Theory article

Robustness analysis of neutral fuzzy cellular neural networks with stochastic disturbances and time delays

  • Received: 16 July 2024 Revised: 08 September 2024 Accepted: 29 September 2024 Published: 17 October 2024
  • MSC : 93B35, 93D23

  • This paper discusses the robustness of neutral fuzzy cellular neural networks with stochastic disturbances and time delays. This work questions whether fuzzy cellular neural networks, which initially remains stable, can be stabilised again when the system is subjected to three simultasneous perturbations i.e., neutral items, random disturbances, and time delays. First, by using inequality techniques such as Gronwall's Lemma, the Itŏ formula, and the property of integrals, the transcendental equations that contain the contraction coefficient of the neutral terms, the intensity of the random disturbances, and the time delays are derived. Then, the upper bounds of the neutral terms, random disturbances, and time delays are estimated by solving the transcendental equations for multifactor perturbations, which ensures that the disturbed fuzzy cellular neural network can be stabilised again. Finally, the validity of the results is verified by numerical examples.

    Citation: Yunlong Ma, Tao Xie, Yijia Zhang. Robustness analysis of neutral fuzzy cellular neural networks with stochastic disturbances and time delays[J]. AIMS Mathematics, 2024, 9(10): 29556-29572. doi: 10.3934/math.20241431

    Related Papers:

  • This paper discusses the robustness of neutral fuzzy cellular neural networks with stochastic disturbances and time delays. This work questions whether fuzzy cellular neural networks, which initially remains stable, can be stabilised again when the system is subjected to three simultasneous perturbations i.e., neutral items, random disturbances, and time delays. First, by using inequality techniques such as Gronwall's Lemma, the Itŏ formula, and the property of integrals, the transcendental equations that contain the contraction coefficient of the neutral terms, the intensity of the random disturbances, and the time delays are derived. Then, the upper bounds of the neutral terms, random disturbances, and time delays are estimated by solving the transcendental equations for multifactor perturbations, which ensures that the disturbed fuzzy cellular neural network can be stabilised again. Finally, the validity of the results is verified by numerical examples.



    加载中


    [1] W. E. Faller, S. J. Schreck, Neural networks: Applications and opportunities in aeronautics, Prog. Aerosp. Sci., 32 (1996), 433–456. https://doi.org/10.1016/0376-0421(95)00011-9 doi: 10.1016/0376-0421(95)00011-9
    [2] T. Chen, Fuzzy neural network applications in medicine, In: Proceedings of 1995 IEEE International Conference on Fuzzy Systems, 2 (1995), 627–634. https://doi.org/10.1109/FUZZY.1995.409750
    [3] A. Kumar, P. Mohanty, Autoassociative memory and pattern recognition in micromechanical oscillator network, Sci. Rep., 7 (2017), 411. https://doi.org/10.1038/s41598-017-00442-y doi: 10.1038/s41598-017-00442-y
    [4] Y. Shen, J. Wang, Robustness analysis of global exponential stability of recurrent neural networks in the presence of time delays and random disturbances, IEEE T. Neur. Net. Lear., 23 (2011), 87–96. https://doi.org/10.1109/TNNLS.2011.2178326 doi: 10.1109/TNNLS.2011.2178326
    [5] L. García, P. M. Talaván, J. Yáñez, The 2-opt behavior of the Hopfield Network applied to the TSP, Oper. Res., 22 (2020), 1127–1155. https://doi.org/10.1007/s12351-020-00585-3 doi: 10.1007/s12351-020-00585-3
    [6] L. O. Chua, L. Yang, Cellular neural networks: Theory, IEEE T. Circuits Syst., 35 (1988), 1257–1272. http://dx.doi.org/10.1109/31.7600 doi: 10.1109/31.7600
    [7] L. O. Chua, L. Yang, Cellular neural networks: Applications, IEEE T. Circuits Syst., 35 (1988), 1273–1290. http://dx.doi.org/10.1109/31.7601 doi: 10.1109/31.7601
    [8] L. Wang, T. Dong, M. Ge, Finite-time synchronization of memristor chaotic systems and its application in image encryption, Appl. Math. Comput., 347 (2019), 293–305. https://doi.org/10.1016/j.amc.2018.11.017 doi: 10.1016/j.amc.2018.11.017
    [9] R. Matei, New model and applications of cellular neural networks in image processing, 2009. https://doi.org/10.5772/8223
    [10] T. Yang, L. Yang, C. Wu, L. O. Chua, Fuzzy cellular neural networks: Theory, In: 1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96), 1996,181–186. http://dx.doi.org/10.1109/cnna.1996.566545
    [11] T. Yang, L. Yang, The global stability of fuzzy cellular neural network, IEEE T. Circuits-I, 43 (1996), 880–883. http://dx.doi.org/10.1109/81.538999 doi: 10.1109/81.538999
    [12] P. Mani, R. Rajan, L. Shanmugam, Y. H. Joo, Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption, Inform. Sciences, 491 (2019), 74–89. https://doi.org/10.1016/j.ins.2019.04.007 doi: 10.1016/j.ins.2019.04.007
    [13] K. Ratnavelu, M. Kalpana, P. Balasubramaniam, K. Wong, P. Raveendran, Image encryption method based on chaotic fuzzy cellular neural networks, Signal Process., 140 (2017), 87–96. https://doi.org/10.1016/j.sigpro.2017.05.002 doi: 10.1016/j.sigpro.2017.05.002
    [14] S. Long, D. Xu, Stability analysis of stochastic fuzzy cellular neural networks with time-varying delays, Neurocomputing, 74 (2011), 2385–2391. https://doi.org/10.1016/j.neucom.2011.03.017 doi: 10.1016/j.neucom.2011.03.017
    [15] Q. Zhang, H. Yang, Z. Xin, Uniform stability of stochastic fractional-order fuzzy cellular neural networks with delay, Int. J. Knowl.-Based In., 21 (2017), 1–14. https://doi.org/10.3233/KES-160336 doi: 10.3233/KES-160336
    [16] L. Chen, H. Zhao, Stability analysis of stochastic fuzzy cellular neural networks with delays, Neurocomputing, 72 (2008), 436–444. https://doi.org/10.1016/j.neucom.2007.12.005 doi: 10.1016/j.neucom.2007.12.005
    [17] X. Yao, X. Liu, S. Zhong, Exponential stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks with multiple delays, Neurocomputing, 419 (2021), 239–250. https://doi.org/10.1016/j.neucom.2020.08.057 doi: 10.1016/j.neucom.2020.08.057
    [18] F. Du, J. Lu, Finite-time stability of fractional-order fuzzy cellular neural networks with time delays, Fuzzy Set. Syst., 438 (2021), 107–120. https://doi.org/10.1016/j.fss.2021.08.01 doi: 10.1016/j.fss.2021.08.01
    [19] R. Tang, X. Yang, P. Shi, Z. Xiang, L. Qing, Finite-time stabilization of uncertain delayed T–S fuzzy systems via intermittent control, IEEE T. Fuzzy Syst., 32 (2024), 116–125. https://doi.org/10.1109/TFUZZ.2023.3292233 doi: 10.1109/TFUZZ.2023.3292233
    [20] S. Zhu, Y. Shen, Robustness analysis of global exponential stability of neural networks with Markovian switching in the presence of time-varying delays or noises, Neural Comput. Appl., 23 (2013), 1563–1571. https://doi.org/10.1007/s00521-012-1105-0 doi: 10.1007/s00521-012-1105-0
    [21] Q. Yang, S. Zhu, W. Luo, Noise expresses exponential decay for globally exponentially stable nonlinear time delay systems, J. Franklin I., 353 (2016), 2074–2086. https://doi.org/10.1016/j.jfranklin.2016.03.013 doi: 10.1016/j.jfranklin.2016.03.013
    [22] Y. Shen, J. Wang, Robustness of global exponential stability of nonlinear systems with random disturbances and time delays, IEEE T. Syst. Man Cy.-S., 46 (2015), 1157–1166. https://doi.org/10.1109/TSMC.2015.2497208 doi: 10.1109/TSMC.2015.2497208
    [23] F. Jiang, H. Yang, Y. Shen, On the robustness of global exponential stability for hybrid neural networks with noise and delay perturbations, Neural Comput. Appl., 24 (2014), 1497–1504. https://doi.org/10.1007/s00521-013-1374-2 doi: 10.1007/s00521-013-1374-2
    [24] Y. Zou, E. Tian, H. Chen, Finite-time synchronization of neutral-type coupled systems via event-triggered control with controller failure, IEEE T. Control Netw., 11 (2024), 1214–1224. https://doi.org/10.1109/TCNS.2023.3336594 doi: 10.1109/TCNS.2023.3336594
    [25] Z. Zhou, Z. Zhang, M. Chen, Finite-time synchronization for fuzzy delayed neutral-type inertial BAM neural networks via the figure analysis approach, Int. J. Fuzzy Syst., 24 (2022), 1–18. https://doi.org/10.1007/s40815-021-01132-8 doi: 10.1007/s40815-021-01132-8
    [26] Y. Shen, J. Wang, Robustness analysis of global exponential stability of non-linear systems with time delays and neutral terms, IET Control Theory A., 7 (2013), 1127–1232. https://doi.org/10.1049/iet-cta.2012.0781 doi: 10.1049/iet-cta.2012.0781
    [27] W. Si, S. Gao, H. Dong, Ternary implicit criterion for robust exponential stability of perturbed stochastic BAM systems, IEEE T. Circuits II, 70 (2023), 3119–3123. https://doi.org/10.1109/TCSII.2023.3249181 doi: 10.1109/TCSII.2023.3249181
    [28] W. Si, S. Gao, W. Tian, Robust global exponential stability of fuzzy neural networks with bis-disturbances, 2023 China Automation Congress (CAC), 2023, 9103–9107. https://doi.org/10.1109/CAC59555.2023.10452099
    [29] W. Si, T. Xie, B. Li, Exploration on robustness of exponentially global stability of recurrent neural networks with neutral terms and generalized piecewise constant arguments, Discrete Dyn. Nat. Soc., 2021 (2021), 9941881. https://doi.org/10.1155/2021/9941881 doi: 10.1155/2021/9941881
    [30] W. Fang, T. Xie, B. Li, Robustness analysis of fuzzy cellular neural network with deviating argument and stochastic disturbances, IEEE Access, 11 (2023), 3717–3728. https://doi.org/10.1109/ACCESS.2023.3233946 doi: 10.1109/ACCESS.2023.3233946
    [31] X. Mao, Stochastic differential equations and applications, 2Eds., UK: Woodhead Publishing, 2008.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(112) PDF downloads(20) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog