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1. Introduction

The study of neural networks (NNs) has attracted considerable attention among researchers over
the past two decades because it plays an important role in a wide range of applications such as
associative memory, automatic control, pattern recognition, image processing, secure communication
and optimization problems, see for examples [1–7]. Recently, the extension of real-valued NNs such
as complex-valued NNs and quaternion-valued NNs have attracted significant attention due to their
ability to solve a variety of engineering problems [8–13, 22, 23]. It is important to point out that all
of these applications depend on the stability of the equilibrium of NNs. Thus, the stability analysis is
a necessary step for the design and applications of NNs. As a result, a number of theoretical results
concerning the stability analysis of NNs using Lyapunov-Krasovskii functionals (LKFs) and linear
matrix inequalities (LMIs) recently have been published [24–27].

On the other hand, Clifford algebra (geometric algebra) is an effective and powerful framework that
can be used to represent and solve geometrical problems, and as a result, it is successfully applied
to neural computing, computer and robot vision, and other engineering problems [28, 29]. As such,
Clifford-valued NNs have become one of the most active research fields, as they are generalizations
of real-valued, complex-valued, and quaternion-valued NNs [30, 31]. Moreover, Clifford-valued
NNs have been proven to be superior to real-valued, complex-valued, and quaternion-valued NNs in
dealing with multidimensional data as well as spatial geometric transformations [29,31–33]. However,
Clifford-valued NNs have more complicated dynamical properties than traditional networks. Hence,
only a few studies have been conducted on the dynamics of Clifford-valued NNs [34–38]. For example,
by using the system decomposition method, some sufficient conditions are derived in terms of real-
valued LMI to ensure the global stability of Clifford-valued recurrent NNs in [31]. By utilizing the
homeomorphism principle and the Cauchy-Schwarz algorithm, sufficient conditions for the global
stability of Clifford-valued neutral-type NNs are obtained in [35]. Based on the LKF and LMI
approach, the existence and global asymptotic stability of Clifford-valued NNs with impulsive effects
have been established in [37]. Some other related results can be found in [32–34, 36].

The Takagi-Sugeno (T-S) fuzzy model is introduced in [39], which has performed as an effective
tool for modeling and analyzing complex nonlinear systems. It is worth mentioning that the T-S fuzzy
model has the advantage of being able to approximate a nonlinear system with linear models. Unlike
typical NN structures, T-S fuzzy NNs have fuzzy operations and they are able to preserve the direct
correlation between the cells [40,41]. Recently, T-S fuzzy NNs have become one of the most important
research topics, and many studies have proposed T-S fuzzy logic into NNs in order to enhance the
performance of NNs [42–44]. For example, by employing the LKFs and matrix inequality technique,
the authors of [43] have determined the exponential convergence for T-S fuzzy complex-valued NNs
including impulsive effects and time delays. By decomposing the original Clifford-valued NNs into
2mn-dimensional real-valued NNs the authors of [44] have derived the global asymptotic stability of
T-S fuzzy Clifford-valued NNs with time-varying delays and impulses.

On the other hand, time delays inherently occur in NN implementations and they can cause
undesirable system behaviours. Therefore, it is essential to study how delays affect the dynamics of the
system. Recently, a lot of research results have been published regarding the dynamical analysis of NNs
by considering various time delays [31–33, 45–47, 53, 54]. In addition, time delay in the leakage term
also has a great impact on the dynamics of NNs. Hence, it is essential to study how time delays and
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leakage terms affect the system’s dynamics [11, 24, 34, 35, 49, 50]. Similar to time delays, impulsive
perturbations also affect the dynamics of NNs. Therefore, it is important to consider the impulsive
effects when analysing the dynamics of NNs [48–52].

By the above discussions, we aim to investigate the global asymptotic stability of T-S fuzzy Clifford-
valued delayed NNs with impulses by applying the system decomposition method. To the best of
our knowledge, few studies have investigated the stability analysis of Clifford-valued NNs with time
delays by the decomposition method. However, T-S fuzzy Clifford-valued NNs with leakage delays
and impulses have not been fully explored and are not receiving much attention, which motivates us
to investigate this paper. This paper has the following main merits: 1) To represent more realistic
dynamics of Clifford-valued NNs, we present a general form of T-S fuzzy Clifford-valued NNs with
time delays and impulsive effects. 2) The system decomposition method is employed to examine the
global asymptotically stability of T-S fuzzy Clifford-valued NNs. 3) By considering suitable LKFs that
contain double integral terms and by employing integral inequalities, enhanced stability conditions for
the concerned NN model are derived in terms of real-valued LMIs, which could be verified directly by
the MATLAB LMI toolbox.

The paper is structured as follows: Section 2 provides the problem model. Section 3 gives the main
results of this paper. Section 4 discusses a numerical example that demonstrate the feasibility of the
derived results. Section 5 shows the conclusion of this paper.

2. Preliminaries and model description

2.1. Notations

The Clifford algebra over R is defined asAwith m generators. Let Rn,An denote the n-dimensional
real and real Clifford vector space, respectively. Rn×m, An×m denote the set of all n × m real and real
Clifford matrices, respectively. The superscript T and ∗ denote, respectively, the matrix transposition
and involution transposition. The matrix P > 0 (P < 0) means that P is the positive (negative) definite
matrix. ⋆ denotes the elements below the main diagonal of a symmetric matrix. I is the identity matrix
with appropriate dimensions.

2.2. Clifford algebra

The real Clifford algebra over Rm is defined as

A =

{ ∑
A⊆{1,2,...,m}

aAeA, aA ∈ R
}
,

where eA = er1er2 . . . erν with A = {r1, r2, . . . , rν}, 1 ≤ r1 < r2 < . . . < rν ≤ m. The Clifford generators
e∅ = e0 = 1 and er = e{r}, r = 1, 2, . . . ,m are assumed to satisfy eie j + e jei = 0, i , j, i, j = 1, 2, . . . ,m,
e2

i = −1, i = 1, 2, . . . ,m. Moreover, the product of Clifford generators of e4, e5, e6, e7 can be defined

as e4e5e6e7 = e4567. Let Γ = {∅, 1, 2, . . . , A, . . . , 12 . . .m}, we have A =
{∑

A
aAeA, aA ∈ R

}
, where∑

A
denotes

∑
A∈Γ

and A is isomorphic to R2m
. The involution of Clifford number u =

∑
A

uAeA is defined

by ū =
∑
A

uAēA, where ēA = (−1)
ϱ[A](ϱ[A]+1)

2 eA and ϱ[A] = 0 if A = ∅. ϱ[A] = ν if A = r1r2 . . . rν and
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eAēA = ēAeA = 1. The Clifford-valued function defined as u =
∑
A

uAeA : R → A, where uA : R → R,

and its derivative is given by du(t)
dt =

∑
A

duA(t)
dt eA, where A ∈ Γ and

∑
A

is the short form of
∑
A∈Γ

. We refer

the reader to [29–31] for more information about Clifford algebra.

2.3. Problem definition

Consider the following Clifford-valued NNs with time-varying delays and leakage termsu̇(t) = −Du(t − σ) + A f (u(t − τ(t))) + L, t ≥ 0,
u(t) = ψ(t), t ∈ [−ρ, 0],

(2.1)

where u(t) = (u1(t), ..., un(t))T ∈ An denotes the neuron state vector; D = diag(d1, ..., dn) ∈ Rn×n is
the self feedback connection weight matrix with di > 0 (i = 1, 2, ..., n); A = (ai j)n×n ∈ A

n×n is the
delayed connection weight matrix; f (u(t − τ(t))) =

(
f1(u1(t − τ(t))), ..., fn(un(t − τ(t)))

)T : An → An

is the Clifford-valued activation function; L = (l1, ..., ln)T ∈ An is the Clifford-valued external input
vector; σ > 0 denotes the leakage delay; τ(t) denotes the time-varying delays satisfies 0 ≤ τ(t) ≤ τ,
τ̇(t) ≤ µ < 1 where τ and µ are real constants; ψ(t) is the initial condition which is continuously
differential on t ∈ [−ρ, 0] and ρ = max{σ, τ}.
Assumption 1: For all j = 1, ..., n, the neuron activation functions f j(·) is continuous and bounded,
there exist positive diagonal matrix K = diag{k1, ..., kn} such that

| f j(x) − f j(y)|A ≤ k j|x − y|A, ∀x, y ∈ A.

It is obvious from Assumption 1 that,

( f (x) − f (y))∗( f (x) − f (y)) ≤ (x − y)∗KT K(x − y). (2.2)

Theorem 2.1. (Existence of equilibrium point) Under Assumption 1, there exists an equilibrium point
u∗ ∈ An of NNs (2.1) if

−Du∗ + A f (u∗) + L = 0. (2.3)

Proof: Since the activation function of NNs (2.1) is bounded, there exist constants K j such that,

| f j(u j)|A ≤ K j for all u j ∈ A, j = 1, 2, ..., n. Let K =
( n∑

j=1
K2

j
) 1

2 , then ∥ f (u)∥A ≤ K for

u = (u1, u2, ..., un) ∈ An. According to the self-feedback connection weight matrix D > 0 that D
is invertible. We denote Ω = {u ∈ An : ∥u∥ ≤ ∥D−1∥(∥A∥K + ∥J∥)} and define the mapAn −→ An by

H(u) = D−1(A f (u) + J).

Here,H is a continuous map and by applying ∥ f (u)∥A ≤ K, we obtain that,

∥H(u)∥ ≤ ∥D−1∥(∥A∥K + ∥J∥).

Thus,H maps Ω into itself. By Brouwers fixed point theorem, it can be derived that there exist a fixed
point u∗ ofH , satisfying

D−1(A f (u∗) + J) = u∗.
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Pre multiplying by D on two sides, gives

−Du∗ + A f (u∗) + J = 0

which is equivalent to −Du∗ + A f (u∗) + J = 0. This completes the proof.

Remark 2.2. According to the above Assumption 1, this paper assumes that Clifford-valued activation
functions satisfy Lipschitz conditions. Similar to previous results [12,13], we consider the boundedness
of activation functions in order to derive the existence of the equilibrium point. Obviously, this
assumption of boundedness can lead to limitations in choosing activation functions. Therefore, the
boundedness of solutions is one of the most important aspects of the systems that needs to be taken into
account, see for examples [14–21].

Conveniently, we transform v(t) = u(t) − u∗ to shift the equilibrium point. Then, NN (2.1) can be
re-written as

v̇(t) = −Dv(t − σ) + Ag(v(t − τ(t))), t ≥ 0, (2.4)

where v(t) is the state vector, φ(t) = ψ(t) − u∗ is the initial condition and the transformed activation
function g(v(·)) = f ((u(·)) + u∗ + L) − f (u∗ + L) satisfies

|g j(x) − g j(y)|A ≤ k j|x − y|A, ∀x, y ∈ A, j = 1, ..., n. (2.5)

Based on [39–43], the T-S fuzzy Clifford-valued NNs can be shown as follows

Plant Rule p:
If χ1(t) is ϖp1 and χ2(t) is ϖp2 and ... and χg(t) is ϖpg, Thenv̇(t) = −Dpv(t − σ) + Apg(v(t − τ(t))), t ≥ 0,

v(t) = φ(t), t ∈ [−ρ, 0],
(2.6)

where χr(t), r = 1, ..., g is the premise variable; ϖpr, p = 1, ...,m; r = 1, ..., g is the fuzzy set and
m is the total number of If-Then rules. Using the fuzzy model, the final outcome of the T-S fuzzy
Clifford-valued NN can be determined as follows

v̇(t) =

m∑
p=1

hp(χ(t))
{
− Dpv(t − σ) + Apg(v(t − τ(t)))

}
m∑

p=1

hp(χ(t))
, t ≥ 0,

v(t) = φ(t), t ∈ [−ρ, 0],

(2.7)

or equivalently 
v̇(t) =

m∑
p=1

λp(χ(t))
{
− Dpv(t − σ) + Apg(v(t − τ(t)))

}
, t ≥ 0,

v(t) = φ(t), t ∈ [−ρ, 0],

(2.8)
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where χ(t) = (χ1(t), ..., χg(t))T , λp(χ(t)) = hp(χ(t))
m∑

p=1
hp(χ(t))

and hp(χ(t)) =
g∏

r=1
ϖpr(χ(t)). The term ϖpr(χ(t)) is

the grade membership of χr(t) in ϖpr. From the fuzzy set theory, we have hp(χ(t)) ≥ 0, p = 1, ...,m

and
m∑

p=1
λp(χ(t)) = 1 for all t ≥ 0.

When the Clifford-valued NNs (2.8) is incorporated with impulse effects, we have
v̇(t) =

m∑
p=1

λp(χ(t))
{
− Dpv(t − σ) + Apg(v(t − τ(t)))

}
, t ≥ 0, t , tk,

△v(tk) = v(t+k ) − v(t−k ) = Ik(v(t−k )), t = tk, k ∈ Z+,

v(t) = φ(t), t ∈ [−ρ, 0],

(2.9)

where △v(tk) = v(t+k ) − v(t−k ) is the impulse at moments tk and v(t+k ) and v(t−k ) denotes the right and left
hand limits of v(tk), respectively. In addition, Ik = diag{I1, ..., In} ∈ R

n×n denotes the impulsive matrix
and the impulse time tk satisfies 0 = t1 < t2 < ... tk < ...→ ∞ and inf

k∈Z+
{tk − tk−1} > 0.

3. Main results

First, we use eAēA = ēAeA = 1 to rewrite the original Clifford-valued NNs. Similar to the papers
[30,31,35,37], it is simple to obtain a unique GC satisfying GCeCgAeA = (−1)ϱ(B.Ā)GCgAeB = GB.ĀgAeB,
which implies the following transformation NNs (3.1).

The second term in NN (2.9) can be defined as

Apg(v(t − τ(t))) =
∑

C

AC
p eC

∑
B

gB(v(t − τ(t)))eB

=
∑

A

∑
B

(−1)ϱ[A.B̄]AA.B̄
p (−1)ϱ[A.B̄]eAēBgB(v(t − τ(t)))eB

= (−1)2ϱ[A.B̄]
∑

A

∑
B

AA.B̄
p gB(v(t − τ(t)))eAēBeB

=
∑

A

∑
B

AA.B̄
p gB(v(t − τ(t)))eA.

Then, we can decompose NN (2.9) into the following real-valued one:
v̇A(t) =

m∑
p=1

λp(χ(t))
{
− DpvA(t − σ) +

∑
A

AA·B̄
p gA(v(t − τ(t)))

}
, t ≥ 0, t , tk,

△vA(tk) = vA(t+k ) − vA(t−k ) = Ik(vA(t−k )), t = tk, k ∈ Z+, A ∈ Γ,

vA(t) = φA(t), t ∈ [−ρ, 0],

(3.1)

where

vA(t − σ) =(vA
1 (t − σ), ..., vA

n (t − σ))T , v(t − σ) =
∑

A

vA(t − σ)eA,

g(v(t − τ(t))) =
∑

B

gB(vC1(t − τ(t)), ..., vC2m (t − τ(t)))eB =
∑

B

gB(v(t − τ(t)))eB,
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Ap =
∑

C

AC
p eC, AA.B̄

p = (−1)ϱ[A.B̄]AC
p , eAēB = (−1)ϱ[A.B̄]eC.

According to Clifford algebra, NN (3.1) can be expressed as a new real-valued NNs. Let

v̂(t) =
(
(v0(t))T , ..., (vA(t))T , ..., (v12...m(t))T )T

∈ R2mn,

ĝ(v̂(t − τ(t))) =
(
(g0(v(t − τ(t))))T , ..., (gA(v(t − τ(t))))T , ..., (g12...m(v(t − τ(t))))T )T

∈ R2mn,

D̂p =


Dp 0 . . . 0
0 Dp . . . 0
...

...
. . .

...

0 0 . . . Dp


2mn×2mn

,

Îk =


Ik 0 . . . 0
0 Ik . . . 0
...

...
. . .

...

0 0 . . . Ik


2mn×2mn

,

Âp =


A0

p . . . AA
p . . . A12...m

p

A1
p . . . A1.A

p . . . A1.12...m
p

... · · ·
...

. . .
...

A12...m
p . . . A12...m.A

p . . . A12...m.12...m
p


2mn×2mn

,

φ̂(t) = [(φ0(t))T , ..., (φA(t))T , ...(φ12...m(t))T ]T ∈ R2mn.

Then, NN (3.1) can be written as
˙̂v(t) =

m∑
p=1

λp(χ(t))
{
− D̂pv̂(t − σ) + Âpĝ(v̂(t − τ(t)))

}
, t ≥ 0, t , tk,

△v̂(tk) = v̂(t+k ) − v̂(t−k ) = Îk(v̂(t−k )), t = tk, k ∈ Z+,

v̂(t) = φ̂(t), t ∈ [−ρ, 0].

(3.2)

Furthermore, (2.2) can be written in the following form:

(ĝ(x) − ĝ(y))T (ĝ(x) − ĝ(y)) ≤ (x − y)T K̂(x − y), (3.3)

where K̂ =


KT K 0 . . . 0

0 KT K . . . 0
...

...
. . .

...

0 0 . . . KT K


2mn×2mn

.

Assumption 2: The impulsive effects Îk(v̂(t−k )) are assumed to satisfy the following conditions

△v̂(tk) = Îk(v̂(t−k )) = −Ĵk

{
v̂(t−k ) − D̂p

∫ tk

tk−σ
v̂(s)ds

}
, k ∈ Z+,

where Ĵk =


Jk 0 . . . 0
0 Jk . . . 0
...

...
. . .

...

0 0 . . . Jk


2mn×2mn

and Jk = diag{J1, ..., Jn} ∈ R
n×n.
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Lemma 3.1. [53] For any constant positive definite matrix M = MT ∈ R2mn×2mn, the following
inequality is true for all continuously differentiable function v̂(α) in [η1, η2] ∈ R2mn

−(η2 − η1)
∫ t−η1

t−η2

v̂T (α)Mv̂(α)dα ≤ −
( ∫ t−η1

t−η2

v̂(α)dα
)T

M
( ∫ t−η1

t−η2

v̂(α)dα
)
.

Lemma 3.2. [54] For any constant positive definite matrix M = MT ∈ R2mn×2mn, any constant matrix

X ∈ R2n×2mn, any vector θ1, θ2 ∈ R
2mn, and ϑ ∈ (0, 1), such that

(
M X
XT M

)
> 0, the following condition

holds

1
ϑ
θT

1 Mθ1 +
1

1 − ϑ
θT

2 Mθ2 ≥

(
θ1

θ2

)T (
M X
XT M

) (
θ1

θ2

)
.

Global asymptotic stability analysis

In this subsection, we will derive the sufficient criteria to assure the global asymptotic stability of
the considered NNs (3.2) using the LKFs and LMI method.

Theorem 3.3. Suppose Assumptions 1 and 2 holds. The NN model (3.2) is globally asymptotically

stable if there exist positive definite symmetric matrices P, Q1, Q2, Q3, R1, R2, U,
(
S11 S12

⋆ S22

)
> 0

and
(
T11 T12

⋆ T22

)
> 0, any matrix X and scalars ϵ1 > 0 such that the following LMIs hold for all

p = 1, 2, ...,m: (
P (I − Ĵk)T P
⋆ P

)
≥ 0, k ∈ Z+, (3.4)

Ξp =


(Θi, j,p)6×6 (τR1 + σR2)ΠT (

√
τS22 +

√
σT22)ΠT

⋆ −R1 − R2 0
⋆ ⋆ −S22 − T22

 < 0, (3.5)

where Θ1,1,p = −PD̂p − D̂pP + Q1 + Q2 + Q3 − R1 − R2 + σ
2U, Θ1,2,p = RT

1 − X + ST
12, Θ1,3,p = X,

Θ1,4,p = R2+TT
12,Θ1,5,p = PÂp,Θ1,6,p = D̂T

p PD̂p,Θ2,2,p = −(1−µ)Q1−R1−R1+X+XT+τS11−2ST
12+ϵ1K̂,

Θ2,3,p = R1 −X, Θ3,3,p = −Q2 −R1, Θ4,4,p = −Q3 −R2 +σT11 − 2TT
12, Θ5,5,p = −ϵ1I, Θ5,6,p = −ÂT

p PD̂p,
Θ6,6,p = −U, Π =

[
0 0 0 − D̂T

p ÂT
p 0

]T .

Proof: Construct the following LKF for NN model (3.2):

V(t, v(t), p) =
6∑

i=1

Vi(t, v(t), p) (3.6)

where

V1(t, v(t), p) =
(
v̂(t) − D̂p

∫ t

t−σ
v̂(s)ds

)T

P
(
v̂(t) − D̂p

∫ t

t−σ
v̂(s)ds

)
,

V2(t, v(t), p) =
∫ t

t−τ(t)
v̂T (s)Q1v̂(s)ds +

∫ t

t−τ
v̂T (s)Q2v̂(s)ds
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+

∫ t

t−σ
v̂T (s)Q3v̂(s)ds,

V3(t, v(t), p) = τ
∫ t

t−τ
(s − (t − τ))˙̂vT (s)R1 ˙̂v(s)ds

+ σ

∫ t

t−σ
(s − (t − σ))˙̂vT (s)R2 ˙̂v(s)ds,

V4(t, v(t), p) =
∫ t

0

∫ u

u−τ(u)

(
v̂(u − τ(u))

˙̂v(s)

)T (
S11 S12

⋆ S22

) (
v̂(u − τ(u))

˙̂v(s)

)
dsdu,

+

∫ t

0

∫ u

u−σ

(
v̂(u − σ)

˙̂v(s)

)T (
T11 T12

⋆ T22

) (
v̂(u − σ)

˙̂v(s)

)
dsdu,

V5(t, v(t), p) =
∫ t

t−τ
(s − (t − τ))˙̂vT (s)S22 ˙̂v(s)ds

+

∫ t

t−σ
(s − (t − σ))˙̂vT (s)T22 ˙̂v(s)ds,

V6(t, v(t), p) = σ
∫ t

t−σ
(s − (t − σ))v̂T (s)Uv̂(s)ds.

When t = tk, k ∈ Z+, we can compute

v̂(tk) − D̂p

∫ tk

tk−σ
v̂(s)ds = v̂(t−k ) − Ĵk

(
v̂(t−k ) − D̂p

∫ tk

tk−σ
v̂(s)ds

)
− D̂p

∫ tk

tk−σ
v̂(s)ds

= v̂(t−k ) − Ĵkv̂(t−k ) + ĴkD̂p

∫ tk

tk−σ
v̂(s)ds − D̂p

∫ tk

tk−σ
v̂(s)ds

= (I − Ĵk)v̂(t−k ) − (I − Ĵk)D̂p

∫ tk

tk−σ
v̂(s)ds

= (I − Ĵk)
[
v̂(t−k ) − D̂p

∫ tk

tk−σ
v̂(s)ds

]
. (3.7)

Moreover, it follows from (3.4) that(
P (I − Ĵk)T P
⋆ P

)
≥ 0

⇔

(
I −(I − Ĵk)T

0 I

) (
P (I − Ĵk)T P
⋆ P

) (
I 0

−(I − Ĵk) I

)
≥ 0

⇔

(
P − (I − Ĵk)T P(I − Ĵk) 0

⋆ P

)
≥ 0

⇔ P − (I − Ĵk)T P(I − Ĵk) ≥ 0. (3.8)

Combining (3.7) and (3.8), we have

V1(tk, v(t−k ), p) =
(
v̂(tk) − D̂p

∫ tk

tk−σ
v̂(s)ds

)T

P
(
v̂(tk) − D̂p

∫ tk

tk−σ
v̂(s)ds

)
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=

(
v̂(t−k ) − D̂p

∫ tk

tk−σ
v̂(s)ds

)T

(I − Ĵk)T P(I − Jk)
(
v̂(t−k ) − D̂p

∫ tk

tk−σ
v̂(s)ds

)
≤

(
v̂(t−k ) − D̂p

∫ tk

tk−σ
v̂(s)ds

)T

P
(
v̂(t−k ) − D̂p

∫ tk

tk−σ
v̂(s)ds

)
V1(tk, v(t−k ), p) ≤ V1(t−k , v(t−k ), p). (3.9)

It is easy to verify that V2(tk, v(t), p) ≤ V2(t−k , v(t−k ), p), V3(tk, v(t), p) ≤ V3(t−k , v(t−k ), p), V4(tk, v(t), p) ≤
V4(t−k , v(t−k ), p), V5(tk, v(t), p) ≤ V5(t−k , v(t−k ), p) and V6(tk, v(t), p) ≤ V6(t−k , v(t−k ), p) which implies that

V(tk, v(t), p) ≤ V(t−k , v(t−k ), p), k ∈ Z+. (3.10)

When t , tk, k ∈ Z+, we can compute the upper right derivative of (3.6) along the trajectories of (3.2),
we have

D+V(t, v(t), p) =
6∑

i=1

D+Vi(t, v(t), p), (3.11)

where

D+V1(t, v(t), p) =
(
v̂(t) − D̂p

∫ t

t−σ
v̂(s)ds

)T

P
(
˙̂v(t) − Dpv̂(t) + D̂pv̂(t − σ)

)
+

(
˙̂v(t) − Dpv̂(t) + D̂pv̂(t − σ)

)T

P
(
v̂(t) − D̂p

∫ t

t−σ
v̂(s)ds

)
=

(
v̂(t) − D̂p

∫ t

t−σ
v̂(s)ds

)T

P
( m∑

p=1

λp(χ(t))
{
− D̂pv̂(t) + Âpĝ(v̂(t − τ(t)))

})
+

( m∑
p=1

λp(χ(t))
{
− D̂pv̂(t) + Âpĝ(v̂(t − τ(t)))

})T

P
(
v̂(t) − D̂p

∫ t

t−σ
v̂(s)ds

)
, (3.12)

D+V2(t, v(t), p) = v̂T (t)(Q1 +Q2 +Q3)v̂(t) − (1 − τ̇(t))v̂T (t − τ(t))Q1v̂(t − τ(t))
− v̂T (t − τ)Q2v̂(t − τ) − v̂T (t − σ)Q3v̂(t − σ), (3.13)

D+V3(t, v(t), p) = ˙̂vT (t)(τ2R1 + σ
2R2)˙̂v(t) − τ

∫ t

t−τ

˙̂vT (s)R1 ˙̂v(s)ds − σ
∫ t

t−σ

˙̂vT (s)R2 ˙̂v(s)ds. (3.14)

The first integral term in (3.14) can be defined as

− τ

∫ t

t−τ

˙̂vT (s)R1 ˙̂v(s)ds = −
∫ t−τ(t)

t−τ

˙̂vT (s)R1 ˙̂v(s)ds −
∫ t

t−τ(t)

˙̂vT (s)R1 ˙̂v(s)ds. (3.15)

By applying Lemma (3.1) in the following forms

−τ

∫ t

t−τ

˙̂vT (s)R1 ˙̂v(s)ds ≤ −
τ

τ − τ(t)

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)T

R1

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)

−
τ

τ(t)

( ∫ t

t−τ(t)

˙̂v(s)ds
)T

R1

( ∫ t

t−τ(t)

˙̂v(s)ds
)
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= −

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)T

R1

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)

−
τ(t)

τ − τ(t)

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)T

R1

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)

−

( ∫ t

t−τ(t)

˙̂v(s)ds
)T

R1

( ∫ t

t−τ(t)

˙̂v(s)ds
)

−
τ − τ(t)
τ(t)

( ∫ t

t−τ(t)

˙̂v(s)ds
)T

R1

( ∫ t

t−τ(t)

˙̂v(s)ds
)
. (3.16)

If
(
R1 X
XT R1

)
≥ 0, by Lemma (3.2), the following inequality true:


√

τ(t)
τ−τ(t)

(∫ t−τ(t)

t−τ

˙̂v(s)ds
)

√
τ−τ(t)
τ(t)

(∫ t

t−τ(t)

˙̂v(s)ds
)


T (
R1 X
XT R1

) 
√

τ(t)
τ−τ(t)

(∫ t−τ(t)

t−τ

˙̂v(s)ds
)

√
τ−τ(t)
τ(t)

(∫ t

t−τ(t)

˙̂v(s)ds
)
 ≥ 0, (3.17)

which implies

−
τ(t)

τ − τ(t)

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)T

R1

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)
−
τ − τ(t)
τ(t)

( ∫ t

t−τ(t)

˙̂v(s)ds
)T

R1

( ∫ t

t−τ(t)

˙̂v(s)ds
)

≤ −

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)T

X
( ∫ t

t−τ(t)

˙̂v(s)ds
)
−

( ∫ t

t−τ(t)

˙̂v(s)ds
)T

XT
( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)
. (3.18)

Combining (3.16) and (3.18), we have

−τ

∫ t

t−τ

˙̂vT (s)R1 ˙̂v(s)ds ≤ −
( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)T

R1

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)
−

( ∫ t

t−τ(t)

˙̂v(s)ds
)T

R1

( ∫ t

t−τ(t)

˙̂v(s)ds
)

−

( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)T

X
( ∫ t

t−τ(t)

˙̂v(s)ds
)
−

( ∫ t

t−τ(t)

˙̂v(s)ds
)T

XT
( ∫ t−τ(t)

t−τ

˙̂v(s)ds
)
.

(3.19)

By applying Lemma (3.1), the second integral term in (3.14) can be defined as

−σ

∫ t

t−σ

˙̂vT (s)R2 ˙̂v(s)ds ≤ −
( ∫ t

t−σ

˙̂v(s)ds
)T

R2

( ∫ t

t−σ

˙̂v(s)ds
)
. (3.20)

D+V4(t, v(t), p) =
∫ t

t−τ(t)

(
v̂(t − τ(t))

˙̂v(s)

)T (
S11 S12

⋆ S22

) (
v̂(t − τ(t))

˙̂v(s)

)
ds

+

∫ t

t−σ

(
v̂(t − σ)

˙̂v(s)

)T (
T11 T12

⋆ T22

) (
v̂(t − σ)

˙̂v(s)

)
ds

= τ(t)v̂T (t − τ(t))S11v̂(t − τ(t)) + 2v̂T (t)ST
12v̂(t − τ(t))
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− 2v̂T (t − τ(t))ST
12v̂(t − τ(t)) +

∫ t

t−τ(t)

˙̂vT (s)S22 ˙̂v(s)ds

+ σv̂T (t − σ)T11v̂(t − σ) + 2v̂T (t)TT
12v̂(t − σ)

− 2v̂T (t − σ)TT
12v̂(t − σ) +

∫ t

t−σ

˙̂vT (s)T22 ˙̂v(s)ds, (3.21)

D+V5(t, v(t), p) = ˙̂vT (t)(τS22 + σT22)˙̂v(t) −
∫ t

t−τ(t)

˙̂vT (s)S22 ˙̂v(s)ds

−

∫ t

t−σ

˙̂vT (s)T22 ˙̂v(s)ds, (3.22)

D+V6(t, v(t), p) = σ2v̂T (t)Uv̂(t) − σ
∫ t

t−σ
v̂T (s)Uv̂(s)ds. (3.23)

By applying Lemma (3.1), we get

D+V6(t, v(t), p) ≤ σ2v̂T (t)Uv̂(t) −
( ∫ t

t−σ
v̂(s)ds

)T

U
( ∫ t

t−σ
v̂(s)ds

)
. (3.24)

There exist positive scalar ϵ1 > 0. By Assumption 1, we have

0 ≤ ϵ1[v̂T (t − τ(t))K̂v̂(t − τ(t)) − ĝT (v̂(t − τ(t)))ĝ(v̂(t − τ(t)))]. (3.25)

Combining (3.11)–(3.25), we have

D+V(t, v(t), p) ≤
m∑

p=1

λp(χ(t))
{
ζT (t)

[
(Θi, j,p)6×6

+ ΠT (τ2R1 + σ
2R2 + τS22 + σT22)Π

]
ζ(t)

}
, (3.26)

where ζ(t) =
[
v̂T (t), v̂T (t − τ(t)), v̂T (t − τ), v̂T (t − σ), ĝT (v̂(t − τ(t))),

∫ t

t−σ
v̂T (s)ds

]T .

Using the Schur complement it can be derived from (3.26) that

D+V(t, v(t), p) ≤
m∑

p=1

λp(χ(t))
{
ζT (t)Ξpζ(t)

}
. (3.27)

From condition (3.5), we have

D+V(t, v(t), p) ≤ − ςζT (t)ζ(t) ≤ −ς∥v̂(t)∥2 < 0, (3.28)

for any v̂(t) , 0, where ς = ςmin(−Ξp) > 0. This implies that the equilibrium point of NN (3.2) is
globally asymptotically stable. This completes the proof of Theorem (3.3).

AIMS Mathematics Volume 8, Issue 7, 15166–15188.



15178

Remark 3.4. When the impulsive effect is absent, NN (3.2) reduces as follows:
˙̂v(t) =

m∑
p=1

λp(χ(t))
{
− D̂pv̂(t − σ) + Âpĝ(v̂(t − τ(t)))

}
, t ≥ 0,

v̂(t) = φ̂(t), t ∈ [−ρ, 0],

(3.29)

Corollary 3.5. Suppose Assumptions 1 holds. The NN model (3.29) is globally asymptotically stable

if there exist positive definite symmetric matrices P, Q1, Q2, Q3, R1, R2, U,
(
S11 S12

⋆ S22

)
> 0 and(

T11 T12

⋆ T22

)
> 0, any matrix X and scalars ϵ1 > 0 such that the following LMIs hold for all p =

1, 2, ...,m:

Ξp =


(Θi, j,p)6×6 (τR1 + σR2)ΠT (

√
τS22 +

√
σT22)ΠT

⋆ −R1 − R2 0
⋆ ⋆ −S22 − T22

 < 0, (3.30)

where Θ1,1,p = −PD̂p − D̂pP + Q1 + Q2 + Q3 − R1 − R2 + σ
2U, Θ1,2,p = RT

1 − X + ST
12, Θ1,3,p = X,

Θ1,4,p = R2+TT
12,Θ1,5,p = PÂp,Θ1,6,p = D̂T

p PD̂p,Θ2,2,p = −(1−µ)Q1−R1−R1+X+XT+τS11−2ST
12+ϵ1K̂,

Θ2,3,p = R1 −X, Θ3,3,p = −Q2 −R1, Θ4,4,p = −Q3 −R2 +σT11 − 2TT
12, Θ5,5,p = −ϵ1I, Θ5,6,p = −ÂT

p PD̂p,
Θ6,6,p = −U, Π =

[
0 0 0 − D̂T

p ÂT
p 0

]T .

Proof: Take V1(t, v(t), p), V2(t, v(t), p), V3(t, v(t), p), V4(t, v(t), p), V5(t, v(t), p), V6(t, v(t), p) same as
in LKF (3.6). The remaining proof is similar to that in Theorem (3.3), and so it is omitted.

Remark 3.6. When the leakage term is absent, NN (3.29) decreases as follows:
˙̂v(t) =

m∑
p=1

λp(χ(t))
{
− D̂pv̂(t) + Âpĝ(v̂(t − τ(t)))

}
, t ≥ 0,

v̂(t) = φ̂(t), t ∈ [−τ, 0]

(3.31)

Corollary 3.7. Suppose Assumptions 1 holds. The NN model (3.31) is globally asymptotically stable

if there exist positive definite symmetric matrices P, Q1, Q2, R1 and
(
S11 S12

⋆ S22

)
> 0, any matrix X and

scalars ϵ1 > 0 such that the following LMIs hold for all p = 1, 2, ...,m:

Ξ̄p =


(Θ̄i, j,p)4×4 τR1Π̄

T √
τS22Π̄

T

⋆ −R1 0
⋆ ⋆ −S22

 < 0, (3.32)

where Θ̄1,1,p = −PD̂p − D̂pP + Q1 + Q2 − R1, Θ̄1,2,p = RT
1 − X + ST

12, Θ̄1,3,p = X, Θ̄1,4,p = PÂp,
Θ̄2,2,p = −(1−µ)Q1−R1−R1+X+XT +τS11−2ST

12+ϵ1K̂, Θ̄2,3,p = R1−X, Θ̄3,3,p = −R1, Θ̄4,4,p = −ϵ1I,
Π̄ =

[
− D̂T

p 0 0 ÂT
p
]T .

Proof:Construct the following LKF for NN model (3.31):

V(t, v(t), p) =
5∑

i=1

Vi(t, v(t), p) (3.33)
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where

V1(t, v(t), p) = v̂(t)T Pv̂(t),

V2(t, v(t), p) =
∫ t

t−τ(t)
v̂T (s)Q1v̂(s)ds +

∫ t

t−τ
v̂T (s)Q2v̂(s)ds,

V3(t, v(t), p) = τ
∫ t

t−τ
(s − (t − τ))˙̂vT (s)R1 ˙̂v(s)ds,

V4(t, v(t), p) =
∫ t

0

∫ u

u−τ(u)

(
v̂(u − τ(u))

˙̂v(s)

)T (
S11 S12

⋆ S22

) (
v̂(u − τ(u))

˙̂v(s)

)
dsdu,

V5(t, v(t), p) =
∫ t

t−τ
(s − (t − τ))˙̂vT (s)S22 ˙̂v(s)ds.

The remaining proof is similar to that in Theorem (3.3), and so it is omitted.

Remark 3.8. According to our knowledge, there are no studies that have compared the global
asymptotic stability criteria for time-varying delays, impulse effects as well as leakage terms among
the obtained global asymptotic stability criteria for T-S fuzzy Clifford-valued NNs, which shows the
novelty of this paper.

4. Numerical example

This section provides a numerical example to demonstrate the validity of the obtained results.
Example 1: Let p = 1, 2. Consider the following plant rules for T-S fuzzy Clifford-valued NNs.

v̇(t) =
2∑

p=1

λp(χ(t))
{
− Dpv(t − σ) + Apg(v(t − τ(t)))

}
, t ≥ 0, t , tk,

△v(tk) = v(t+k ) − v(t−k ) = Ikv(t−k ), t = tk, k ∈ Z+,

v(t) = φ(t), t ∈ [−ρ, 0],

(4.1)

Plant Rule 1: If χ1(t) is ϖ11, Then
v̇(t) = −D1v(t − σ) + A1g(v(t − τ(t))), t ≥ 0, t , tk,

△v(tk) = v(t+k ) − v(t−k ) = Ikv(t−k ), t = tk, k ∈ Z+,

v(t) = φ(t), t ∈ [−ρ, 0],

Plant Rule 2: If χ1(t) is ϖ21, Then
v̇(t) = −D2v(t − σ) + A2g(v(t − τ(t))), t ≥ 0, t , tk,

△v(tk) = v(t+k ) − v(t−k ) = Ikv(t−k ), t = tk, k ∈ Z+,

v(t) = φ(t), t ∈ [−ρ, 0],

where ϖ11 is v1(t) ≤ 1, ϖ21 is v1(t) > 1, and in which the following parameters are used

D1 =

(
4 0
0 4

)
, D2 =

(
3 0
0 3

)
,
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A1 =

(
0.3e0 + 2e1 0.2e0 + 0.4e2 − 0.7e12

0.06e0 − 0.3e2 + 0.05e12 0.2e0 + 0.2e1 + 0.06e12

)
,

A2 =

(
0.2e0 + e1 0.1e0 + 0.3e2 − 0.6e12

0.05e0 − 0.2e2 + 0.4e12 0.1e0 + 0.1e1 + 0.05e12

)
,

Ik =

(
−0.5 0

0 −0.5

)
, K =

(
0.5 0
0 0.5

)
.

The Clifford generators are e2
1 = e2

2 = e2
12 = e1e2e12 = −1, e1e2 = −e2e1 = e12, e1e12 = −e12e1 = −e2,

e2e12 = −e12e2 = e1, v̇1(t) = v̇0
1(t)e0 + v̇1

1(t)e1 + v̇2
1(t)e2 + v̇12

1 (t)e12, v̇2(t) = v̇0
2(t)e0 + v̇1

2(t)e1 + v̇2
2(t)e2 +

v̇12
2 (t)e12. According to the definitions, we have

A0
1 =

(
0.3 0.2

0.06 0.2

)
, A1

1 =

(
2 0
0 0.2

)
, A2

1 =

(
0 0.4
−0.3 0

)
,

A12
1 =

(
0 −0.7

0.5 0.06

)
, A0

2 =

(
0.2 0.1

0.05 0.1

)
, A1

2 =

(
1 0
0 0.1

)
,

A2
2 =

(
0 0.3
−0.2 0

)
, A12

2 =

(
0 −0.6

0.4 0.05

)
,

and

Â1 =


A0

1 A1̄
1 A2̄

1 A1̄2
1

A1
1 A1.1̄

1 A1.2̄
1 A1.1̄2

1
A2

1 A2.1̄
1 A2.2̄

1 A2.1̄2
1

A12
1 A12.1̄

1 A12.2̄
1 A12.1̄2

1

 =


A0
1 −A1

1 −A2
1 −A12

1
A1

1 A0
1 −A12

1 A2
1

A2
1 A12

1 A0
1 −A1

1
A12

1 −A2
1 A1

1 A0
1

 ,

Â2 =


A0

2 A1̄
2 A2̄

2 A1̄2
2

A1
2 A1.1̄

2 A1.2̄
2 A1.1̄2

2
A2

2 A2.1̄
2 A2.2̄

2 A2.1̄2
2

A12
2 A12.1̄

2 A12.2̄
2 A12.1̄2

2

 =


A0
2 −A1

2 −A2
2 −A12

2
A1

2 A0
2 −A12

2 A2
2

A2
2 A12

2 A0
2 −A1

2
A12

2 −A2
2 A1

2 A0
2

 .

Choose the time-varying delay as τ(t) = 0.5 + 0.2 sin(t), which implies that the maximum
permissible upper bound is τ = 0.7. It is observable that τ̇(t) ≤ µ = 0.2 cos(t) = 0.2. The premise
variable χ(t) is chosen as a state-dependent term, that is, χ(t) = v1(t). Using the same procedure as
in [41], the membership functions can be obtained from the property of λ1(v1(t))+λ2(v1(t)) = 1, where
λ1(v1(t)) = 1

1+e−v1(t) , λ2(v1(t)) = 1 − 1
1+e−v1(t) . The LMI conditions (3.4) and (3.5) in Theorem (3.3) are

verified using MATLAB LMI toolbox with tmin = −4.0770 × 10−004.

Under the initial conditions φ1(t) = −0.9e0 + e1 − 0.2e2 − 1.6e12, φ2(t) = −e0 − e1 + 1.8e2 + 2e12, the
time responses of states v0

i (t), v1
i (t), v2

i (t), v12
i (t), i = 1, 2 are shown in Figures (1)–(6).
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Figure 1. The time responses of states v0
i (t), v1

i (t), v2
i (t), v12

i (t), i = 1, 2 of NNs (4.1) with
v1(tk) = −0.5v1(t−k ), v2(tk) = −0.5v2(t−k ) and σ = 0.10.
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Figure 2. The time responses of states v0
i (t), v1

i (t), v2
i (t), v12

i (t), i = 1, 2 of NNs (4.1) with
v1(tk) = −0.5v1(t−k ), v2(tk) = −0.5v2(t−k ) and σ = 0.
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Figure 3. The time responses of states v0
i (t), v1

i (t), v2
i (t), v12

i (t), i = 1, 2 of NNs (4.1) with
v1(tk) = v2(tk) = 0 and σ = 0.12.
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Figure 4. The time responses of states v0
i (t), v1

i (t), v2
i (t), v12

i (t), i = 1, 2 of NNs (4.1) with
v1(tk) = v2(tk) = 0 and σ = 0.12.
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Figure 5. The time responses of states v0
i (t), v1

i (t), v2
i (t), v12

i (t), i = 1, 2 of NNs (4.1) with
v1(tk) = v2(tk) = 0 and σ = 0.15 in a 2-dimensional space.
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Figure 6. The time responses of states v0
i (t), v1

i (t), v2
i (t), v12

i (t), i = 1, 2 of NNs (4.1) with
v1(tk) = v2(tk) = 0 and σ = 0.

From the above analysis, all the conditions associated with Theorem (3.3) are satisfied, then the
equilibrium point of NNs (4.1) is globally asymptotically stable.
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Remark 4.1. From example 1, it is clear that the stability behaviour of the considered T-S Clifford-
valued NNs has highly dependent on time delays in the leakage term. For instance, when σ = 0, the
time response of the states of NNs (4.1) approaches the equilibrium point, as shown in Figure (6).
When σ = 0.12 is increased, the time responses of the states of NNs (4.1) oscillate, as illustrated in
Figure (3) and Figure (4). When σ = 0.15 is constantly increased, the time response of the states of
NNs (4.1) becomes unstable, as illustrated in Figure (5).

5. Conclusions

In this paper, the problem of global asymptotic stability of T-S Clifford-valued fuzzy delayed NNs
with impulsive effects and leakage term has been investigated. By applying T-S fuzzy theory, we
first considered a general form of T-S fuzzy Clifford-valued NNs with time-varying delays. Then, we
decomposed the original Clifford-valued NNs into the 2mn-dimensional real-valued NNs in order to
solve the non-commutativity issue pertaining Clifford numbers. By considering appropriate LKFs and
integral inequalities, new sufficient criteria are obtained to guarantee the global asymptotic stability
of the considered networks. Furthermore, the results of this paper are presented in the form of LMIs,
which can be solved using the MATLAB LMI toolbox. Finally, a numerical example is presented with
their simulations to demonstrate the validity of the theoretical analysis.

By applying the main results of this paper, we can analyze various dynamical behaviors of T-S fuzzy
Clifford-valued NNs including finite-time stability, passivity, state estimation, synchronization, and
others. There are certain advancements worth investigating further in this proposed area of research.
We will soon attempt to examine the finite-time dissipativity of T-S fuzzy Clifford-valued NNs with
time delays.
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