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1. Introduction

In this paper, we consider the solution of large minimization problems of the form

min
X∈Rm×p×n

‖A ∗ X − B‖F ,A = [a]l,m,n
i, j,k=1 ∈ R

l×m×n,B ∈ Rl×p×n, (1.1)

where the Frobenius norm of singular tube ofA rapidly attenuates to zero with the increase of the index
number. In particular, A has ill-determined tubal rank. Many of its singular tubes are nonvanishing
with tiny Frobenius norm of different orders of magnitude. Problem (1.1) with such a tensor is called
tensor linear discrete ill-posed problems. They arise from the restoration of color image and video, see
e.g., [1–5]. Throughout this paper, the operation ∗ represents tensor t-product introduced in [1] and
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‖·‖F denotes the tensor Frobenius norm, represented by

‖A‖F =

√√√ l∑
i=1

m∑
j=1

n∑
k=1

a2
i jk. (1.2)

We assume that the observed tensor B ∈ Rm×p×n is polluted by an error tensor E ∈ Rm×p×n, i.e.,

B = B∗ + E, (1.3)

where B∗ ∈ Rm×p×n is an unknown and unavailable error-free tensor related to B. B∗ is determined by
A∗X∗ = B∗, where X∗ represents the explicit solution of problem (1.1) that is to be found. We assume
that the upper bound of the Frobenius norm of E is known, i.e.,

‖E‖F ≤ δ. (1.4)

Straightforward solution of (1.1) generally is not meaningful due to propagation and severe
amplification of the error E into the solution of (1.1) and the ill-posedness of A = [a]l,m,n

i, j,k=1. In this
paper we use Tikhonov regularization to reduce this effect and this regularization replaces (1.1) with
penalty least-squares problems of the form

min
X∈Rm×p×n

{
‖A ∗ X − B‖2F + µ‖X‖2F

}
, (1.5)

where µ > 0 is a regularization parameter. We assume that

N(A) ∩ N(I) = {O} , (1.6)

whereN(A) denotes the null space of the tensorA under ∗, is the set of all solutions X of the equation
A∗X = O. I is the identity tensor and O ∈ Rm×p×n is a tensor whose elements are all zero, respectively.

The normal equation of the minimization problem (1.5) is

(AT ∗ A + µI) ∗ X = AT ∗ B, (1.7)

then
Xµ =

(
AT ∗ A + µI

)−1
∗ AT ∗ B (1.8)

is the unique solution of the Tikhonov minimization problem (1.5) under the assumption (1.6).
There are many methods for solving large-scale tensor linear discrete ill-posed problems (1.1).

Recently, a tensor Golub–Kahan bidiagonalization method [4] and a GMRES method [5] were
introduced for solving large-scale linear ill-posed problems (1.1) by iteratively solving (1.5). The
randomized tensor singular value decomposition (rt-SVD) method in [6] was presented for computing
super large data sets, and has prospects in image data compression and analysis. Ugwu and Reichel [7]
proposed a new random tensor singular value decomposition (R-tSVD), which improves the truncated
tensor singular value decomposition (T-tSVD) in [1]. Kilmer et al. [2] presented a tensor Conjugate-
Gradient method (tCG) for tensor linear systems A ∗ X = B corresponding to the least-squares
problems (1.1), where the regularization parameter in the tCG method is user-specified.

This paper mainly extends CG methods from matrix problems to tensor problems. Using matrix
methods to solve the problem of image restoration and denoising is to flatten the three-dimensional
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data of color images into matrix form in turn for processing. Based on t-product, we extend the matrix
method to tensor, which can preserve the data correlation between three-dimensional tensor sections.
The tensor problem is projected into the Fourier domain, which makes use of the particularity of t-
product structure. We further discuss the tCG method for the approximate solution of (1.1) in the
Fourier domain. The discrepancy principle is used to determine a suitable regularization parameter
of the tCG method. The proposed automatic determination strategy is called the tCG method with
automatic determination of regularization parameters (A-tCG-FFT). A least-squares method based on
the tCG method is provided for (1.1), which is called A-tCGLS-FFT. A preconditioned version of
the A-tCG-FFT method is presented, which is abbreviated as A-tPCG-FFT. The Conjugate Gradient
method only needs to save the current and last gradient values, which takes up less memory resources.
Moreover, only the previously calculated gradient information is needed in each iteration process, so
parallel calculation can be carried out and the calculation efficiency can be improved. Moreover, the
way of projecting tensor problem into Fourier domain also greatly avoids the time and space complexity
required to smooth tensor problem into matrix problem.

The rest of this paper is organized as follows. Section 2 introduces some symbols and preliminary
knowledge that will be used in the context. Section 3 presents the A-tCG-FFT, A-tCGLS-FFT and
A-tPCG-FFT methods for solving the minimization problem (1.5). Section 4 gives several examples
on image and video restoration and Section 5 draws some conclusions.

2. Preliminaries

This section gives some notations and definitions, and briefly summarizes some results that will be
used later. For a third-order tensorA ∈ Rl×m×n, Figure 1 shows the frontal slicesA(:, :, k), lateral slices
A(:, j, :) and tube fibers A(i, j, :), and we abbreviate Ak = A(:, :, k) for simplicity. An ln × m matrix is
obtained by the operator unfold(A), whereas the operator fold folds this matrix back to the tensor A,
i.e.,

unfold (A) =


A1

A2
...

An

 , fold (unfold (A)) = A.

(a) (b) (c)

Figure 1. (a) Frontal slicesA(:, :, k), (b) lateral slicesA(:, j, :) and (c) tube fibersA(i, j, :).
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Definition 1. LetA ∈ Rl×m×n, then a block-circulant matrix ofA is denoted by bcirc(A), i.e.,

bcirc (A) =


A1

A2
...

An

An

A1
...

An−1

· · ·

· · ·

. . .

· · ·

A2

A3
...

A1

 .
Definition 2. [1] Given two tensorsA ∈ Rl×m×n and B ∈ Rm×p×n, the t-productA ∗ B is defined as

A ∗ B = fold(bcirc(A)unfold(B)) = C, (2.1)

where C ∈ Rl×p×n.

The following remarks will be used in Section 3.

Remark 2.1. [8] For suitable tensorsA and B, it holds that
(1) bcirc(A ∗ B) = bcirc(A) ∗ bcirc(B).
(2) bcirc(AT ) = bcirc(A)T .
(3) bcirc(A + B) = bcirc(A) + bcirc(B).

Let Fn be an n-by-n unitary discrete Fourier transform matrix, i.e.,

Fn =
1
√

n



1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)


,

where ω = e
−2πi

n , then we get the tensor Â generated by using FFT along each tube ofA, i.e.,

bdiag
(
Â

)
=


Â1

Â2
. . .

Ân

 = (Fn ⊗ Il) bcirc (A)
(
FH

n ⊗ Im

)
, (2.2)

where ⊗ is the Kronecker product, FH
n is the conjugate transposition of Fn and Âi denotes the frontal

slices of Â.
We also need the following remark.

Remark 2.2. [9] For appropriately sized tensorsA and B,
(1) bdiag(Â ∗ B) = bdiag(Â)bdiag(B̂).
(2) bdiag(Â + B) = bdiag(Â + B̂).
(3) bdiag(ÂH) = bdiag(Â)H. Additionally, if bdiag(A) is symmetric, bdiag(Â) is also symmetric.
(4) bdiag(Â−1) = bdiag(Â)−1.
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Then the t-product ofA and B in (2.1) can be expressed by

A ∗ B = fold
((

F∗n ⊗ Il
) (

(Fn ⊗ Il) bcirc (A)
(
F∗n ⊗ Im

))
(Fn ⊗ Im) unfold (B)

)
, (2.3)

and (2.1) is reformulated as 
Â1

Â2
. . .

Ân




B̂1

B̂2
...

B̂n

 =


Ĉ1

Ĉ2
...

Ĉn

 . (2.4)

It is easy to implement (2.1) in MATLAB. Using MATLAB notation, let M̂=fft(M, [ ], 3) be the
tensor obtained by applying the FFT along the third dimension. Then (2.1) can be computed by taking
the FFT along tube of A and B to obtain Â=fft(A, [ ], 3) and B̂=fft(B, [ ], 3). Then for the matrix-
matrix product of each pair of front slices of Â and B̂, there is

Ĉ(:, :, i) = Â(:, :, i)B̂(:, :, i), i = 1, 2, . . . , n,

and then taking the inverse FFT along the third dimension to obtain C=ifft(Ĉ, [ ], 3). We refer to Table 1
for more notations.

Table 1. Description of notations.

Notation Interpretation
A tensor
AT transpose of tensors
A−1 inverse of tensor, andA−T = (A−1)T = (AT )−1

A(:, :, k) the k-th frontal slice of tensorA
A(i, j, :) the tube fibers of tensorA
Ak A(:, :, k)
Â FFT ofA along the third mode
ÂH transpose of complex tensor Â
unfold(A) the block column matrix ofA
bcirc(A) the block-circulant matrix
I identity tensor
A matrix
I identity matrix
‖A‖F the Frobenius-Norm of tensorA
‖A‖ the 2-Norm of matrix A
〈A, B〉 the matrix inner product 〈A, B〉 = tr(AT B)
A ÂH

k Âk + µ jI
Âk Â(:, :, k)
ÂH

k transpose of complex matrix Âk

∗ t-product
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3. Tensor Conjugate-Gradient methods

3.1. The A-tCG-FFT method

Based on the tensor conjugate gradient (tCG) method proposed by Kilmer et al. [10], this section
presents a method to solve the regularization (1.5) by using the CG process in Fourier domain, where
an suitable regularization parameter is automatically determined by the discrepancy principle. This
method is abbreviated as A-tCG-FFT. The A-tCG-FFT improves the tCG method presented in [2]
where the regularization parameter was user-specified. The following result shows the equivalent
equation of (1.5) in the Fourier domain.

Theorem 3.1. Let Â=fft(A, [ ], 3), B̂=fft(B, [ ], 3) and X̂=fft(X, [ ], 3). Then, solving the tensor
regularization (1.5) is equivalent to solving a sequence of regularized least-squares problems of the
matrix form

min
X̂k

{
‖ÂkX̂k − B̂k‖

2 + µ‖X̂k‖
2
}
, k = 1, 2, · · · , n, (3.1)

where ‖·‖ represents the 2-norm of the matrix, and X̂k = X̂(:, :, k), Âk = Â(:, :, k) and B̂k = B̂(:, :, k).
The normal equation of (3.1) can be represented as

(ÂH
k Âk + µI)X̂k = ÂH

k B̂k, (3.2)

Once getting X̂, we have the approximation solution of (1.1) with the form X=iff(X̂, [ ], 3).

Proof. Following Remarks 2.1 and 2.2, (1.8) is represented as

unfold(X̂) = (Fn ⊗ Il)unfold(X)
= (Fn ⊗ Il)bcirc(AT ∗ A + µI)−1unfold(AT ∗ B)

= bdiag ̂(AT ∗ A + µI)
−1

(Fn ⊗ Il)unfold(AT ∗ B)

= bdiag ̂(AT ∗ A + µI)
−1

(Fn ⊗ Il)bcirc(AT )unfold(B)

= bdiag ̂(AT ∗ A + µI)
−1

bdiag(ÂH)unfold(B̂)

= bdiag(ÂH ∗ Â + µI)−1bdiag(ÂH)unfold(B̂)

= bdiag((ÂH ∗ Â + µI)−1ÂH)unfold(B̂).

Thus, by using (2.4) we have
X̂k = [ÂH

k Âk + µI]−1ÂH
k B̂k,

which implies (3.2).
Now we discuss the determination of a suitable regularization parameter for (3.1). Let

B̂∗=fft(B∗, [ ], 3) and B̂=fft(B, [ ], 3), and denote B̂∗k = B̂∗(:, :, k) and B̂k = B̂(:, :, k). The assumption
in (1.4) implies that

‖Êk‖ ≤ δk, (3.3)

where Êk = B̂k − B̂∗k. The availability of the bound (3.3) allows us to determine µ by the discrepancy
principle. Especially, the solution X̂k of (3.1) satisfies

‖ÂkX̂k − B̂k‖ ≤ ηδk, (3.4)
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where η > 1 is usually a user-specified constant and is independent of δk. For more details on the
discrepancy principle, see e.g., [11].

In [12, 13], the method of selecting regularization parameter through an a-priori strategy and a-
posteriori parameter choice rule is mentioned to verify the convergence estimation between exact
solution and regularization solution. Here, we choose regularization parameter to be obtained by
automatically updating the polynomial function

µ j = µ0ρ
j, j = 0, 1, 2, · · · , (3.5)

where 0 < ρ < 1 and µ0 = ‖Â‖. Then, we obtain a suitable regularization parameter by iteratively
applying (3.5) until (3.4) is satisfied.

Algorithm 1 summarizes the A-tCG-FFT method for solving (1.5). Algorithm 1 contains two nested
iterations. The outer iteration updates µ by applying (3.5) so that the discrepancy principle is satisfied.
The inner iteration is to use the CG method (CG-iteration) to solve the k-th normal equation (3.2) with
the value of µ j determined by the outer iteration, and 〈M,N〉 represents the inner product between
matrices M and N. The inner iteration is stopped when the norm of the residual

rk,µ j,i = ÂH
k B̂k −

(
ÂH

k Âk + µ jI
)

Xk,µ j,i (3.6)

of the i-th iterate Xk,µ j,i is less than a tolerance tol.

Algorithm 1: The A-tCG-FFT method for sloving (1.5)
1: Input:A ∈ Rm×m×n,B ∈ Rm×m×n, δ1, ..., δn, µ0, ρ, η > 1.
2: Output:Least-square solution X of (1.5).
3: Â=fft(A, [ ], 3).
4: B̂=fft(B, [ ], 3).
5: for k = 1, ..., n do
6: Let j = 0, Xk,µ0 = 0.
7: while ‖ÂkXk,µ j − B̂k‖ ≥ ηδk do
8: j = j + 1, A = ÂH

k Âk + µ jI, µ j = µ0ρ
j.

9: X0 = 0 or X0 = Xk,µ j−1; R0 = ÂH
k B̂k-AX0;P0 = R0.

10: for i = 0, 1, ...,until convergence do
11: υi = 〈Ri,Ri〉/〈APi, Pi〉.
12: Xi+1 = Xi + υiPi.
13: Ri+1 = Ri − υiAPi.
14: ωi = 〈Ri+1,Ri+1〉 / 〈Ri,Ri〉.
15: Pi+1 = Ri+1 + ωiPi.
16: end for
17: Xk,u j = Xi+1.
18: end while
19: X̂(:, :, k) = Xk,u j .
20: end for
21: X=ifft(X̂, [ ], 3).

In the following Corollay 3.1, the rationality of the two methods for initial X0 is expounded.

AIMS Mathematics Volume 8, Issue 11, 26782–26800.



26789

Corollary 3.1. Let X0 = 0 be the initial solution of the inner iteration of Algorithm 1, then we have the
initial residual

‖R0‖ =
∥∥∥ÂH

k B̂k

∥∥∥ ≤ ∥∥∥ÂH
k

∥∥∥ ∥∥∥B̂k

∥∥∥ .
Otherwise, if X0 = Xk,µ j−1 , then we have

‖R0‖ ≤

∥∥∥∥∥∥(I −
µ j

µ j−1
I)

∥∥∥∥∥∥ ∥∥∥ÂH
k B̂k

∥∥∥ + tol.

Proof. Denote
rk,µ j,i = ÂH

k B̂k −
(
ÂH

k Âk + µ jI
)

Xk,µ j,i.

It is easy to see that

‖R0‖ = ÂH
k B̂k −

(
ÂH

k Âk + µ jI
)

X0 =
∥∥∥ÂH

k B̂k

∥∥∥ ≤ ∥∥∥ÂH
k

∥∥∥ ∥∥∥B̂k

∥∥∥
for X0 = 0. Let X0 = Xk,µ j−1 , then we have

‖R0‖ =
∥∥∥ÂH

k B̂k − (ÂH
k Âk + µ jI)Xk,µ j−1

∥∥∥
=

∥∥∥ÂH
k B̂k − (ÂH

k Âk + µ jI)(ÂH
k Âk + µ j−1I)−1ÂH

k B̂k

∥∥∥
=

∥∥∥∥[I − (ÂH
k Âk + µ jI)(ÂH

k Âk + µ j−1I)−1
]

ÂH
k B̂k

∥∥∥∥
≤

∥∥∥∥∥∥(I −
µ j

µ j−1
I)ÂH

k B̂k

∥∥∥∥∥∥ + tol

≤

∥∥∥∥∥∥(I −
µ j

µ j−1
I)

∥∥∥∥∥∥ ∥∥∥ÂH
k B̂k

∥∥∥ + tol.

Theorem 3.2. If X̂∗k is the exact solution of the symmetric positive definite equations (1.7), Xk,µ j,i and
Xk,µ j,i+1 are generated by the inner CG-iteration of Algorithm 1, then

∥∥∥Xk,µ j,i+1 − X̂∗k
∥∥∥ ≤ (

1 −
1

κ(A)

) 1
2

·
∥∥∥Xk,µ j,i − X̂∗k

∥∥∥ , (3.7)

where A = ÂH
k Âk + µ jI, κ(A) =

λmax(A)
λmin(A) . Here λmax(A) and λmin(A) are the maximum and minimum

eigenvalues of A respectively.

Theorem 3.2 illustrates the convergence of Algorithm 1. Refer to [14] for the detailed proof process.

3.2. The A-tCGLS-FFT method

In the actual numerical calculation, if ÂH
k Âk is singular and µ is very small, then ÂH

k Âk + µ jI is ill-
conditioned. Inspired by the idea in [15] for the numerical stability of a linear system in matrix form,
in this section, we use the CGLS method instead of the CG method in Algorithm 1.

The main difference between Algorithms 2 and 1 is the updating of zi = B̂k− ÂkXk,µ j,i in Algorithm 2
rather than the residuals (3.6) of Algorithm 1. We refer to [16] for more details for a corresponding
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linear system in matrix form.

Algorithm 2: The A-tCGLS-FFT method for sloving (1.7)
1: Input:A ∈ Rm×m×n,B ∈ Rm×m×n, δ1, ..., δn, µ0, ρ, η > 1
2: Output:Least-square solution X of (1.7)
3: Â=fft(A, [ ], 3).
4: B̂=fft(B, [ ], 3).
5: for k = 1, ..., n do
6: j = 0, Xk,µ0 = 0.
7: while ‖ÂkXk,µ j − B̂k‖ ≥ ηδk do
8: j = j + 1, µ j = µ0ρ

j.
9: A=ÂH

k Âk + µ jI,B=ÂH
k B̂k.

10: X0 = 0 or X0 = Xk,µ j−1;z0 = B̂k − ÂkX0;
11: R0 = ÂH

k z0 − µX0;P0 = R0.
12: for i = 0, 1, ...,until convergence do
13: Qi = ÂkPi.
14: γi =

〈
R j,R j

〉
/ 〈Qi,Qi〉 + µ j 〈Pi, Pi〉.

15: Xi+1 = Xi + γiPi.
16: zi+1 = zi − γiQi.
17: Ri+1 = ÂH

k zi+1 − µ jXi+1.
18: ωi = 〈Ri+1,Ri+1〉 / 〈Ri,Ri〉.
19: Pi+1 = Ri+1 + ωiPi.
20: end for
21: Xk,u j = Xi+1.
22: end while
23: X̂(:, :, k) = Xk,u j .
24: end for
25: X=ifft(X̂, [ ], 3).

3.3. A preconditioned tensor Conjugate-Gradient method

In this subsection, we consider the acceleration of Algorithm 1 by preconditioning. In Algorithm 1,
the coefficient matrix ÂH

k Âk+µI of the k-th normal equation (3.2) is symmetric and positive definite. We
set M = ÂH

k Âk +µI and apply approximate Cholesky decomposition to M. The process of approximate
Cholesky decomposition can be directly realized by Matlab function chol, then Mchol = chol(M) can
be obtained. Let ML = MH

chol and MR = Mchol, then there is M = MLMR, where ML is a lower triangular
nonsingular sparse matrix and MR = MH

L . Then we solve the preconditioned normal equations

ÃkX̃k = B̃k, (3.8)

instead of (3.2) in Algorithm 1, where Ã = M−1
L

(
ÂH

k Âk + µI
)

M−1
R , X̃ = MRX̂k and B̃ = M−1

L ÂH
k B̂k.

Let X̂k,i and X̃k,i represent the i-th iterate of (3.8) and (3.2) in the inner CG- iteration of Algorithm 1
under a certain regularization parameter µ, respectively. Then we have

R̃k,i = B̃k − ÃkX̃k,i
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= M−1
L B̂k − M−1

L ÂkM−1
R MRX̂k,i

= M−1
L (B̂k − ÂkX̂k,i)

= M−1
L R̂k,i. (3.9)

Denote P̃k,i = MRP̂k,i and t̂k,i = M−1
L R̂k,i, then we have

υ̃k,i =

〈
R̃k,i, R̃k,i

〉〈
ÃkP̃k,i, P̃k,i

〉
=

〈
M−1

L R̂k,i,M−1
L R̂k,i

〉〈
M−1

L ÂkM−1
R MRP̂k,i,MRP̂k,i

〉
=

〈
M−1

L R̂k,i,M−1
L R̂k,i

〉〈
M−1

L ÂkP̂k,i,MRP̂k,i

〉 . (3.10)

According to the definition of matrix inner product 〈A, B〉 = tr(AT B), where tr denotes the trace of
a square matrix. Then, we have〈

M−1
L ÂkP̂k,i,MRP̂k,i

〉
= tr((M−1

L ÂkP̂k,i)T MRP̂k,i)

= tr(P̂T
k,iÂ

H
k M−T

L MRP̂k,i)
= tr(P̂T

k,iÂ
H
k P̂k,i)

=
〈
ÂkP̂k,i, P̂k,i

〉
. (3.11)

According to (3.10) and (3.11), we get

υ̃k,i =

〈
t̂k,i, t̂k,i

〉〈
ÂkP̂k,i, P̂k,i

〉 , (3.12)

and

X̃k,i+1 = X̃k,i + υ̃k,iP̃k.i,

MRX̂k,i+1 = MRX̂k,i + υ̃k,iMRP̂k,i,

X̂k,i+1 = X̂k,i + υ̃k,iP̂k,i. (3.13)

Then, we have

R̃k,i+1 = R̃k,i − υ̃k,iÃkP̃k,i,

M−1
L R̂k,i+1 = M−1

L R̂k,i − υ̃k,iM−1
L ÂkM−1

R MRP̂k,i,

R̂k,i+1 = R̂k,i − υ̃k,iÂkP̂k,i, (3.14)

and

ω̃k,i =

〈
R̃k,i+1, R̃k,i+1

〉〈
R̃k,i, R̃k,i

〉
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=

〈
M−1

L R̂k,i+1,M−1
L R̂k,i+1

〉〈
M−1

L R̂k,i,M−1
L R̂k,i

〉
=

〈
t̂k,i+1, t̂k,i+1

〉〈
t̂k,i, t̂k,i

〉 . (3.15)

Finally, we have

P̃k,i+1 = R̃k,i+1 + ω̃k,iP̃k,i,

MRP̂k,i+1 = M−1
L R̂k,i+1 + ω̃k,iMRP̂k,i,

P̂k,i+1 = M−1
R M−1

L R̂k,i+1 + ω̃k,iM−1
R MRP̂k,i = M−1

R t̂k,i+1 + ω̃k,iP̂k,i. (3.16)

Based on (3.10)–(3.16), we have the preconditioned process of Algorithm 1. Algorithm 3 lists the
A-tPCG-FFT method.

Algorithm 3: The A-tPCG-FFT method for sloving (1.5)
1: Input: A ∈ Rm×m×n,B ∈ Rm×m×n, δ1, ..., δn, µ0, ρ, η > 1
2: Output: Least-square solution X of (1.5)
3: Â=fft(A, [ ], 3).
4: B̂=fft(B, [ ], 3).
5: for k = 1, ..., n do
6: j = 0, Xk,µ0 = 0.
7: while ‖ÂkXk,µ j − B̂k‖ ≥ ηδk do
8: j = j + 1, µ j = µ0ρ

j.
9: A=ÂH

k Âk + µ jI,B=ÂH
k B̂k.

10: Decompose A to get MR and ML.
11: X0 = 0 or X0 = Xk,µ j−1; R0 = M−1

L (B − AX0);P0 = R0.
12: for i = 0, 1, ...,until convergence do
13: ti = M−1

L Ri, υ̃i = 〈ti, ti〉 / 〈APi, Pi〉.
14: Xi+1 = Xi + υ̃iPi.
15: Ri+1 = Ri − υ̃iAPi.
16: ω̃i = 〈ti+1, ti+1〉 / 〈ti, ti〉.
17: Pi+1 = M−1

R ti + ω̃iPi.
18: end for
19: Xk,u j = Xi+1.
20: end while
21: X̂(:, :, k) = Xk,u j .
22: end for
23: X=ifft(X̂, [ ], 3).

The following result gives the convergence of Algorithm 3.

Theorem 3.3. If X̂∗k is the true solution of the symmetric positive definite equation (1.7), Xk,µ j,0 is the
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initial solution in the internal CG iteration of Algorithm 3, and Xk,µ j,i is the i-th iterate, then

∥∥∥Xk,µ j,i − X̂∗k
∥∥∥ ≤ 2

(
κ(M−1

L AM−1
R ) − 1

κ(M−1
L AM−1

R ) + 1

)k ∥∥∥Xk,µ j,0 − X̂∗k
∥∥∥ , (3.17)

where A = ÂH
k Âk + µ jI and κ(M) is the same as that in Theorem 3.2.

Proof. Let A = ÂH
k Âk + µ jI, Taking A as M−1

L AM−1
R in the similar result of Algorithm 1 in [17] results

in (3.17).
We can expect from Theorem 3.3 that Algorithm 3 generally achieves better convergence than

Algorithm 1 since
cond(M−1

L AM−1
R ) < cond(A).

We will illustrate this in numerical experiments in Section 4.

4. Numerical examples

This section presents three examples to show the application of Algorithms 1–3 on the restoration
of image and video. All calculations were performed in MATLAB R2018a on computers with intel
core i7 and 16GB RAM.

LetXiter denote the iterative solution to (1.5). The quality of the approximate solutionXiter is defined
by the relative error

Eiter =
‖Xiter − Xtrue‖F

‖Xtrue‖F
,

and the signal-to-noise ratio (SNR)

S NR (Xiter) = 10 log10
‖Xtrue − E (Xtrue)‖2F
‖Xiter − Xtrue‖

2
F

,

where Xtrue denotes the uncontaminated data tensor and E(Xtrue) is the average gray-level of Xtrue.
In (1.5), we generate a noise tensor E and simulate the error in the data tensor B = Btrue + E. E

is a noise tensor with a random term of normal distribution, the mean value is zero, and the variance
selection corresponds to a specific noise level ν = ‖E‖F

‖Btrue‖F
.

We summarize the cross-channel blurring and within-channel blurring in the original blurring
process in [3] that will be used in the following examples. The complete blurring model is presented
in the form of (

Ablur ⊗ A(1)
⊗ A(2)

)
xtrue = btrue, (4.1)

where

Ablur =


arr arg arb

agr agg agb

abr abg abb

 ,
and Ablur is a 3 × 3 matrix with the sum of each row equal to 1, which denotes cross-channel blurring
as in [18].

btrue =


vec

(
Btrue,1

)
vec

(
Btrue,2

)
vec

(
Btrue,3

)
 , xtrue =


vec

(
Xtrue,1

)
vec

(
Xtrue,2

)
vec

(
Xtrue,3

)
 ,
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and vec(·) is an operator that transforms a matrix into a vector by stacking columns of the matrix from
left to right. A(1) ∈ Rn×n and A(2) ∈ Rn×n define within-channel blurring, which are the horizontal
inner blurring matrix and the vertical inner blurring matrix, respectively, see [18] for more details. A
special case to consider is arr = agg = abb = µ, agr = arg = agb = abg = β and abr = arb = γ. If
the formula (4.1) is calculated directly in MATLAB, the results are stored in the matrix and cannot
be calculated effectively. Therefore, t-product structure is considered, and (4.1) is presented in the
following tensor form

Aυ ∗ Xtrue ∗ Aω = Btrue, (4.2)

whereAυ ∈ R
n×n×3 andAω ∈ R

n×n×3. Each blurring matrix A(i) is defined as follows:

akl =

 1
σ
√

2π
exp

(
−

(k−l)2

2σ2

)
, |k − l| ≤ r

0, otherwise
, (4.3)

where σ is a parameter that controls the amount of smoothing. Therefore, if σ is larger, the problem
becomes more ill posed.
Example 4.1. (Color image) This example shows the restoration of a blurred penguin color image by
Algorithms 1 – 3. This example compares the effects of A-tCG-FFT, A-tCGLS-FFT and A-tPCG-FFT
in color image deblurring, and the image is contaminated by cross-channel blur and additive noise.
The cross-channel bluring is determined by the matrix

Ablur =


0.7 0.15 0.15

0.15 0.7 0.15
0.15 0.15 0.7

 .
For the within-channel blurring, we set σ = 4 and r = 7. Let Aυ(:,:,1) = µA(2),Aυ(:,:,2) = βA(2),

Aυ(:,:,3) = γA(2), and Aω = I. The condition number of the obtained front slice of A is cond(A(:, :
, k)) = 8.7257e + 04(k = 1, 2, 3). Let the two noise levels be ν = 10−2 and ν = 10−3, respectively.
Formula (4.2) can be used to generate the blurred images, and B = Btrue + E adds noise to the blurred
image. Figure 2 shows the original image and the blurred and noisy image with ν = 10−3.

(a) (b)

Figure 2. (a) The original image of penguin, (b) the blurred and noisy image of penguin with
ν = 10−3.

The essence of Algorithms 1–3 is to solve three inner and outer loops in the Fourier domain in turn.
Each outer iteration uses the discrepancy principle to select the appropriate regularization parameter µ.
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We specify η = 1.05 and ρ = 1
2 . We set the initial solution of inner iteration as X0 = Xk,µ j−1 , and the

convergence criterion of the inner iteration is given by the residual norm being less than tol = 10−6.
Table 2 lists CPU time, SNR and relative error of three algorithms for the restoration of penguin

image. We can see from Table 2 that the A-tPCG-FFT algorithm needs the least CPU time among all
the methods, while the A-tCG-FFT algorithm is the most time consuming. There is little difference
between SNR and relative errors for all the methods.

Table 2. CPU time, SNR and relative error of different algorithms for the restoration of
penguin image.

Noise level Method Relative error SNR CPU(secs)

10−3
A-tCG-FFT 2.94 × 10−2 22.26 27.98
A-tCGLS-FFT 2.94 × 10−2 22.26 16.68
A-tPCG-FFT 2.93 × 10−2 22.27 7.00

10−2
A-tCG-FFT 5.01 × 10−2 17.61 12.79
A-tCGLS-FFT 5.01 × 10−2 17.61 7.84
A-tPCG-FFT 5.01 × 10−2 17.61 3.46

Figure 3 shows the change of relative error with CPU time for the algorithms to process the third
slice of penguin image with ν = 10−3 in Table 2. Figure 3 shows the iterative solution of the inner
iteration and outer iteration of the three algorithms. It can be seen that when the regularization
parameters are selected, the relative error norm values of the iterative solutions obtained by the
inner iteration process of the three algorithms are gradually decreasing. Similarly, after the three
algorithms automatically update the regularization parameters in the outer iteration, the iterative
solutions corresponding to the updated regularization parameters are all smaller than the relative error
norm of the iterative solutions before updating. We can still get from Figure 3 that the A-tPCG-FFT
algorithm converges the fastest among all methods.

0 1 2 3 4 5 6

time
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re
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o
rm

A-tCG-FFT

A-tCGLS-FFT

A-tPCG-FFT

Figure 3. Comparison of relative errors versus CPU time for different methods.

Figure 4 displays the recovered penguin image for Algorithms 1–3 corresponding to the results with
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ν = 10−3 in Table 2.

(a) (b) (c)

Figure 4. Recovered penguin images with different methods. (a) A-tCG-FFT, (b) A-tCGLS-
FFT and (c) A-tPCG-FFT.

From Example 4.1 we can see that the A-tPCG-FFT method displays the best convergence among
three methods.
Example 4.2 (Color video) We recover 10 consecutive frames (frames 41 to 50) of blurred and noised
vipbarcode color video from MATLAB. Each frame has 240 × 240 pixels. We store 10 original video
frames in the tensor Xtrue ∈ R

240×30×240, obtained by stacking the grayscale images that constitute the
three channels of each blurred color frame.

These frames are blurred by (4.2), whereAυ is a 3-way tensors such thatAυ(:,:,1) = A(1),Aυ(:,:,i) = O

for i = 2, . . . 30, and Aω = I. Using σ = 3 and r = 5 to build the blurring matrices with periodic
boundary conditions. The condition number of the obtained first slice of A is 1.6191e + 03, and the
condition number of the remaining frontal sections of A is infinite. Use B = Btrue + E adds noise
to the blurred image, and the considered noise levels are ν = 10−2 and ν = 10−3. We set the initial
solutions of their iterations as X0 = Xk,µ j−1 , and under the convergence condition that the residual norm
is less than tol = 10−6. Using the discrepancy principle to determine regularization parameters, specify
η = 1.1, α0 = 1

2 and ρ = 1
2 . Table 3 records the concrete results of recovering these 10 frames of video

data, including relative error, SNR and CPU time. Because the same criteria for selecting parameters
and stopping iteration are set, these three algorithms differ slightly in relative error and SNR. However,
the A-tPCG-FFT algorithm has a strong advantage in stopping iteration CPU time.

Table 3. CPU time, SNR and relative error of different algorithms for the restoration of 10
frames of vipbarcode.

Noise level Method Relative error SNR time (secs)

10−3
A-tCG-FFT 1.55 × 10−2 25.91 115.08
A-tCGLS-FFT 1.55 × 10−2 25.91 68.25
A-tPCG-FFT 1.55 × 10−2 25.91 20.44

10−2
A-tCG-FFT 4.66 × 10−2 16.36 73.03
A-tCGLS-FFT 4.66 × 10−2 16.36 44.15
A-tPCG-FFT 4.66 × 10−2 16.36 12.53
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Below we analyze the video recovery process of the 50th frame. Figure 5 shows the 50th original
frame of this video file and the blurred and noisy video frame with ν = 10−3.

(a) (b)

Figure 5. (a) The original 50th frame of vipbarcode, (b) The blurred and noisy 50th frame
of vipbarcode with ν = 10−3.

Figure 6 shows the variation of the relative errors of the third piece of the 50th video frame with
CPU time when the three algorithms process ν = 10−3 in Table 3.

As can be seen from Figure 6, the convergence speed of algorithm A-tPCG-FFT is the fastest among
the three algorithms. We can also get from Figure 6 that with the automatic updating of regularization
parameters by the outer iteration and the progress of the inner iteration algorithm, the relative error
norms of the iterative solutions obtained by the three algorithms are gradually decreasing.
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Figure 6. Comparison of relative errors versus CPU time for different methods.

Figure 7 is the result of the restoration of the blurred and noisy image of the 50th frame by A-tCG-
FFT, A-tCGLS-FFT, and A-tPCG-FFT.

According to the results of Example 4.2, A-tCGLS-FFT and A-tPCG-FFT require less CPU time
compared to A-tCG-FFT when recovering the data of each frame of video, so when processing multi-
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frame video data, this lead time will be accumulated in each process. That is to say, the more video
frames, the more obvious the time advantages of A-tCGLS-FFT and A-tPCG-FFT, especially A-tPCG-
FFT.

(a) (b) (c)

Figure 7. Recovered the 50th frame with different methods. (a) A-tCG-FFT, (b) AtCGLS-
FFT and (c) A-tPCG-FFT.

5. Conclusions

Based on the matrix conjugate gradient method, this paper presents three types of tensor Conjugate-
Gradient methods for solving large-scale linear discrete ill-posed problems in tensor form. Firstly,
we project the tensor equation to Fourier domain, and propose a strategy to automatically determine
the regularization parameters of the tensor conjugate gradient method in the Fourier domain (A-tCG-
FFT). In addition, we developed the A-tCGLS-FFT method and the preconditioned version of A-tCG-
FFT. These proposed methods are used in different examples of color image and video restoration.
Numerical experiments show that the tensor conjugate gradient methods are effective in solving ill-
posed problems with t-product structure the Fourier domain.
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