ
C∗

(x)
2

) 1
δ

]
;

max
[

rs
√

2
, rt
√

2

]
⟩}

= (A∗r@⊗B
∗
s) ∪max (A∗r@⊗C

∗
t ).

(8) A∗r@⊛(B∗s@⊛C
∗
t ) = A∗r@⊛{⟨x,

(
Mδ
A∗

(x) +Mδ
B∗

(x)
2

) 1
δ

,

(
Nδ
A∗

(x) +Nδ
B∗

(x)
2

) 1
δ

;
(

sδ + tδ

2

) 1
δ

⟩}

= {⟨x,

MδA∗(x) +
Mδ
B∗

(x)+Mδ
C∗

(x)
2

2


1
δ

,

NδA∗(x) +
Nδ
B∗

(x)+Nδ
C∗

(x)
2

2


1
δ

;

rδ + sδ+tδ
2

2


1
δ

⟩}

= {⟨x,


Mδ
A∗

(x)+Mδ
B∗

(x)
2 +

Mδ
A∗

(x)+Mδ
C∗

(x)
2

2


1
δ

,


Nδ
A∗

(x)+Nδ
B∗

(x)
2 +

Nδ
A∗

(x)+Nδ
C∗

(x)
2

2


1
δ

;

 rδ+sδ
2 +

rδ+tδ
2

2


1
δ

⟩}

= (A∗r@⊛B
∗
s)@⊛(A∗r@⊛C

∗
t ).

(12) A∗r$⊚(B∗s$⊚C
∗
t ) = A∗r${⟨

√
Mδ
A∗

(x)Mδ
B∗

(x)
1
δ ,

√
Nδ
A∗

(x)Nδ
B∗

(x)
1
δ ;
√

sδtδ
1
δ ⟩}

= {⟨x,
√MδA∗(x)

√
Mδ
B∗

(x).Mδ
C∗

(x)
 1
δ

,

√NδA∗(x)
√
Nδ
B∗

(x).Nδ
C∗

(x)
 1
δ

;
(√

rδ
√

sδ.tδ
) 1
δ

⟩}

= {⟨x,
√√

Mδ
A∗

(x).Mδ
B∗

(x).
√
Mδ
A∗

(x).Mδ
C∗

(x)
 1
δ

,

√√
Nδ
A∗

(x).Nδ
B∗

(x).
√
Nδ
A∗

(x).Nδ
C∗

(x)
 1
δ

;(√
√

rδ.sδ.
√

rδ.tδ
) 1
δ

⟩}

= (A∗r$⊚B∗s)$⊚(A
∗
r$⊚C∗t ).

The proof is now completed. □

Lemma 4.2. LetA∗r and B∗s are GCIFSs and δ = n or 1
n for n ∈ Z+, then the following relations hold:

(1) A∗r ⊆ A
∗
r ∪max B

∗
s ⊆ρ A

∗
r ∪⊕ B

∗
s.

(2) A∗r ⊆ A
∗
r +max B

∗
s ⊆ρ A

∗
r +⊕ B

∗
s.

(3) A∗r ∩⊗ B
∗
s ⊆ρ A

∗
r ∩min B

∗
s ⊆ A

∗
r .

(4) A∗r ◦⊗ B
∗
s ⊆ρ A

∗
r ◦min B

∗
s ⊆ A

∗
r .

Proof. The validity of this lemma follows from Lemma 4.1. Given r, s ∈ [0,
√

2] and δ = n or 1
n for

n ∈ Z+, then the following properties apply,

r ≤ max{r, s} ≤ rδ + sδ −
(

rs
√

2

)δ
.
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Analogously,
rs
√

2
≤ min{r, s} ≤ r.

The proof is now completed. □

Theorem 4.6. (Absorption) For every two GCIFSs A∗r and B∗s, φ
′ ∈ {∪,+}, φ′′ ∈ {∩, ◦} and

∝∈ {min,max,⊗,⊕,⊛,⊚}, then the following relations hold:

(1) A∗r@∝(A∗rφ
′
maxB

∗
s) ⊆ A

∗
rφ
′
maxB

∗
s ;A∗r@∝(A∗rφ

′
⊕B
∗
s) ⊆ A

∗
rφ
′
⊕B
∗
s.

(2) (A∗rφ
′′
minB

∗
s)@∝A

∗
r ⊆ A

∗
r ; (A∗rφ

′′
⊗B
∗
s)@∝A

∗
r ⊆ A

∗
r .

Proof. The proof of this theorem can be demonstrated by utilizing Lemma 4.2 and inclusion law
(Theorem 4.3). □

Furthermore, based on the previous studies [29, 48], we aim to develop general aggregation
operators for aggregating multiple GCIFSs. Specifically, we will explore operations involving
generalized arithmetic mean, @ and generalized geometric mean, $ on a family of GCIFSs denoted as
A∗ri
= {⟨x,MA∗i (x),NA∗i (x); ri⟩|x ∈ X}, i = {1, 2, 3, · · · , k}.

Definition 4.2. Let A∗ri
be a family of GCIFSs with i = {1, 2, 3, · · · , k} and δ = n or 1

n for n ∈ Z+. The
generalized arithmetic mean and generalized geometric mean are defined as follows:

(1) @⊛
k
i=1(A∗ri

) = {⟨x,

Σk
i=1M

δ
A∗i

(x)

k


1
δ

,

Σk
i=1N

δ
A∗i

(x)

k


1
δ

;
(
Σk

i=1rδi
k

) 1
δ

⟩|x ∈ X}.

(2) $⊚
k
i=1(A∗ri

) = {⟨x,
(

k
√
Πk

i=1M
δ
A∗i

(x)
) 1
δ

,
(

k
√
Πk

i=1N
δ
A∗i

(x)
) 1
δ

;
(

k
√
Πk

i=1rδi
) 1
δ

⟩|x ∈ X}.

Theorem 4.7. The generalized arithmetic and geometric means exhibit the closure property.

Proof. For operation @⊛, it is proven that @⊛
k
i=1(A∗ri

) ∈ GCIFS since,

0 ≤
Σk

i=1M
δ
A∗i

(x)

k
+
Σk

i=1N
δ
A∗i

(x)

k

=
Mδ
A∗1

(x) +Mδ
A∗2

(x) + · · · +Mδ
A∗k

(x) +Nδ
A∗1

(x) +Nδ
A∗2

(x) + · · · +Nδ
A∗k

(x)

k

=
[Mδ

A∗1
(x) +Nδ

A∗1
(x)] + [Mδ

A∗2
(x) +Nδ

A∗2
(x)] + · · · + [Mδ

A∗k
(x) +Nδ

A∗k
(x)]

k
≤

k
k
= 1.

Likewise for $⊚,

0 ≤ k
√
Πk

i=1M
δ
A∗i

(x) + k
√
Πk

i=1N
δ
A∗i

(x)

= k
√
Mδ
A∗1

(x) ×Mδ
A∗2

(x) × · · · ×Mδ
A∗k

(x) + k
√
Nδ
A∗1

(x) × Nδ
A∗2

(x) × · · · × Nδ
A∗k

(x)

≤
Mδ
A∗1

(x) +Mδ
A∗2

(x) + · · · +Mδ
A∗k

(x)

k
+
Nδ
A∗1

(x) +Nδ
A∗2

(x) + · · · +Nδ
A∗k

(x)

k

=
[Mδ

A∗1
(x) +Nδ

A∗1
(x)] + [Mδ

A∗2
(x) +Nδ

A∗2
(x)] + · · · + [Mδ

A∗k
(x) +Nδ

A∗k
(x)]

k
≤

k
k
= 1.

Hence, it is proven that the generalized arithmetic and geometric means have the closure property. □
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Example 4.2. Next, we will illustrate some examples of the generalized arithmetic and geometric
means of the GCIFSs. Suppose thatA∗r1

, · · · ,A∗r5
∈ GCIFS {3, X} for x1, x2, x3 ∈ X, given as follows:

A∗r1
= {⟨x1, 0.32, 0.43; 0.2⟩, ⟨x2, 0.23, 0.18; 0.2⟩, ⟨x3, 0.42, 0.77; 0.2⟩},

A∗r2
= {⟨x1, 0.25, 0.30; 0.08⟩, ⟨x2, 0.76, 0.54; 0.08⟩, ⟨x3, 0.28, 0.16; 0.08⟩},

A∗r3
= {⟨x1, 0.64, 0.55; 0.32⟩, ⟨x2, 0.45, 0.12; 0.32⟩, ⟨x3, 0.33, 0.83; 0.32⟩},

A∗r4
= {⟨x1, 0.31, 0.59; 0.1⟩, ⟨x2, 0.86, 0.48; 0.1⟩, ⟨x3, 0.86, 0.40; 0.1⟩},

A∗r5
= {⟨x1, 0.16, 0.77; 0.25⟩, ⟨x2, 0.24, 0.47; 0.25⟩, ⟨x3, 0.31, 0.65; 0.25⟩}.

For k = 5, the operations @⊛
k
i=1(A∗ri

) and $⊚
k
i=1(A∗ri

) of these GCIFSs are,

• @⊛
5
i=1(A∗ri

) = {⟨x,

Σ5
i=1M

3
A∗i

(x)

5


1
3

,

Σ5
i=1N

3
A∗i

(x)

5


1
3

;
(
Σ5

i=1r3
i

5

) 1
3

⟩|x ∈ {x1, x2, x3}}.

= {⟨x1, 0.410, 0.572; 0.226⟩, ⟨x2, 0.620, 0.423; 0.226⟩, ⟨x3, 0.542, 0.650; 0.226⟩}.

• $⊚
5
i=1(A∗ri

) = {⟨x,
(

5
√
Π5

i=1M
3
A∗i

(x)
) 1

3
,
(

5
√
Π5

i=1N
3
A∗i

(x)
) 1

3
;
(

5
√
Π5

i=1r3
i

) 1
3

⟩|x ∈ {x1, x2, x3}}.
= {⟨x1, 0.303, 0.503; 0.167⟩, ⟨x2, 0.439, 0.305; 0.167⟩, ⟨x3, 0.401, 0.484; 0.167⟩}.

If we change δ = 1
3 , then it can be proved that A∗r1

, · · · ,A∗r5
< GCIFS {13 , X}. Suppose that

B∗s1
, · · · ,B∗s4

∈ GCIFS { 13 , X} for x1, x2, x3 ∈ X as follows:

B∗s1
= {⟨x1, 0.11, 0.02; 0.02⟩, ⟨x2, 0.20, 0.07; 0.02⟩, ⟨x3, 0.02, 0.22; 0.02⟩},

B∗s2
= {⟨x1, 0.05, 0.15; 0.30⟩, ⟨x2, 0.01, 0.30; 0.30⟩, ⟨x3, 0.08, 0.16; 0.30⟩},

B∗s3
= {⟨x1, 0.09, 0.04; 0.17⟩, ⟨x2, 0.32, 0.02; 0.17⟩, ⟨x3, 0.33, 0.02; 0.17⟩},

B∗s4
= {⟨x1, 0.12, 0.13; 0.32⟩, ⟨x2, 0.03, 0.25; 0.32⟩, ⟨x3, 0.24, 0.05; 0.32⟩},

then for k = 4, the operations @⊛
k
i=1(B∗ri

) and $⊚
k
i=1(B∗ri

) are,

• @⊛
4
i=1(B∗si

) = {⟨x,

Σ
4
i=1M

1
3
B∗i

(x)

4


3

,

Σ
4
i=1N

1
3
B∗i

(x)

4


3

;

Σ4
i=1s

1
3
i

4


3

⟩|x ∈ {x1, x2, x3}}.

= {⟨x1, 0.089, 0.070; 0.162⟩, ⟨x2, 0.090, 0.122; 0.162⟩, ⟨x3, 0.128, 0.089; 0.162⟩}.

• $⊚
4
i=1(B∗si

) = {⟨x,
 4

√
Π4

i=1M
1
3
B∗i

(x)
3

,

 4

√
Π4

i=1N
1
3
B∗i

(x)
3

;
(

4
√
Π4

i=1s
1
3
i

)3

⟩|x ∈ {x1, x2, x3}}.

= {⟨x1, 0.088, 0.063; 0.134⟩, ⟨x2, 0.066, 0.101; 0.134⟩, ⟨x3, 0.106, 0.077; 0.134⟩}.

Remark 4.2. For any n ∈ Z+ and n , 1, if A∗r ∈ GCIFS (1
n , X) then A∗r ∈

GCIFS (n, X). But it does not hold otherwise, if A∗r ∈ GCIFS (n, X) then A∗r is not
necessarily GCIFS( 1

n , X). For the generalized geometric mean, it can be shown that $⊚
k
i=1(A∗ri

) =

{⟨x,
(

k
√
Πk

i=1MA∗i (x)
)
,
(

k
√
Πk

i=1NA∗i (x)
)

;
(

k
√
Πk

i=1ri

)
⟩|x ∈ X}. This is the general form of the geometric

mean operation in Remark 4.1.
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5. Some modal operators for GCIFS

In this section, some other modal operators and their corresponding properties are defined for
GCIFS over the universal set X. Atanassov [40] previously defined the notions of “necessity” and
“possibility” and introduced modal operators in CIFS. Other studies have also defined modal operators,
such as type-2 modal operators, which apply to IFS [50]. Therefore, in the following, the type-2 modal
operator in GCIFS is propossed along with its corresponding properties.

Definition 5.1. For any GCIFS A∗r , δ = n or 1
n for n ∈ Z+ and real number λ, γ ∈ [0, 1] for λ + γ ≤ 1.

Let x ∈ X, modal operator type-2 over GCIFS are defined as follows:

(1) ⊞(A∗r) = {⟨x,
(
Mδ
A∗

(x)
2

) 1
δ

,

(
Nδ
A∗

(x) + 1
2

) 1
δ

; r⟩}.

(2) ⊠(A∗r) = {⟨x,
(
Mδ
A∗

(x) + 1
2

) 1
δ

,

(
Nδ
A∗

(x)
2

) 1
δ

; r⟩}.

(3) ⊞λ(A∗r) = {⟨x, λ
1
δMA∗(x),

(
λNδ

A∗
(x) + (1 − λ)

) 1
δ ; r⟩}.

(4) ⊠λ(A∗r) = {⟨x,
(
λMδ

A∗
(x) + (1 − λ)

) 1
δ
, λ

1
δNA∗(x); r⟩}.

(5) ⊞λ,γ(A∗r) = {⟨x, λ
1
δMA∗(x),

(
λNδ

A∗
(x) + γ

) 1
δ ; r⟩}.

(6) ⊠λ,γ(A∗r) = {⟨x,
(
λMδ

A∗
(x) + γ

) 1
δ
, λ

1
δNA∗(x); r⟩}.

(7) ⊞λ,γ,η(A∗r) = {⟨x, λ
1
δMA∗(x),

(
γNδ

A∗
(x) + η

) 1
δ ; r⟩} for any γ ∈ [0, 1] and max(λ, γ) + η ≤ 1.

(8) ⊠λ,γ,η(A∗r) = {⟨x,
(
λMδ

A∗
(x) + η

) 1
δ
, γ

1
δNA∗(x); r⟩} for any γ ∈ [0, 1] and max(λ, γ) + η ≤ 1.

It must be confirmed that some modal operators type-2 specified in Definition 5.1 are also GCIFS.

Theorem 5.1. The operations defined in Definition 5.1 for GCIFS are also GCIFS.

Proof. For A∗r ∈ GCIFS such that A∗r = {⟨x,MA∗(x),NA∗(x); r⟩|x ∈ X} , δ = n or 1
n for n ∈ Z+ and

λ, γ ∈ [0, 1] for λ + γ ≤ 1, then for each x ∈ X we have,

(1) Since 0 ≤ MA∗(x),NA∗(x) ≤ 1 and δ = n or 1
n for n ∈ Z+ then,

Mδ⊞(A∗r )(x) +Nδ⊞(A∗r )(x) =


(
Mδ
A∗

(x)
2

) 1
δ


δ

+


(
Nδ
A∗

(x) + 1
2

) 1
δ


δ

=
Mδ
A∗

(x)
2

+

(
Nδ
A∗

(x) + 1
2

)
≤ 1.

(2) The operator ⊠(A∗r) is proved analogously.
(3) For any real number λ ∈ [0, 1] and GCIFS A∗r , we have 0 ≤ Mδ

A∗
(x) + Nδ

A∗
(x) ≤ 1. Since

M⊞λ(A∗r )(x) = λ
1
δMA∗(x) and N⊞λ(A∗r )(x) = (λNδ

A∗
(x) + (1 − λ))

1
δ then,

Mδ⊞λ(A∗r )(x) +Nδ⊞λ(A∗r )(x) =
[
λ

1
δMA∗r (x)

]δ
+

[(
λNδ

A∗
(x) + (1 − λ)

) 1
δ

]δ
= λMδ

A∗
(x) + λNδ

A∗
(x) + (1 − λ)

= λ(Mδ
A∗

(x) +Nδ
A∗

(x)) + (1 − λ) ≤ 1.
(4) Can be proved in a manner analogous to (3).
(5) For any real number λ, γ ∈ [0, 1] and GCIFS A∗r , we have 0 ≤ Mδ

A∗
(x) + Nδ

A∗
(x) ≤ 1. Since

M⊞λ,γ(A∗r )(x) = λ
1
δMA∗(x) and N⊞λ,γ(A∗r )(x) = (λNδ

A∗
(x) + γ)

1
δ then,
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Mδ⊞λ,γ(A∗r )(x) +Nδ⊞λ,γ(A∗r )(x) =
[
λ

1
δMA∗(x)

]δ
+

[(
λNδ

A∗
(x) + γ

) 1
δ

]δ
= λMδ

A∗
(x) + λNδ

A∗
(x) + γ

= λ(Mδ
A∗

(x) +Nδ
A∗

(x)) + γ ≤ 1.
(6) Analogous to (5).
(7) Let η ∈ [0, 1] and max(λ, γ) + η ≤ 1. Since M⊞λ,γ,η(A∗r )(x) = λ

1
δMA∗(x) and N⊞λ,γ,η(A∗r )(x) =

(γNδ
A∗

(x) + η)
1
δ then,

Mδ⊞λ,γ,η(A∗r )(x) +Nδ⊞λ,γ,η(A∗r )(x) =
[
λ

1
δMA∗(x)

]δ
+

[(
γNδ

A∗
(x) + η

) 1
δ

]δ
= λMδ

A∗
(x) + γNδ

A∗
(x) + η.

If max(λ, γ) = λ then λMδ
A∗

(x) + γNδ
A∗

(x) + η ≤ γ(Mδ
A∗
+Nδ

A∗
) + η ≤ 1. So are, if max(λ, γ) = γ

then λMδ
A∗

(x) + γNδ
A∗

(x) + η ≤ 1.
(8) Similar to (7).

So it is proven that the modal operators type-2 defined in Definition 5.1 are also GCIFS. □

There are special cases for modal operators type-2:(1) if λ = 0.5 then ⊞λ(A∗r) = ⊞(A∗r); and (2) if
γ = 1 − λ then ⊞λ,γ(A∗r) = ⊞λ(A∗r), if γ = λ = 0.5 then ⊞λ,γ(A∗r) = ⊞(A∗r). Moreover, (3) if γ = λ then
⊞λ,γ,η(A∗r) = ⊞λ,η(A∗r), if γ = 1 − λ and η = 1 − γ then ⊞λ,γ,η(A∗r) = ⊞λ(A∗r) and if γ = λ = η = 0.5 then
⊞λ,γ,η(A∗r) = ⊞(A∗r). This condition also applies to operator “⊠”.

Theorem 5.2. For any GCIFSA∗r and every λ, γ, η ∈ [0, 1] we obtain:

(1) ⊞λ,γ,η(A∗r) ⊆ν ⊠λ,γ,η(A∗r).
(2) ¬ ⊞λ,γ,η (¬A∗r) = ⊠γ,λ,η(A∗r) and ¬ ⊠λ,γ,η (¬A∗r) = ⊞γ,λ,η(A∗r).
(3) ⊞λ,γ,η(⊞λ,γ,η(A∗r)) ⊆ν ⊞λ,γ,η(A∗r)⇔ γ + η = 1.
(4) ⊠λ,γ,η(⊠λ,γ,η(A∗r)) ⊇ν ⊠λ,γ,η(A∗r)⇔ λ + η = 1.
(5) ⊞λ,γ,η(⊠λ,γ,η(A∗r)) = ⊠λ,γ,η(⊞λ,γ,η(A∗r))⇔ λ = γ or η = 0.

Proof. The proof of this theorem will be provided as follows:

(1) For the Definition 5.1 and λ, γ, η ∈ [0, 1] where max(λ, γ) + η ≤ 1 we have,

⊞λ,γ,η(A∗r) = {⟨x, λ
1
δMA∗(x),

(
γNδ

A∗
(x) + η

) 1
δ ; r⟩} and

⊠λ,γ,η(A∗r) = {⟨x,
(
λMδ(x) + η

) 1
δ
, γ

1
δNA∗(x); r⟩}.

Obviously, the following expressions hold λ
1
δMA∗(x) ≤

(
λMδ

A∗
(x) + η

) 1
δ and

(
γNδ

A∗
(x) + η

) 1
δ
≥

γ
1
δNA∗(x), thus concluding the proof.

(2) ¬ ⊞λ,γ,η (¬A∗r) = ¬ ⊞λ,γ,η {⟨x,NA∗(x),MA∗(x); r⟩}

= ¬{⟨x, λ
1
δNA∗(x),

(
γMδ

A∗
(x) + η

) 1
δ ; r⟩}

= {⟨x,
(
γMδ

A∗
(x) + η

) 1
δ
, λ

1
δNA∗(x); r⟩} = ⊠γ,λ,η(A∗r).

Similarly with ¬ ⊠λ,γ,η (¬A∗r) = ⊞γ,λ,η(A∗r).

(3) (⇒) ⊞λ,γ,η(⊞λ,γ,η(A∗r)) = ⊞λ,γ,η{⟨x, λ
1
δMA∗(x),

(
γNδ

A∗
(x) + η

) 1
δ ; r⟩}

= {⟨x, λ
1
δ

(
λ

1
δMA∗(x)

)
,
(
γ(γNδ

A∗
(x) + η) + η

) 1
δ ; r⟩}

= {⟨x, λ
2
δMA∗(x),

(
γ2Nδ

A∗
(x) + γη + η

) 1
δ ; r⟩}.
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Should be noted that ⊞λ,γ,η(⊞λ,γ,η(A∗r)) ⊆ν ⊞λ,γ,η(A∗r), therefore for non-membership we obtain,(
γ2NδA∗(x) + γη + η

) 1
δ
≥

(
γNδA∗(x) + η

) 1
δ

γ2NδA∗(x) + γη + η ≥ γNδA∗(x) + η
γNδA∗(x) + η ≥ NδA∗(x)
η ≥ NδA∗(x)(1 − γ).

This is true if 1 − γ = η, so that γ + η = 1.
(⇐) Let λ, γ, η ∈ [0, 1], then:

⊞λ,γ,η(⊞λ,γ,η(A∗r)) = {⟨x, λ
2
δMA∗(x),

(
γ2NδA∗(x) + γη + η

) 1
δ ; r⟩}.

If we have γ + η = 1, then it can be proved that ⊞λ,γ,η(⊞λ,γ,η(A∗r)) ⊆ν ⊞λ,γ,η(A∗r) as follows:
(membership degree) λ

2
δMA∗(x) − λ

1
δMA∗(x) = λ

1
δMA∗ x

(
λ

1
δ − 1

)
≤ 0,

(non-membership degree) γ2Nδ
A∗

(x) + γ(1 − γ) + (1 − γ) = γ2Nδ
A∗

(x) − γ2 + 1 ≥ γNδ
A∗

(x) + η.
So it is clear that ⊞λ,γ,η(⊞λ,γ,η(A∗r)) ⊆ν ⊞λ,γ,η(A∗r)⇔ γ + η = 1.

(4) Similarly with (3).

(5) (⇒) ⊞λ,γ,η
(
⊠λ,γ,η(A∗r)

)
= ⊞λ,γ,η{⟨x,

(
λMδ

A∗
(x) + η

) 1
δ
, γ

1
δNA∗(x); r⟩}

= {⟨x, λ
1
δ

(
λMδ

A∗
(x) + η

) 1
δ
,
(
γ(γNδ

A∗
(x)) + η

) 1
δ ; r}⟩

= {⟨x,
(
λ2Mδ

A∗
(x) + λη

) 1
δ
,
(
γ2Nδ

A∗
(x) + η

) 1
δ ; r⟩},

⊠λ,γ,η(⊞λ,γ,η(A∗r)) = ⊠λ,γ,η{⟨x, λ
1
δMA∗(x),

(
γNδ

A∗
(x) + η

) 1
δ ; r⟩}

= {⟨x,
(
λ(λMδ

A∗
(x)) + η

) 1
δ
, γ

1
δ

(
γNδ

A∗
(x) + η

) 1
δ ; r⟩}

= {⟨x,
(
λ2Mδ

A∗
(x) + η

) 1
δ
,
(
γ2Nδ

A∗
(x) + γη

) 1
δ ; r⟩}.

Let ⊞λ,γ,η
(
⊠λ,γ,η(A∗r)

)
= ⊠λ,γ,η

(
⊞λ,γ,η(A∗r)

)
, then in terms of membership value, η(λ − 1) = 0 and

for non-membership value η(γ − 1) = 0. Hence, it is evident that λ = γ or η = 0.
(⇐) Let λ, γ, η ∈ [0, 1], based on Definition 5.1 equation ⊞λ,γ,η

(
⊠λ,γ,η(A∗r)

)
is,

⊞λ,γ,η
(
⊠λ,γ,η(A∗r)

)
= {⟨x,

(
λ2Mδ

A∗
(x) + λη

) 1
δ
,
(
γ2Nδ

A∗
(x) + η

) 1
δ ; r⟩}.

Whereas for ⊠λ,γ,η
(
⊞λ,γ,η(A∗r)

)
we attain,

⊠λ,γ,η(⊞λ,γ,η(A∗r)) = {⟨x,
(
λ2Mδ

A∗
(x) + η

) 1
δ
,
(
γ2Nδ

A∗
(x) + γη

) 1
δ ; r⟩}.

Since η = 0, this makes ⊞λ,γ,η
(
⊠λ,γ,η(A∗r)

)
and ⊠λ,γ,η

(
⊞λ,γ,η(A∗r)

)
are equal. Hence, we can

conclude that ⊞λ,γ,η
(
⊠λ,γ,η(A∗r)

)
= ⊠λ,γ,η

(
⊞λ,γ,η(A∗r)

)
.

The proof is now completed. □

Next, we will examine the relationship between the modal operators type-2 and the arithmetic and
geometric means that have been defined previously.

Theorem 5.3. For every two GCIFSs A∗r and B∗s and ∝∈ {min,max,⊗,⊕,⊛,⊚} then, the following
expressions hold true:
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(1) ⊞λ,γ,η(A∗r@∝B
∗
s) = ⊞λ,γ,η(A

∗
r)@∝ ⊞λ,γ,η (B∗s).

(2) ⊠λ,γ,η(A∗r@∝B
∗
s) = ⊠λ,γ,η(A

∗
r)@∝ ⊠λ,γ,η (B∗s).

Proof. Using Definitions 5.1 and 4.1, for every x ∈ X we have,

(1) ⊞λ,γ,η(A∗r@∝B
∗
s) = ⊞λ,γ,η{⟨x,

(
Mδ
A∗

(x) +Mδ
B∗

(x)
2

) 1
δ

,

(
Nδ
A∗

(x) +Nδ
B∗

(x)
2

) 1
δ

;∝ (r, s)⟩}

= {⟨x, λ
1
δ

(
Mδ
A∗

(x) +Mδ
B∗

(x)
2

) 1
δ

,

(
γ

(
Nδ
A∗

(x) +Nδ
B∗

(x)
2

+ η

)) 1
δ

;∝ (r, s)⟩}

= {⟨x,
(
λMδ

A∗
(x) + λMδ

B∗
(x)

2

) 1
δ

,

(
[γNδ

A∗
(x) + η] + [γNδ

B∗
(x) + η]

2

) 1
δ

;∝ (r, s)⟩}

= {⟨x, λ
1
δMA∗(x),

(
γNδ

A∗
(x) + η

) 1
δ ; r⟩}@∝{⟨x, λ

1
δMB∗(x),

(
γNδ

B∗
(x) + η

) 1
δ ; s⟩}

= ⊞λ,γ,η(A∗r)@∝ ⊞λ,γ,η (B∗s).

(2) ⊠λ,γ,η(A∗r@∝B
∗
s) = ⊠λ,γ,η{⟨x,

(
Mδ
A∗

(x) +Mδ
B∗

(x)
2

) 1
δ

,

(
Nδ
A∗

(x) +Nδ
B∗

(x)
2

) 1
δ

;∝ (r, s)⟩}

= {⟨x,
(
λ

(
Mδ
A∗

(x) +Mδ
B∗

(x)
2

+ η

)) 1
δ

, γ
1
δ

(
Nδ
A∗

(x) +Nδ
B∗

(x)
2

) 1
δ

;∝ (r, s)⟩}

= {⟨x,
(
[λMλ

A∗
(x) + η] + [λMδ

B∗
(x) + η]

2

) 1
δ

,

(
γNδ

A∗
(x) + γNδ

B∗
(x)

2

) 1
δ

;∝ (r, s)⟩}

= {⟨x,
(
λMδ

A∗
(x) + η

) 1
δ
, γ

1
δNA∗(x); r⟩}@∝{⟨x,

(
λMδ

B∗
(x) + η

) 1
δ
, γ

1
δNB∗(x); s⟩}

= ⊠λ,γ,η(A∗r)@∝ ⊠λ,γ,η (B∗s).

□

Based on the Definition 4.1, the following is a generalization of the properties that apply to the
generalized arithmetic and geometric means of GCIFS.

Theorem 5.4. Given a family of GCIFSsAri for i = 1, 2, 3, · · · , k and real number λ, γ, η ∈ [0, 1] then
the following expressions hold:

(1)
(
@⊛

k
i=1(A∗ri

)
)

@⊛B
∗
s = @⊛

k
i=1(A∗ri

@⊛B
∗
s) for any B∗s ∈ GCIFS.

(2) ⊞
(
@⊛

k
i=1(A∗ri

)
)
= @⊛

k
i=1(⊞(A∗ri

)).

(3) ⊞λ
(
@⊛

k
i=1(A∗ri

)
)
= @⊛

k
i=1(⊞λ(A∗ri

))

(4) ⊞λ,γ
(
@⊛

k
i=1(A∗ri

)
)
= @⊛

k
i=1(⊞λ,γ(A∗ri

)).

(5) ⊞λ,γ,η
(
@⊛

k
i=1(A∗ri

)
)
= @⊛

k
i=1(⊞λ,γ,η(A∗ri

)).

Proof. LetA∗ri
be a family of GCIFSs and δ = n or 1

n for n ∈ Z+ , then based on Definitions 4.1 and 5.1
the proof of this theorem will be provided as follows:

(1) Let B∗s ∈ GCIFS, then it applies,(
@⊛

k
i=1(A∗ri

)
)

@⊛B
∗
s = {⟨x,

Σk
i=1M

δ
A∗i

(x)

k


1
δ

,

Σk
i=1N

δ
A∗i

(x)

k


1
δ

;
(
Σk

i=1rδi
k

) 1
δ

⟩}@⊛B
∗
s
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= {⟨x,


Σk

i=1M
δ
A∗i

(x)

k +Mδ
B∗

(x)
2


1
δ

,


Σk

i=1N
δ
A∗i

(x)

k +Nδ
B∗

(x)
2


1
δ

;


Σk

i=1rδi
k + sδ

2


1
δ

⟩}

= {⟨x,

MδA∗1(x) + · · · +Mδ
A∗k

(x) + k · Mδ
B∗

(x)

2k


1
δ

,

NδA∗1(x) + · · · +Nδ
A∗k

(x) + k · NδB(x)

2k


1
δ

;(
rδ1 + · · · + rδk + k · sδ

2k

) 1
δ

⟩}

= {⟨x,

Σ
k
i=1

Mδ
A∗i

(x)+Mδ
B∗

(x)

2

k


1
δ

,

Σ
k
i=1

Nδ
A∗i

(x)+Nδ
B∗

(x)

2

k


1
δ

;

Σk
i=1

rδi +sδ

2

k


1
δ

⟩}

= @⊛
k
i=1{⟨x,

MδA∗i (x) +Mδ
B∗

(x)

2


1
δ

,

NδA∗i (x) +Nδ
B∗

(x)

2


1
δ

;
(
rδi + sδ

2

) 1
δ

⟩}

= @⊛
k
i=1(A∗ri

@⊛B
∗
s).

(2) ⊞(@⊛
k
i=1(A∗ri

)) = ⊞{⟨x,

Σk
i=1M

δ
A∗i

(x)

k


1
δ

,

Σk
i=1N

δ
A∗i

(x)

k


1
δ

;
(
Σk

i=1rδi
k

) 1
δ

⟩}

= {⟨x,


Σk

i=1M
δ
A∗i

(x)

k

2


1
δ

,


Σk

i=1N
δ
A∗i

(x)

k + 1
2


1
δ

;
(
Σk

i=1rδi
k

) 1
δ

⟩}

= {⟨x,


Σk

i=1M
δ
A∗i

(x)

2

k


1
δ

,


Σk

i=1[Nδ
A∗i

(x)+1]

2

k


1
δ

;
(
Σk

i=1rδi
k

) 1
δ

⟩}

= @⊛
k
i=1{⟨x,

MδA∗i (x)

2


1
δ

,

NδA∗i (x) + 1

2


1
δ

; ri⟩}

= @⊛
k
i=1(⊞(A∗ri

)).

(3) ⊞λ(@⊛
k
i=1(A∗ri

)) = ⊞λ{⟨x,

Σk
i=1M

δ
A∗i

(x)

k


1
δ

,

Σk
i=1N

δ
A∗i

(x)

k


1
δ

;
(
Σk

i=1rδi
k

) 1
δ

⟩}

= {⟨x,

λΣk
i=1M

δ
A∗i

(x)

k


1
δ

,

λΣk
i=1N

δ
A∗i

(x)

k
+ (1 − λ)


1
δ

;
(
Σk

i=1rδi
k

) 1
δ

⟩}

= {⟨x,

λΣk
i=1M

δ
A∗i

(x)

k


1
δ

,

Σk
i=1[λNδ

A∗i
(x) + (1 − λ)]

k


1
δ

;
(
Σk

i=1rδi
k

) 1
δ

⟩}

= @⊛
k
i=1{⟨x,

(
λ

1
δMA∗i (x)

)
,
(
λNδ

A∗i
(x) + (1 − λ)

) 1
δ

; ri⟩}

= @⊛
k
i=1(⊞λ(A∗ri

)).
(4) Analogously we can prove (4) by replacing 1 − λ = γ.
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(5) ⊞λ,γ,η(@⊛
k
i=1(Ari)) = ⊞λ,γ,η{⟨x,

Σk
i=1M

δ
A∗i

(x)

k


1
δ

,

Σk
i=1N

δ
A∗i

(x)

k


1
δ

;
(
Σk

i=1rδi
k

) 1
δ

⟩}

= {⟨x,

λΣk
i=1M

δ
A∗i

(x)

k


1
δ

,

γΣk
i=1N

δ
A∗i

(x)

k
+ η


1
δ

;
(
Σk

i=1rδi
n

) 1
δ

⟩}

= {⟨x,

λΣk
i=1M

δ
A∗i

(x)

k


1
δ

,

Σk
i=1[γNδ

A∗i
(x) + η]

k


1
δ

;
(
Σk

i=1rδi
k

) 1
δ

⟩}

= @⊛
k
i=1{⟨x,

(
λ

1
δMA∗i (x)

)
,
(
γNδ

A∗i
(x) + η

) 1
δ

; ri⟩}

= @⊛
k
i=1(⊞λ,γ,η(A∗ri

)).

The proof is now completed. □

Theorem 5.5. Given a family of GCIFSs A∗ri
for i = 1, 2, 3, · · · , k and real number λ, γ ∈ [0, 1] then

we have: (
$⊚

k
i=1(A∗ri

)
)

$⊚B∗s = $⊚
k
i=1(A∗ri

$⊚B∗s) for any B∗s ∈ GCIFS.

Proof. LetA∗ri
be a family of GCIFSs and δ = n or 1

n for n ∈ Z+. Based on Definitions 4.1 and 5.1 the
following result is obtained. Let B∗s ∈ GCIFS, then it applies,(

$⊚
k
i=1(A∗ri

)
)

$⊚B∗s = {⟨x,
(

k

√
Πk

i=1M
δ
A∗i

(x)
) 1
δ

,
(

k

√
Πk

i=1N
δ
A∗i

(x)
) 1
δ

;
(

k
√
Πk

i=1rδi
) 1
δ

⟩}$⊚B∗s

= {⟨x,
(√

k

√
Πk

i=1M
δ
A∗i

(x) ×Mδ
B∗

(x)
) 1
δ

,

(√
k

√
Πk

i=1N
δ
A∗ri

(x) × Nδ
B∗

(x)
) 1
δ

;

√ k
√
Πk

i=1rδi × sδ


1
δ

⟩}

= {⟨x,
(√

k

√
Mδ
A∗1

(x) × · · · ×Mδ
A∗k

(x) ×Mδ
B∗

(x)
) 1
δ

,

(√
k

√
Nδ
A∗1

(x) × · · · × Nδ
A∗k

(x) × Nδ
B∗

(x)
) 1
δ

;√ k
√

rδ1 × · · · × rδk × sδ
 1
δ

⟩}

= {⟨x,
(√

k

√
[Mδ

A∗1
(x) ×Mδ

B∗
(x)] × · · · × [Mδ

A∗k
(x) ×Mδ

B∗
(x)]

) 1
δ

,(√
k

√
[Nδ
A∗1

(x) × Nδ
B∗

(x)] × · · · × [Nδ
A∗k

(x) × Nδ
B∗

(x)]
) 1
δ

;
√ k

√
[rδ1 × sδ] × · · · × [rδk × sδ]

 1
δ

⟩}

= {⟨x,
(

k

√√
[Mδ

A∗1
(x) ×Mδ

B∗
(x)] × · · · × [Mδ

A∗k
(x) ×Mδ

B∗
(x)]

) 1
δ

,(
k

√√
[Nδ
A∗1

(x) × Nδ
B∗

(x)] × · · · × [Nδ
A∗k

(x) × Nδ
B∗

(x)]
) 1
δ

;
 k

√√
[rδ1 × sδ] × · · · × [rδk × sδ]

 1
δ

⟩}

= @⊛
k
i=1{⟨x,

√
Mδ
A∗ri

(x)Mδ
B∗

(x)
1
δ ,

√
Nδ
A∗ri

(x)Nδ
B∗

(x)
1
δ ;

√
rδi sδ

1
δ ⟩}

= $⊚
k
i=1(A∗ri

$⊚B∗s).

The proof is now completed. □
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6. Conclusions

This study significantly enriches and deepens the existing CIFS theory by introducing GCIFS as an
extension of CIFS. We define the basic operations and relations of GCIFS, along with their algebraic
properties. Furthermore, we examine two operations, the arithmetic mean and geometric mean, on
GCIFS, demonstrating their desirable properties through theoretical proofs, including idempotency,
inclusion, commutativity, distributivity and absorption. Additionally, we introduce modal operators
applicable to GCIFS and apply them to arithmetic and geometric means. In the final section, we
develop aggregation operations, namely the generalized arithmetic and geometric means, extending
the capabilities of these two operators. These properties are further applied to the modal operators in
context of GCIFS.

However, it is essential to note that we do not fully explore several aspects of GCIFS. For instance,
distance and similarity measurements, entropy, aggregation functions and other components require
additional investigation for practical use in decision-making models. Furthermore, from a theoretical
perspective, a deeper exploration is needed to understand the specific operating characteristics and
relations of GCIFS. Future research should be to prioritize these areas to fully unlock the potential of
GCIFS across various applications.
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