Research article Special Issues

Strongly-coupled and predator-prey subelliptic system on the Heisenberg group

  • Received: 12 August 2024 Revised: 10 October 2024 Accepted: 10 October 2024 Published: 17 October 2024
  • MSC : 35A05, 35J55, 35D10

  • In this paper, we considered the Neumann boundary value problem for the strongly-coupled subelliptic system and the predator-prey subelliptic system on the Heisenberg group. We provide a priori estimates and the non-existence result for non-constant positive solutions for the strongly-coupled and predator-prey systems.

    Citation: Xinjing Wang, Guangwei Du. Strongly-coupled and predator-prey subelliptic system on the Heisenberg group[J]. AIMS Mathematics, 2024, 9(10): 29529-29555. doi: 10.3934/math.20241430

    Related Papers:

  • In this paper, we considered the Neumann boundary value problem for the strongly-coupled subelliptic system and the predator-prey subelliptic system on the Heisenberg group. We provide a priori estimates and the non-existence result for non-constant positive solutions for the strongly-coupled and predator-prey systems.



    加载中


    [1] A. Aribi, S. Dragomir, Dirichlet and Neumann eigenvalue problems on CR manifolds, Ricerche Mat., 67 (2018), 285–320. https://doi.org/10.1007/s11587-018-0420-x doi: 10.1007/s11587-018-0420-x
    [2] I. Birindelli, A. Cutrì, A semi-linear problem for the Heisenberg Laplacian, Rend. Sem. Mat. Della Univ. Padova, 94 (1995), 137–153.
    [3] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, New York: Springer, 2007. https://doi.org/10.1007/978-3-540-71897-0
    [4] J. M. Bony, Principe du Maximum, Inegalite de Harnack et unicite du probleme de Cauchy pour les operateurs ellipitiques degeneres, Ann. Inst. Fourier Grenobles, 19 (1969), 277–304.
    [5] L. Capogna, D. Danielli, N. Garofalo, An embedding theorem and Harnack inequality for nonlinear subelliptic equations, Commun. Part. Diff. Equ., 18 (1993), 1765–1794. https://doi.org/10.1080/03605309308820992 doi: 10.1080/03605309308820992
    [6] E. Cinti, J. Tan, A nonlinear Liouville theorem for fractional equations in the Heisenberg group, J. Math. Anal. Appl., 433 (2016), 434–454. https://doi.org/10.1016/j.jmaa.2015.07.050 doi: 10.1016/j.jmaa.2015.07.050
    [7] K. Ding, Q. Zhu, T. Huang, Prefixed-time local intermittent sampling synchronization of stochastic multicoupling delay reaction-diffusion dynamic networks, IEEE Transact. Neur. Networks Learn. Syst., 35 (2024), 718–732. https://doi.org/10.1109/TNNLS.2022.3176648 doi: 10.1109/TNNLS.2022.3176648
    [8] G. B. Folland, A Fundamental solution for a subelliptic operators, Bull. Amer. Math. Soc., 79 (1979), 373–376. https://doi.org/10.1090/S0002-9904-1973-13171-4 doi: 10.1090/S0002-9904-1973-13171-4
    [9] G. B. Folland, E. M. Stein, Estimates for the complex and analysis on the Heisenberg group, CPAM, 27 (2006), 429–522. https://doi.org/10.1002/cpa.3160270403 doi: 10.1002/cpa.3160270403
    [10] N. Garofalo, D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, CPAM, 49 (1996), 11081–1144. https://doi.org/10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A doi: 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
    [11] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, 2 Eds., Berlin: Springer, 1998. https://doi.org/10.1007/978-3-642-61798-0
    [12] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171. https://doi.org/10.1007/BF02392081 doi: 10.1007/BF02392081
    [13] D. Jerison, The Poincare inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503–523. https://doi.org/10.1215/s0012-7094-86-05329-9 doi: 10.1215/s0012-7094-86-05329-9
    [14] Y. Jia, P. Xue, Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system, Nonlinear Anal. RWA., 32 (2016), 229–241. https://doi.org/10.1016/j.nonrwa.2016.04.012 doi: 10.1016/j.nonrwa.2016.04.012
    [15] F. Kong, Q. Zhu, K. H. Reza, Fixed-time periodic stabilization of discontinuous reaction-diffusion Cohen-Grossberg neural networks, Neur. Networks, 166 (2023), 354–365. https://doi.org/10.1016/j.neunet.2023.07.017 doi: 10.1016/j.neunet.2023.07.017
    [16] Y. Lou, W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Equ., 131 (1996), 79–131. https://doi.org/10.1006/jdeq.1996.0157 doi: 10.1006/jdeq.1996.0157
    [17] G. Z. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoam., 8 (1992), 367–439. https://doi.org/10.4171/rmi/129 doi: 10.4171/rmi/129
    [18] M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J., 11 (1981), 621–635. https://doi.org/10.32917/hmj/1206133994 doi: 10.32917/hmj/1206133994
    [19] M. Mimura, K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49–64. https://doi.org/10.1007/BF00276035 doi: 10.1007/BF00276035
    [20] M. Mimura, Y. Nishiura, A. Tesei, T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425–449. https://doi.org/10.32917/hmj/1206133048 doi: 10.32917/hmj/1206133048
    [21] A. Okubo, Diffusion and ecological problems: mathematical models, Berlin: Springer, 1980. https://doi.org/10.1007/978-1-4757-4978-6
    [22] N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83–99. https://doi.org/10.1016/0022-5193(79)90258-3 doi: 10.1016/0022-5193(79)90258-3
    [23] G. Tralli, Harnack inequalities in sub-Riemannian settings, Alma Mater Studiorum Università di Bologna, Dottorato di ricerca in Matematica, 2013. https://doi.org/10.6092/unibo/amsdottorato/5702
    [24] K. D. Tran, Regularity of solutions for quasilinear subelliptic equations on Heisenberg group, California: Irvine ProQuest Dissertations & Theses, 2011.
    [25] Y. Wang, X. Wang, Subelliptic equations with singular nonlinearities in the heisenberg group, Bound. Value Probl., 2018 (2018), 7. https://doi.org/10.1186/s13661-018-0925-y doi: 10.1186/s13661-018-0925-y
    [26] X. Wang, P. Niu, X. Cui, A Liouville type theorem to an extension problem relating to the Heisenberg group, Commun. Pure Appl. Anal., 17 (2018), 2379–2394. https://doi.org/10.3934/cpaa.2018113 doi: 10.3934/cpaa.2018113
    [27] H. Wang, Q. Zhu, Global stabilization of a class of stochastic nonlinear time-delay systems with SISS inverse dynamics, IEEE Trans. Automat. Control, 65 (2020), 4448–4455. https://doi.org/10.1109/TAC.2020.3005149 doi: 10.1109/TAC.2020.3005149
    [28] P. Xue, Y. Jia, C. Ren, X. Li, Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions, Math. Model. Nat. Phenom., 16 (2021), 25. https://doi.org/10.1051/mmnp/2021017 doi: 10.1051/mmnp/2021017
    [29] Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Levy processes, IEEE Trans. Automat. Control, 2024. https://doi.org/10.1109/TAC.2024.3448128
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(130) PDF downloads(15) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog