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Abstract: This paper discusses the robustness of neutral fuzzy cellular neural networks with stochastic
disturbances and time delays. This work questions whether fuzzy cellular neural networks, which
initially remains stable, can be stabilised again when the system is subjected to three simultasneous
perturbations i.e., neutral items, random disturbances, and time delays. First, by using inequality
techniques such as Gronwall’s Lemma, the Itŏ formula, and the property of integrals, the transcendental
equations that contain the contraction coefficient of the neutral terms, the intensity of the random
disturbances, and the time delays are derived. Then, the upper bounds of the neutral terms, random
disturbances, and time delays are estimated by solving the transcendental equations for multifactor
perturbations, which ensures that the disturbed fuzzy cellular neural network can be stabilised again.
Finally, the validity of the results is verified by numerical examples.
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1. Introduction

In recently years, neural networks have achieved extensive and in-depth applications in many fields
such as aerospace [1], biomedicine [2], and pattern recognition [3], which has inspired many scholars to
explore them with great interest. With the continuous development of neural network research, many
classical network types have been proposed, such as recurrent neural networks [4], Hopfield neural
networks [5], cellular neural networks [6], and so on. Cellular neural networks were proposed by
Chuan and Yang in 1988 [6,7], where the neural network connection method derives from neurons that
are interconnected only with other neurons in a specific region. This unique connection significantly
reduces the complexity of network interconnections, thus showing a great potential and value for
applications in many fields such as image encryption [8], parallel signal processing [9], and so on.
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As an important branch of cellular neural networks, fuzzy cellular neural networks (FCNNs) were
proposed by Yang and Yang in 1996 [10,11], who introduced fuzzy logic into cellular neural networks.
Fuzzy logic describes and handles uncertainty or ambiguity through fuzzy sets and fuzzy rules, which
makes cellular neural networks more accurate and reliable when dealing with complex information
in the real world, as well as improves the robustness and fault tolerance of the system, which in turn
enhances the practical application of the network [12, 13].

It is well known that stability is usually the first condition for the successful application of FCNNs.
The stability of neural networks not only relies on the configuration of the parameters, but is also
inevitably affected by external factors. In practical engineering applications, stochastic disturbances
and time delays are common perturbation factors. If the intensity of the perturbation exceeds the
perturbation limit, then it will destroy the stability of the network. In recent years, scholars have
investigated the stability of FCNNs using Lyapunov’s method, the Linear Matrix Inequality (LMI),
and other methods, which have produced a series of remarkable research results [14–19]. For example,
in the literature [14], Long et al. established a new L-operational inequality and used the properties of
M-matrices, a p-order moment stability criterion for the exponential stabilisation of FCNNs, and time
delays and stochastic perturbations were obtained. In the literature [15], Zhang et al. studied fractional
order FCNNs with time delays and random perturbations, which produced a new stability criterion.

However, the aforementioned literature solely discusses the stability of FCNNs. The neural network
is destabilised when random disturbances and time delays are beyond the specified range. Therefore,
it is a fascinating subject to discuss how much an initially stable system can withstand the intensity
of perturbations and still remain stable. This type of analysis is often referred to as a robustness
analysis of stability. The problem of a robustness analysis has received the attention of many scholars
and many excellent outcomes have been published [4, 20–23]. For example, in the literature [4],
Shen et al. considered the robustness problem for the stability of recurrent neural networks that
contained stochastic perturbations and time delays. In the literature [20], Zhu et al. considered the
robustness of recurrent neural networks with Markov switching parameters. In the literature [21],
Yang et al. explored the robustness problem of global exponential stability for nonlinear systems with
time-varying delays and nonlinear stochastic perturbations. However, there is less literature on the
robustness analysis of the fuzzy neural network stability, which is one of the motivations for writing
this paper.

It is worth noting that neutral neural networks belong to a particular class of neural networks
whose distinguishing feature is the simultaneous existence of time delays in the system state and state
derivatives. This property makes it possible to more accurately describe and portray the changes in
the network state, and thus has attracted a great deal of interest from many researchers, and a series of
research results were reported [24, 25]. However, it is also interesting to introduce neutral terms into
other neural networks and to consider their robustness. [26–29]. For example, in the literature [26],
Shen et al. explored the robustness of the global exponential stability (GES) for nonlinear systems with
time-varying delays and neutral terms as perturbing factors. In the literature [29], Si et al. discussed
the robustness of the GES of recurrent neural networks with neutral terms and generalized piecewise
constant arguments. However, the issue of the robustness of neutral FCNNs with random perturbations
and time-varying delays has hardly been considered.

Based on the above discussions and analyses, the main problem investigated for this paper is the
robustness of the GES for neutral FCNNs with time delays and stochastic perturbations. The major
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contents and contributions of this paper include the following:
(i) By using some inequality techniques such as the Gronwall lemma, the Itŏ formula, and the Cauchy
inequality, multivariate implicit transcendental equations which incorporate random perturbations, time
delays, and contraction coefficients of the neutral terms are obtained. From this, an upper bound on the
effect of these perturbations on the stability of the fuzzy system is estimated, which ensures that the
initially stable fuzzy system can remain globally exponentially stable when subjected to perturbations.
(ii) Compared with the literature, which is known to contain two kinds of perturbation factors, this
paper considers the robustness analysis of the GES of FCNNs with three kinds of perturbation factors:
neutral terms, random perturbations and time delays. It not only enriches the theoretical study of
FCNNs, but also provides theoretical support for fuzzy system stability analyses and designs.
(iii) Compared with the existing literature [4, 28, 30], the system in this paper contains fuzzy logic,
neutral terms, time delays, and random disturbances. Therefore, when solving the transcendental
equation, there are more disturbances to be considered, which increases the difficulty of solving and
makes the system more applicable.

The rest of the paper is organised as follows: Section 2 provides a model of a neutral FCNN with
random disturbances and time delays, as well as the relevant definitions and lemmas to be used in the
proof; Section 3 derives the theoretical results for an initially stable fuzzy system that remains GES
in spite of multifactorial disturbances; and Section 4 provides some numerical examples to verify the
validity of the results.

Notations : Denote R = (−∞,+∞), R+ = [0,+∞), N = {1, 2, · · · }, and Rm denotes the space which
consists of all m-dimensional vectors. For a vectors η = (η1, η2, · · · , ηm)T , we denote ‖η‖ =

∑m
i=1 |ηi|,

i ∈ N, where ηi ∈ R. (Ω,F , {Ft}t>0, P) is a complete filtered probability space, where {Ft}t>0 is a right-
continuous filter and satisfies the usual condition that the space contains all P-null sets. B(t) is a scalar
brownian motion defined at (Ω,F , {Ft}t>0, P). E represents an operator that computes the mathematical
expectation of a given probability measure P. Fuzzy AND and fuzzy OR operations are denoted by

∧
and

∨
, respectively.

2. Preliminaries and assumptions

Consider the following mathematical model of FCNNs:


dP̄i(t) =

[
− aiP̄i(t) +

m∑
j=1

bi jg j(P̄ j(t)) +

m∑
j=1

ci jg j(P̄ j(t)) +

m∧
j=1

di jg j(P̄ j(t)) +

m∨
j=1

ei jg j(P̄ j(t))
]
dt,

P̄i(t0) = ψ(0),

(2.1)

where i, j ∈ N, and P̄i(t) denotes the state of the i th neuron at time t. di j and ei j are elements of the
fuzzy feedback MIN template and the fuzzy feed-forward MAX template, respectively. g j(·) is the
activation function. P̄i(t0) ∈ R is the initial value of FCNNs (2.1).

Assume P∗ is the equilibrium point of FCNNs (2.1), where P∗ = {P∗1, · · · , P
∗
m}

T ; then, let P(t) =

P̄(t) − P∗(t) and f j(P j(t)) = g j(P j(t) + P∗j) − g(P∗), Pi(t0) = ϕ(0) = ψi(0) − ψ∗. Then, FCNNs (2.1) can
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be written in the following form:
dPi(t) =

[
− aiPi(t) +

m∑
j=1

bi j f j(P j(t)) +

m∑
j=1

ci j f j(P j(t)) +

m∧
j=1

di j f j(P j(t)) +

m∨
j=1

ei j f j(P j(t))
]
dt,

Pi(t0) = ϕ(0).

(2.2)

Next, consider the FCNNs model with neutral terms, random perturbations, and time delays:

d[Qi(t) −Gi(Qi(t − τ(t)))] =

[
− aiQi(t) +

m∑
j=1

bi j f j(Q j(t)) +

m∑
j=1

ci j f j(Q j(t − τ(t)))

+

m∧
j=1

di j f j(Q j(t) − τ(t)) +

m∨
j=1

ei j f j(Q j(t − τ(t)))
]
dt +

m∑
j=1

σi jQ j(t)dB(t),

Qi(t) = φ(t − t0) ∈ ([−τ, 0],Rm), t0 − τ̄ 6 t 6 t0,

(2.3)

where i, j ∈ N, Qi(t) is the state of the i neuron at time t, and G : Rm → Rm is the weight matrix of
neutral term. τ(t) is a delay that satisfies τ(t): [t0,+∞)→ [0, τ̄], τ

′

(t) 6 ζ < 1, φ = {φi(s) : −τ̄ 6 s 6
0} ∈ ([−τ̄, 0],Rm). B(t) is a scalar brownian motion defined in the probability space (Ω,F , {Ft}t>0, P).
σ = (σi j)m×m is a matrix of diffusion coefficients.

For the purpose of the proof of this paper, some assumptions and definitions to be used are given
below.
Assumption A1. Assume the activation functions f j(·), satisfies the following inequality:

| f j(U j(t)) − f j(V j(t))| 6 L j|U j(t) − V j(t)|, f j(0) ≡ 0 j = 1, 2, · · · ,

where L j ∈ (0, 1) are known constants.
Lemma 1. [15] If A1 holds, then the solution P(t) = (P1(t), · · · , Pm(t))T of FCNNs (2.2) satisfies the
initial unique condition.
Assumption A2. [28] There exists the Lipschitz coefficient κi ∈ (0, 1), i ∈ m, such that |Gi(Ui(t)) −
Gi(Vi(t))| 6 κi|Ui(t) − Vi(t)| holds for any variable component Ui,Vi. Therefore, let κ = maxi∈m{κi},
where the above formula can be expressed as follows:

‖Gi(U(t)) −Gi(V(t))‖ 6 κ‖U(t) − V(t)‖.

Definition 1. The state of FCNNs (2.2) is GES, if there exist λ > 0 and θ > 0 such that

‖P(t; t0, ϕ(0))‖ 6 λ‖ϕ(0)‖ exp(−θ(t − t0)), t > t0.

Definition 2. [14] FCNNs (2.3) is said to be mean square globally exponentially stable (MSGES), if
t ∈ R+, φ(0) ∈ Rm, exist λ̄ > 0 and θ̄ > 0 such that

E‖Q(t; t0, φ)‖2 6 λ̄‖φ‖2 exp(−θ̄(t − t0)), t > t0,

where the Lyapunov exponent lim supt→∞
1
t ln E‖Q(t; t0, φ)‖2 < 0. And Q(t; t0, φ) is the state of

FCNNs (2.3). FCNNs (2.3) is said to be almost surely globally exponentially stable (ASGES), if
t ∈ R+, φ(0) ∈ Rm, and the Lyapunov exponent almost surely lim supt→∞

1
t ln ‖Q(t; t0, φ)‖ < 0.
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Remark 1. From the above definitions, it is clear that the ASGES of FCNNs (2.3) implies the
MSGES of FCNNs (2.3) [31], but not vice versa. Therefore, let Assumption A1 hold. The MSGES of
FCNNs (2.3) implies the ASGES of FCNNs (2.3).
Lemma 2. [11] For FCNNs (2.3),

|

m∧
j=1

di j f j(U j(t)) −
m∧

j=1

di j f j(V j(t))| ≤
m∑

j=1

l j|di j||U j(t) − V j(t)|,

|

m∧
j=1

ei j f j(U j(t)) −
m∧

j=1

ei j f j(V j(t))| ≤
m∑

j=1

l j|ei j||U j(t) − V j(t)|.

Lemma 3. [31] Let f : Rm × R × [a, b]→ Rm×m, such that the following inequality holds

E|
∫ b

a
f (t)dB(t)|2 = E

∫ b

a
| f (t)|2dt.

3. Results

Theorem 1. If Assumptions A1 and A2, Lemmas 2 and 3 hold, and stystem FCNNs (2.2) is GES, then
FCNNs (2.3) is MSGES and ASGES. If κ < min{κ̃,

( exp(−2∆M1)

12
[
1+24m2

2∆
2
(

(1−ζ)−1+(1−2ζ)−1
)]) 1

2 }, then |σ∗| < σ̄∗ and

τ̄ < min{∆/2, τ̆}, where κ̃, σ̄∗, τ̆ are the solutions of following three transcendental equations:

2λ2 exp(−2θ∆) + 2(M2 + M
′

3) exp(2∆M1)
1 − 2M2 exp(2∆M′

1)
= 1, (3.1)

and

2λ2 exp(−2θ∆) + 2(M
′

2 + M
′′

3 ) exp(2∆M
′′

1 )
1 − 2M′

2 exp(2∆M′′

1 )
= 1, (3.2)

and

2λ2 exp(−2θ(∆ − τ)) + 2(M
′

2 + M
′′′

3 ) exp(2∆M
′′′

1 )
1 − 2M′

2 exp(2∆M′′′

1 )
= 1, (3.3)

where

∆ > 2 ln(2λ2)/2θ, m1 = max
16i6m

|ai| + |Li|

m∑
j=1

|b ji|

 , m2 = max
16i6m

|Li|

m∑
j=1

∣∣∣c ji

∣∣∣ + |li|
m∑

j=1

∣∣∣d ji

∣∣∣ + |li|
m∑

j=1

∣∣∣e ji

∣∣∣ ,
σ∗ = max

16i6m

m∑
j=1

∣∣∣σ ji

∣∣∣ , M′1 = 12∆ (m1 + m2)2 , M2 = 6κ2
[
1 + 24∆2m2

2

(
1

1 − ζ
+

1
1 − 2ζ

)]
, M

′

3 = 12κ2,

M
′′

1 = 12∆ (m1 + m2)2 + 6σ2
∗, M

′

2 = 6κ̃2
[
1 + 24∆2m2

2

(
1

1 − ζ
+

1
1 − 2ζ

)]
, M

′′

3 = 12κ̃2 + 3σ2
∗λ

2/θ,

M
′′′

1 = 6
{

2∆(m1 + m2)2 + σ̄2
∗(1 + 12∆m2

2τ̆) + 24∆m2
2τ̆

2(m2
1 + m2

2(1 − ζ)−1)
}
,
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M
′′′

3 = 3
{
4κ̃2 + 8m2

2∆τ̆
[
1 +

1 + 3κ̃2 + 3m2
2τ̆

2

1 − ζ
+

6κ̃2

1 − 2ζ

]
+24m2

2∆τ̆
2[m2

1 + m2
2(1 − ζ)−1]λ2/θ + σ̄2

∗(1 + 12∆m2
2τ̆)λ2/θ

}
.

Proof. From the fuzzy systems (2.2) and (2.3),

Pi(t) − Qi(t) + Gi(Qi(t − τ(t))) −Gi(Qi(t0 − τ(t0)))

=

∫ t

t0

{
−ai(Pi(s) − Qi(s)) +

m∑
j=1

bi j( f j(P j(s)) − f j(Q j(s))

+

m∑
j=1

ci j( f j(P j(s)) − f j(Q j(s − τ(s)))) +

m∧
j=1

di j( f j(P j(s)) − f j(Q j(s − τ(s))))

+

m∨
j=1

ei j( f j(P j(s)) − f j(Q j(s − τ(s))))
}
ds −

∫ t

t0

m∑
j=1

σi jQ j(s)dB(s).

(3.4)

Let

m1 = max
16i6m

{
|ai| + |Li|

m∑
j=1

|b ji|
}
, m2 = max

16i6m

{
|Li|

m∑
j=1

|c ji| + |li|

m∑
j=1

|d ji| + |li|

m∑
j=1

|e ji|
}
, σ∗ = max

16i6m

m∑
j=1

|σ ji|.

Based on A1, A2, and Lemma 2, when t0 6 t 6 t0 + 2∆, we have the following:

‖P(t) − Q(t)‖ =

m∑
i=1

|Pi(t) − Qi(t)|

6 ‖G(Q(t − τ(t))) −G(Q(t0 − τ(t0)))‖ +

m∑
i=1

{∫ t

t0
|ai||Pi(s) − Qi(s)|

+ |Li|

m∑
j=1

|b ji||Pi(s) − Qi(s)| + |Li|

m∑
j=1

|c ji||Pi(s) − Qi(s − τ(s))|

+ |li|

m∑
j=1

|d ji||Pi(s) − Qi(s − τ(s))| + |li|

m∑
j=1

|e ji||Pi(s) − Qi(s − τ(s))|
}
ds

+

∫ t

t0

m∑
i=1

m∑
j=1

|σ ji||Qi(s)|dB(s)

6 κ‖Q(t − τ(t)) − Q(t0 − τ(t0))‖ +

∫ t

t0
(m1 + m2)‖P(s) − Q(s)‖ds

+

∫ t

t0
m2‖Q(s) − Q(s − τ(s))‖ds +

∫ t

t0
σ∗‖Q(s)‖dB(s).

(3.5)
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Furthermore, by Lemma 3,

E‖P(t) − Q(t)‖2

6 3κ2E‖Q(t − τ(t)) − Q(t0 − τ(t0))‖2

+ 3E
{∫ t

t0
(m1 + m2)‖P(s) − Q(s)‖ + m2‖Q(s) − Q(s − τ(s))‖ds

}2

+3E
∫ t

t0
σ2
∗‖Q(s)‖2ds

6 3κ2E‖Q(t − τ(t)) − Q(t0 − τ(t0))‖2 + 6
[
2∆(m1 + m2)2 + σ2

∗

] ∫ t

t0
E‖P(s) − Q(s)‖2ds

+ 12∆m2
2

∫ t

t0
E‖Q(s) − Q(s − τ(s))‖2ds + 6σ2

∗

∫ t

t0
E‖P(s)‖2ds.

(3.6)

For the first term in (3.6), when t0 6 t 6 t0 + 2∆,

3κ2E‖Q(t − τ(t)) − Q(t0 − τ(t0))‖2

6 6κ2E‖Q(t − τ(t))‖2 + 6κ2E‖Q(t0 − τ(t0))‖2

6 6κ2 sup
t0−τ̄6s6t0−τ̄+2∆

E‖Q(s)‖2 + 6κ2 sup
t0−τ̄6s6t0+τ̄

E‖Q(s)‖2

6 12κ2 sup
t0−τ̄6s6t0+τ̄

E‖Q(s)‖2 + 6κ2 sup
t0+τ̄6s6t0−τ̄+2∆

E‖Q(s)‖2.

(3.7)

For the time delays term contained in (3.6), when t0 6 t 6 t0 + τ̄, we can obtain the following:∫ t

t0
E‖Q(s) − Q(s − τ(s))‖2ds

6

∫ t0+τ̄

t0
2E‖Q(s)‖2ds +

∫ t0+τ̄

t0
2E‖Q(s − τ(s))‖2ds

6 2[τ + τ(1 − ζ)−1] sup
t0−τ̄6s6t0+τ̄

E‖Q(s)‖2.

(3.8)

When t0 + τ̄ 6 t 6 t0 + 2∆, we can obtain the following:∫ t

t0+τ̄

E‖Q(s) − Q(s − τ(s))‖2ds

6

∫ t

t0+τ̄

3κ2E‖Q(s − τ(s)) − Q(s − 2τ(s))‖2ds

+

∫ t

t0+τ̄

3E
( ∫ s

s−τ̄
m1‖Q(u)‖ + m2‖Q(u − τ(u))‖du

)2
ds +

∫ t

t0+τ̄

3E
∫ s

s−τ̄
σ2
∗‖Q(u)‖2duds

6 3κ2
∫ t

t0+τ̄

E‖Q(s − τ(s)) − Q(s − 2τ(s))‖2ds + 3(2τ̄m2
1 + σ2

∗)
∫ t

t0+τ̄

∫ s

s−τ̄
E‖Q(u)‖2duds

+ 6τ̄m2
2

∫ t

t0+τ̄

∫ s

s−τ̄
E‖Q(u − τ(u))‖2duds.

(3.9)
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Noting that 2τ̄ 6 ∆, for the first term in (3.9), when t0 + τ̄ 6 t 6 t0 + 2τ̄, we have the following:

3κ2
∫ t

t0+τ̄

E‖Q(s − τ(s)) − Q(s − 2τ(s))‖2ds

6 6κ2
∫ t

t0−τ̄
E‖Q(s − τ(s))‖2ds + 6κ2

∫ t

t0−τ̄
E‖Q(s − 2τ(s))‖2ds

6 6κ2(1 − ζ)−1
∫ t0−τ̄

t0
E‖Q(u)‖2du + 6κ2(1 − 2ζ)−1

∫ t−2τ

t0−τ̄
E‖Q(u)‖2du

6 6κ2(1 − ζ)−1
∫ t0−τ̄

t0
E‖Q(s)‖2ds + 6κ2(1 − 2ζ)−1

∫ t0

t0−τ̄
E‖Q(u)‖2du

+ 6κ2(1 − 2ζ)−1
∫ t−τ̄

t0
E‖Q(u)‖2du

6 6κ2τ̄(1 − 2ζ)−1 sup
t0−τ̄6s6t0

E‖Q(s)‖2 + 6κ2(
1

1 − ζ
+

1
1 − 2ζ

)
∫ t−τ̄

t0
E‖Q(s)‖2ds

6 6κ2τ̄(1 − 2ζ)−1 sup
t0−τ̄6s6t0

E‖Q(s)‖2 + 6κ2( 1
1 − ζ

+
1

1 − 2ζ
) ∫ t0+τ̄

t0
E‖Q(s)‖2ds

+ 6κ2( 1
1 − ζ

+
1

1 − 2ζ
) ∫ t0−τ̄+2∆

t0+τ̄

E‖Q(s)‖2ds

6 6κ2τ̄(1 − 2ζ)−1 sup
t0−τ̄6s6t0

E‖Q(s)‖2 + 6κ2τ̄
( 1
1 − ζ

+
1

1 − 2ζ
)

sup
t06s6t0+τ̄

E‖Q(s)‖2

+ 6κ2(2∆ − 2τ̄)
( 1
1 − ζ

+
1

1 − 2ζ
)

sup
t0+τ̄6s6t0−τ̄+2∆

E‖Q(s)‖2

6 6κ2τ̄
( 1
1 − ζ

+
2

1 − 2ζ
)

sup
t0−τ̄6s6t0+τ̄

E‖Q(s)‖2 + 12κ2∆
( 1
1 − ζ

+
1

1 − 2ζ
)

sup
t0+τ̄6s6t0−τ̄+2∆

E‖Q(s)‖2.

(3.10)

For the second term in (3.9), exchanging the order of integrations,

3
(
2τ̄m2

1 + σ2
∗

) ∫ t

t0+τ̄

∫ s

s−τ̄
E‖Q(u)‖2duds

= 3
(
2τ̄m2

1 + σ2
∗

) ∫ t

t0
du

∫ min(u+τ̄,t)

max(t0+τ̄,u)
E‖Q(u)‖2ds

6 3τ̄
(
2τ̄m2

1 + σ2
∗

) ∫ t

t0
E‖Q(u)‖2du.

(3.11)

Similarly, for the third term in (3.9),

6τ̄m2
2

∫ t

t0+τ̄

∫ s

s−τ̄
E‖Q(u − τ(u))‖2duds

= 6τ̄m2
2

∫ t

t0
du

∫ min(u+τ̄,t)

max(t0+τ̄,u)
E‖Q(u − τ(u))‖2ds
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6 6τ̄2m2
2

∫ t

t0
E‖Q(u − τ(u))‖2du

6 6τ̄2m2
2(1 − ζ)−1

∫ t

t0−τ̄
E‖Q(v)‖2dv

6 6τ̄2m2
2(1 − ζ)−1

∫ t0

t0−τ̄
E‖Q(v)‖2dv + 6τ̄2m2

2(1 − ζ)−1
∫ t

t0
E‖Q(v)‖2dv

6 6τ̄3m2
2(1 − ζ)−1 sup

t0−τ̄6s6t0
E‖Q(s)‖2 + 6τ̄2m2

2(1 − ζ)−1
∫ t

t0
E‖Q(s)‖2ds.

(3.12)

Therefore, from (3.8)–(3.12), when t0 6 t 6 t0 + 2∆, we have the following:∫ t

t0
E‖Q(s) − Q(s − τ(s))‖2ds

6 2[τ̄ + τ̄(1 − ζ)−1] sup
t0−τ̄6s6t0+τ̄

E‖Q(s)‖2 + 6k2τ̄(
1

1 − ζ
+

2
1 − 2ζ

) sup
t0−τ̄6s6t0+τ̄

E‖Q(s)‖2

+ 12k2∆(
1

1 − ζ
+

1
1 − 2ζ

) sup
t0+τ̄6s6t0−τ̄+2∆

E‖Q(s)‖2 + 3τ̄
(
2τ̄m2

1 + σ2
∗

) ∫ t

t0
E‖Q(s)‖2ds

+ 6τ̄3m2
2(1 − ζ)−1 sup

t0−τ̄6s6t0
E‖Q(s)‖2 + 6τ̄2m2

2(1 − ζ)−1
∫ t

t0
E‖Q(s)‖2ds

6 3τ̄
[
2τ̄m2

1 + σ2
∗ + 2τ̄m2

2(1 − ζ)−1] ∫ t

t0
E‖Q(s)‖2ds

+ 12k2∆(
1

1 − ζ
+

1
1 − 2ζ

) sup
t0+τ̄6s6t0−τ̄+2∆

E‖Q(s)‖2

+ 2τ̄
[
1 +

1 + 3k2 + 3τ̄2m2
2

1 − ζ
+

6k2

1 − 2ζ

]
sup

t0−τ̄6s6t0+τ̄

E‖Q(s)‖2.

(3.13)

Substituting (3.7) and (3.13) into (3.6), we further conclude the following:

E‖P(t) − Q(t)‖2

6 12κ2 sup
t0−τ̄6s6t0+τ̄

E‖Q(s)‖2 + 6κ2 sup
t0+τ̄6s6t0−τ̄+2∆

E‖Q(s)‖2

+ 6
[
2∆(m1 + m2)2 + σ2

∗

] ∫ t

t0
E‖P(s) − Q(s)‖2ds + 6σ2

∗

∫ t

t0
E‖P(s)‖ds

+ 36∆m2
2τ̄

[
2τ̄m2

1 + σ2
∗ + 2τ̄m2

2(1 − ζ)−1] ∫ t

t0
E‖Q(s)‖2ds

+ 144m2
2∆

2κ2( 1
1 − ζ

+
1

1 − 2ζ
)

sup
t0+τ̄6s6t0−τ̄+2∆

E‖Q(s)‖2

+ 24m2
2∆τ̄

[
1 +

1 + 3κ2 + 3m2
2τ̄

2

1 − ζ
+

6κ2

1 − 2ζ

]
sup

t0−τ̄6s6t0+τ̄

E‖Q(s)‖2
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6 6
{

2∆(m1 + m2)2 + σ2
∗(1 + 12∆m2

2τ̄) + 24∆m2
2τ̄

2(m2
1 + m2

2(1 − ζ)−1)
}∫ t

t0
E‖P(s) − Q(s)‖2ds

+ 6κ2
[
1 + 24∆2m2

2
( 1
1 − ζ

+
1

1 − 2ζ
)]

sup
t0+τ̄6s6t0−τ̄+2∆

E‖Q(s)‖2

+ 3
{
4κ2 + 8m2

2∆τ̄
[
1 +

1 + 3κ2 + 3m2
2τ̄

2

1 − ζ
+

6κ2

1 − 2ζ

]
+24m2

2∆τ̄
2[m2

1 + m2
2(1 − ζ)−1]λ2/θ

+ σ2
∗(1 + 12∆m2

2τ̄)λ2/θ
}

sup
t0−τ̄6s6t0+τ̄

E‖Q(s)‖2

= M1

∫ t

t0
E‖P(s) − Q(s)‖2ds + M2 sup

t0+τ̄6s6t0−τ̄+2∆
E‖Q(s)‖2 + M3 sup

t0−τ̄6s6t0+τ̄

E‖Q(s)‖2

6 M1

∫ t

t0
E‖P(s) − Q(s)‖2ds + 2M2 sup

t0−τ̄+∆6s6t0−τ̄+2∆
E‖P(s) − Q(s)‖2

+

[
M3 + M2

(
1 + 2λ2 exp(−2θ(∆ − τ̄))

)]
sup

t0−τ̄6s6t0−τ̄+∆
E‖Q(s)‖2

= M1

∫ t

t0
E‖y(s) − x(s)‖2ds + 2M2M̄ +

[
M3 + M2

(
1 + 2λ2 exp(−2θ(∆ − τ̄))

)]
M̃,

(3.14)

where

M1 =6
{

2∆(m1 + m2)2 + σ2
∗(1 + 12∆m2

2τ̄) + 24∆m2
2τ̄

2(m2
1 + m2

2(1 − ζ)−1)
}
,

M2 =6κ2[1 + 24∆2m2
2
( 1
1 − ζ

+
1

1 − 2ζ
)]
,

M3 =3
{
4κ2 + 8m2

2∆τ̄
[
1 +

1 + 3κ2 + 3m2
2τ̄

2

1 − ζ
+

6κ2

1 − 2ζ

]
+24m2

2∆τ̄
2[m2

1 + m2
2(1 − ζ)−1]λ2/θ + σ2

∗(1 + 12∆m2
2τ)λ2/θ

}
,

M̄ = sup
t0−τ̄+∆6s6t0−τ̄+2∆

E‖P(s) − Q(s)‖2, M̃ = sup
t0−τ̄6s6t0−τ̄+∆

E‖Q(s)‖2.

Noting that 2τ̄ 6 ∆, by the Gronwall inequality, for t0 6 t 6 t0 + 2∆, we can obtain the following:

E‖P(t) − Q(t)‖2

6
{
2M2M̄ +

[
M3 + M2

(
1 + 2λ2 exp(−2θ(∆ − τ̄))

)]
M̃

}
exp(2∆M1).

(3.15)

Therefore,

M̄ = sup
t0−τ̄+∆6s6t0−τ̄+2∆

E‖P(s) − Q(s)‖2

6 sup
t06s6t0+2∆

E‖P(s) − Q(s)‖2

6
{
2M2M̄ +

[
M3 + M2

(
1 + 2λ2 exp(−2θ(∆ − τ̄))

)]
M̃

}
exp(2∆M1).

(3.16)
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Noting that κ <
( exp(−2∆M1)

12
[
1+24m2

2∆
2
(

(1−ζ)−1+(1−2ζ)−1
)]) 1

2 , thus M̄ 6
[

M3+M2

(
1+2λ2 exp(−2θ(∆−τ̄))

)]
M̃ exp(2∆M1)

1−2M2 exp(2∆M1) .

Therefore, owing to system (2.2) being GES, when t0 − τ̄+ ∆ 6 t 6 t0 − τ̄+ 2∆, we have the following:

E‖Q(t)‖2 6 2E‖P(t)‖2 + 2E‖P(t) − Q(t)‖2

6 2λ2 exp(−2θ(∆ − τ̄)) sup
t0−τ̄6s6t0−τ̄+∆

E‖Q(s)‖2 +
2
[
M3 + M2

(
1 + 2λ2 exp(−2θ(∆ − τ̄))

)]
M̃ exp(2∆M1)

1 − 2M2 exp(2∆M1)

6

{
2λ2 exp(−2θ(∆ − τ̄)) + 2(M2 + M3) exp(2∆M1)

1 − 2M2 exp(2∆M1)

}
M̃

:= (M(κ, σ∗, τ̄))M̃,

(3.17)

where, M(κ, σ∗, τ) =
2λ2 exp(−2θ(∆−τ̄))+2(M2+M3) exp(2∆M1)

1−2M2 exp(2∆M1) − 1. If κ = 0, σ∗ = 0, τ̄ = 0, then we have
M(0, 0, 0) = 2λ2 exp(−2θ∆) − 1 < 0, and ∆ > ln(2λ2)/(2θ). Therefore, if σ∗ = 0, τ = 0, then

M(κ, 0, 0) =
2λ2 exp(−2θ∆) + 2(M2 + M

′

3) exp(2∆M
′

1)
1 − 2M2 exp(2∆M′

1)
− 1,

where M
′

1 = 12∆(m1 + m2)2, M2 = 6κ2[1 + 24∆2m2
2
( 1

1−ζ + 1
1−2ζ

)]
, M

′

3 = 12κ2.

As 0 < κ <
( exp(−2∆M1)

12
[
1+24m2

2∆
2
(

(1−ζ)−1+(1−2ζ)−1
)]) 1

2 and dM(k,0,0)
dk > 0, then M(κ, 0, 0) is strictly increasing with

respect to κ. When κ →
( exp(−2∆M1)

12
[
1+24m2

2∆
2
(

(1−ζ)−1+(1−2ζ)−1
)]) 1

2 , M(κ, 0, 0) → +∞. Therefore, by the existence

theorem for roots, it is known that there exists κ̃ such that M(κ̃, 0, 0) = 0. Using the above method, we
can get M(κ, σ∗, 0) = 0 and M(κ, σ∗, τ̄) = 0.

We can choose ω = − ln(M(κ, σ∗, τ̄)+1)/∆, where ω > 0, ∆ > ln(2λ2)/(2θ). For t0 +∆ ≤ t ≤ t0 +2∆,
we can obtain the following:

E‖Q(t)‖2 6 exp(−ω∆)E‖φ(t0)‖2.

Therefore, for any positvite integer m = 1, 2, · · · , when t > t0 + (m − 1)∆,

Q(t; t0, φ(t0)) = Q(t; t0 + (m − 1)∆,Q(t0 + (m − 1)∆; t0, φ(t0))).

Thus, for t > t0 + m∆,

E‖Q(t)‖2 = E‖Q(t; t0 + (p − 1)∆,Q(t0 + (p − 1)∆; t0, φ(t0)))‖2

6 exp(−ω∆)E‖Q(t; t0 + (p − 1)∆; t0, φ(t0)))‖2

= exp(−ω∆)E‖Q(t; t0 + (p − 2)∆,Q(t0 + (p − 2)∆; t0, φ(t0))‖2

· · ·

6 exp(−pω∆)E‖φ(t0)‖2.

Therefore, when ∀t > t0 + ∆, we have E‖Q(t)‖2 6 exp(−ω(t − t0)) exp(ω∆)E‖φ(t0)‖2. Obviously, the
above formula also holds when t0 6 t 6 t0 + ∆. Therefore, FCNNs (2.3) is ASGES.
Remark 2. Theorem 1 displays that when system (2.2) is GES, the perturbed system (2.3) can be
MSGES; it is also ASGES if the bounds on the neutral terms, the stochastic disturbances, and the time
delays are less than the upper bound of the estimation.
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4. Numerical examples

Example 1. We consider the following FCNNs model:

d[Q1(t) − ksinQ1(t−τ(t))] =

[
− a1Q1(t) +

2∑
j=1

b1 j f j(Q j(t)) +

2∑
j=1

c1 j f j(Q j(t − τ(t)))

+

2∧
j=1

d1 j f j(Q j(t) − τ(t)) +

2∨
j=1

e1 j f j(Q j(t − τ(t)))
]
dt +

2∑
j=1

σ1 jQ j(t)dB(t),

d[Q2(t) − ksinQ2(t−τ(t))] =

[
− a2Q2(t) +

2∑
j=1

b2 j f j(Q j(t)) +

2∑
j=1

c2 j f j(Q j(t − τ(t)))

+

2∧
j=1

d2 j f j(Q j(t) − τ(t)) +

2∨
j=1

e2 j f j(Q j(t − τ(t)))
]
dt +

2∑
j=1

σ2 jQ j(t)dB(t),

(4.1)

where, a = (ai j)2×2 =

[
1 0
0 1

]
, b = (bi j)2×2 =

[
0.02 0.01
0.01 0.02

]
,

c = (ci j)2×2 =

[
0.01 0.02
0.02 0.01

]
, d = (di j)2×2 =

[
0.02 0.01
0.01 0.02

]
, and e = (ei j)2×2 =

[
0.01 0.02
0.02 0.01

]
.

Without any disturbance, (4.1) becomes the following:
dQ1(t) =

[
− a1Q1(t) +

2∑
j=1

b1 j f j(Q j(t)) +

2∑
j=1

c1 j f j(Q j(t)) +

2∧
j=1

d1 j f j(Q j(t)) +

2∨
j=1

e1 j f j(Q j(t)
]
dt,

dQ2(t) =

[
− a2Q2(t) +

2∑
j=1

b2 j f j(Q j(t)) +

2∑
j=1

c2 j f j(Q j(t)) +

2∧
j=1

d2 j f j(Q j(t)) +

2∨
j=1

e2 j f j(Q j(t))
]
dt.

(4.2)

Based on the principle of comparison, FCNNs (4.2) is GES when λ = 1, θ = 1.6. When we select
∆ = 0.3 and f j(·) = tanh(·), then | f j(u) − f j(v)| 6 |u − v| holds, so L and l are set as 1. Therefore, if we
let ζ = 0, we can obtain m1 = 1.03 and m2 = 0.09. From Theorem 1, the following three equations can
be obtained:

2 exp(−0.96) + 37.3992κ2 exp(2.7095)
1 − 13.3992κ2 exp(2.7095)

= 1,

and
2 exp(−0.96) + (37.3992κ̃2 + 3.75σ2

∗) exp(2.7095 + 6σ2
∗)

1 − 13.3992κ̃2 exp(2.7095 + 6σ2
∗)

= 1,

and

2 exp(−0.96 + 3.2τ̄) + 2
(
24.499k̃2 + 1.875σ̄2

∗ + 3τ̄(0.0388 + 0.1746κ̃2 + 0.128σ̄2
∗ + 0.0389τ̄ + 0.0005τ̄2)

)
exp

(
3.6(0.7526 + 1.0292σ̄2

∗τ̄ + 0.0623τ̄2)
)
/1 − 24.8398κ̃2 exp

(
3.6(0.7526 + 1.0292σ̄2

∗τ̄ + 0.0623τ̄2)
)

= 1.
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Thus, we can obtain κ̃ = 0.0175, σ̄∗ = 0.0639, and τ̄ = 0.0261. From Theorem 1, the perturbed
FCNNs (4.1) is said to be MSGES if the coefficient of neutrality κ, the random interferences σ, and
the time delays τ(t) are lower than the thresholds we deduced above, where, κ 6 κ̃, σ∗ 6 σ̄∗ and
τ(t) 6 min{τ̄, ∆/2}.
Remark 3. Figure 1 illustrates the state of FCNNs (4.1) at different initial values, where κ = 0.015,
σ = 0.06, and τ = 0.025. Since the neutrality coefficients, stochastic disturbance intensities, and time
delays are all less than the derived bounds, the FCNNs (4.1) can be regarded as MSGES and ASGES.

Remark 4. Figures show that the cases one of the neutrality coefficient, stochastic disturbance
intensity, and time delay exceeds the bounds, respectively. In Figure 2, the neutrality coefficient
κ = 0.03 exceeds the given bounds, thus making it unstable. In Figure 3, the stochastic disturbance
intensity σ∗ = 0.15 clearly exceeds the given bounds; therefore, it is also unstable. In Figure 4, the
time delay τ(t) = 0.04, clearly exceeds the threshold; therefore, it is not stable. The parameters of
Figures 1– 4 are listed in Table 1.

Table 1. Parameters of Figures1–4.

Figure
Parameters

κ σ∗ τ(t)

Figure 1 0.015 0.06 0.025
Figure 2 0.05 0.06 0.025
Figure 3 0.015 0.15 0.025
Figure 4 0.015 0.06 0.04
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Figure 1. States of (4.1) with k = 0.015, σ∗ = 0.06, τ(t) = 0.025.
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Figure 2. States of (4.1) with k = 0.05, σ∗ = 0.06, τ(t) = 0.025.
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Figure 3. States of (4.1) with k = 0.015, σ∗ = 0.15, τ(t) = 0.025.
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Figure 4. States of (4.1) with k = 0.015, σ∗ = 0.06, τ(t) = 0.04.
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5. Conclusions

In this paper, we explored the problem of the robustness analysis of the global exponential
stability of FCNNs with the combined interference of three factors, namely neutral items, stochastic
disturbances, and time delays. By constructing and solving the transcendental equations relevant to
neutral items, random disturbances, and time delays, the upper bound thresholds for each of these
disturbances were determined. These thresholds ensure that the initially stable fuzzy system continues
to be stable when the perturbation intensity to which the perturbed system is subjected does not exceed
these limits. Finally, we used a simulation example to verify the correctness of the derived results,
thus enriching the theoretical research system of the FCNNs stabilization problem under multi-factor
perturbations. In the future, we will further discuss the effects of other factors on fuzzy neural networks
with neutral terms.
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