In this paper, we considered the Neumann boundary value problem for the strongly-coupled subelliptic system and the predator-prey subelliptic system on the Heisenberg group. We provide a priori estimates and the non-existence result for non-constant positive solutions for the strongly-coupled and predator-prey systems.
Citation: Xinjing Wang, Guangwei Du. Strongly-coupled and predator-prey subelliptic system on the Heisenberg group[J]. AIMS Mathematics, 2024, 9(10): 29529-29555. doi: 10.3934/math.20241430
In this paper, we considered the Neumann boundary value problem for the strongly-coupled subelliptic system and the predator-prey subelliptic system on the Heisenberg group. We provide a priori estimates and the non-existence result for non-constant positive solutions for the strongly-coupled and predator-prey systems.
[1] | A. Aribi, S. Dragomir, Dirichlet and Neumann eigenvalue problems on CR manifolds, Ricerche Mat., 67 (2018), 285–320. https://doi.org/10.1007/s11587-018-0420-x doi: 10.1007/s11587-018-0420-x |
[2] | I. Birindelli, A. Cutrì, A semi-linear problem for the Heisenberg Laplacian, Rend. Sem. Mat. Della Univ. Padova, 94 (1995), 137–153. |
[3] | A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, New York: Springer, 2007. https://doi.org/10.1007/978-3-540-71897-0 |
[4] | J. M. Bony, Principe du Maximum, Inegalite de Harnack et unicite du probleme de Cauchy pour les operateurs ellipitiques degeneres, Ann. Inst. Fourier Grenobles, 19 (1969), 277–304. |
[5] | L. Capogna, D. Danielli, N. Garofalo, An embedding theorem and Harnack inequality for nonlinear subelliptic equations, Commun. Part. Diff. Equ., 18 (1993), 1765–1794. https://doi.org/10.1080/03605309308820992 doi: 10.1080/03605309308820992 |
[6] | E. Cinti, J. Tan, A nonlinear Liouville theorem for fractional equations in the Heisenberg group, J. Math. Anal. Appl., 433 (2016), 434–454. https://doi.org/10.1016/j.jmaa.2015.07.050 doi: 10.1016/j.jmaa.2015.07.050 |
[7] | K. Ding, Q. Zhu, T. Huang, Prefixed-time local intermittent sampling synchronization of stochastic multicoupling delay reaction-diffusion dynamic networks, IEEE Transact. Neur. Networks Learn. Syst., 35 (2024), 718–732. https://doi.org/10.1109/TNNLS.2022.3176648 doi: 10.1109/TNNLS.2022.3176648 |
[8] | G. B. Folland, A Fundamental solution for a subelliptic operators, Bull. Amer. Math. Soc., 79 (1979), 373–376. https://doi.org/10.1090/S0002-9904-1973-13171-4 doi: 10.1090/S0002-9904-1973-13171-4 |
[9] | G. B. Folland, E. M. Stein, Estimates for the complex and analysis on the Heisenberg group, CPAM, 27 (2006), 429–522. https://doi.org/10.1002/cpa.3160270403 doi: 10.1002/cpa.3160270403 |
[10] | N. Garofalo, D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, CPAM, 49 (1996), 11081–1144. https://doi.org/10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A doi: 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A |
[11] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, 2 Eds., Berlin: Springer, 1998. https://doi.org/10.1007/978-3-642-61798-0 |
[12] | L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171. https://doi.org/10.1007/BF02392081 doi: 10.1007/BF02392081 |
[13] | D. Jerison, The Poincare inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503–523. https://doi.org/10.1215/s0012-7094-86-05329-9 doi: 10.1215/s0012-7094-86-05329-9 |
[14] | Y. Jia, P. Xue, Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system, Nonlinear Anal. RWA., 32 (2016), 229–241. https://doi.org/10.1016/j.nonrwa.2016.04.012 doi: 10.1016/j.nonrwa.2016.04.012 |
[15] | F. Kong, Q. Zhu, K. H. Reza, Fixed-time periodic stabilization of discontinuous reaction-diffusion Cohen-Grossberg neural networks, Neur. Networks, 166 (2023), 354–365. https://doi.org/10.1016/j.neunet.2023.07.017 doi: 10.1016/j.neunet.2023.07.017 |
[16] | Y. Lou, W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Equ., 131 (1996), 79–131. https://doi.org/10.1006/jdeq.1996.0157 doi: 10.1006/jdeq.1996.0157 |
[17] | G. Z. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoam., 8 (1992), 367–439. https://doi.org/10.4171/rmi/129 doi: 10.4171/rmi/129 |
[18] | M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J., 11 (1981), 621–635. https://doi.org/10.32917/hmj/1206133994 doi: 10.32917/hmj/1206133994 |
[19] | M. Mimura, K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49–64. https://doi.org/10.1007/BF00276035 doi: 10.1007/BF00276035 |
[20] | M. Mimura, Y. Nishiura, A. Tesei, T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425–449. https://doi.org/10.32917/hmj/1206133048 doi: 10.32917/hmj/1206133048 |
[21] | A. Okubo, Diffusion and ecological problems: mathematical models, Berlin: Springer, 1980. https://doi.org/10.1007/978-1-4757-4978-6 |
[22] | N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83–99. https://doi.org/10.1016/0022-5193(79)90258-3 doi: 10.1016/0022-5193(79)90258-3 |
[23] | G. Tralli, Harnack inequalities in sub-Riemannian settings, Alma Mater Studiorum Università di Bologna, Dottorato di ricerca in Matematica, 2013. https://doi.org/10.6092/unibo/amsdottorato/5702 |
[24] | K. D. Tran, Regularity of solutions for quasilinear subelliptic equations on Heisenberg group, California: Irvine ProQuest Dissertations & Theses, 2011. |
[25] | Y. Wang, X. Wang, Subelliptic equations with singular nonlinearities in the heisenberg group, Bound. Value Probl., 2018 (2018), 7. https://doi.org/10.1186/s13661-018-0925-y doi: 10.1186/s13661-018-0925-y |
[26] | X. Wang, P. Niu, X. Cui, A Liouville type theorem to an extension problem relating to the Heisenberg group, Commun. Pure Appl. Anal., 17 (2018), 2379–2394. https://doi.org/10.3934/cpaa.2018113 doi: 10.3934/cpaa.2018113 |
[27] | H. Wang, Q. Zhu, Global stabilization of a class of stochastic nonlinear time-delay systems with SISS inverse dynamics, IEEE Trans. Automat. Control, 65 (2020), 4448–4455. https://doi.org/10.1109/TAC.2020.3005149 doi: 10.1109/TAC.2020.3005149 |
[28] | P. Xue, Y. Jia, C. Ren, X. Li, Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions, Math. Model. Nat. Phenom., 16 (2021), 25. https://doi.org/10.1051/mmnp/2021017 doi: 10.1051/mmnp/2021017 |
[29] | Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Levy processes, IEEE Trans. Automat. Control, 2024. https://doi.org/10.1109/TAC.2024.3448128 |