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1. Introduction

The spatial distribution pattern of an animal population in its natural environment may be the result
of several biological effects. In a patchy environment, linear diffusional flows have a stabilizing effect
on the coexistence of competitive species. Shigesada, Kawasaki, and Teramoto [22] studied the spatial
segregation of interacting species and proposed the model

∂u1

∂t
= ∆[(d1 + α11u1 + α12u2)u1] + u1(a1 − b1u1 − c1u2), in ΩT ,

∂u2

∂t
= ∆[(d2 + α21u1 + α22u2)u2] + u2(a2 − b2u1 − c2u2), in ΩT ,

∂u1

∂ν
=
∂u2

∂ν
= 0, on ∂ΩT ,

u1(x, 0) = u1,0(x), u2(x, 0) = u2,0(x), in Ω,

where u1 and u2 represent the densities of two competing species, d1 and d2 are their diffusion rates,
a1 and a2 denote the intrinsic growth rates, b1 and b2 account for intra-specific competitions, c1 and
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c2 are the coefficients of inter-specific competitions, α11 and α22 are usually referred as self-diffusion
pressures, and α12 and α21 are cross-diffusion pressures. Here, ∆ is the Laplace operator,Ω is a bounded
smooth domain of RN with N ≥ 1, ∂Ω and Ω are the boundary and the closure of Ω, respectively,
ΩT = Ω × [0,T ) and ∂ΩT = ∂Ω × [0,T ) for some T ∈ (0,∞], ν is the outward unit normal vector on
∂Ω, di, ai, bi, ci(i = 1, 2) are all positive constants, and αi j(i, j = 1, 2) denote non-negative constants.
The initial values u1,0 and u2,0 are non-negative smooth functions that are not identically zero. For more
details on the backgrounds of this model, we refer to [21, 22]; for reaction diffusion, see [7, 15].

Lou and Ni [16] considered positive steady-state solutions to the above strongly-coupled parabolic
system and derived properties of these solutions, including a priori estimates, as well as conditions for
existence and non-existence. To prove those results, they first considered the strongly-coupled elliptic
system 

∆[(d1 + α11u1 + α12u2)u1] + u1(a1 − b1u1 − c1u2) = 0, in Ω,

∆[(d2 + α21u1 + α22u2)u2] + u2(a2 − b2u1 − c2u2) = 0, in Ω,
∂u1

∂ν
=
∂u2

∂ν
= 0, on ∂Ω,

u1 > 0, u2 > 0, in Ω.

For N = 1, α11 = α21 = α22 = 0, Mimura and Kawasaki [19] demonstrated the existence of small
amplitude solutions bifurcating from the trivial solution. Mimura [18] established that large amplitude
solutions exist when α12 is suitably large. Mimura, Nishiura, Tesei, and Tsujikawa [20] proved the
existence of non-constant solutions of this problem. Jia and Xue [14] investigated the non-existence
of non-constant positive steady states in a generalized predator-prey system. Xue, Jia, Ren, and
Li [28] proved both the existence and non-existence of non-constant positive stationary solutions for
the general Gause-type predator-prey system with constant self-diffusion and cross-diffusion. For
more information on the parabolic system, we refer to [21, 27, 29].

In this paper, we study the strongly-coupled subelliptic system on the Heisenberg group

∆H[(d1 + α11u + α12v)u] + u(a1 − b1u − c1v) = 0, in Ω,

∆H[(d2 + α21u + α22v)v] + v(a2 − b2u − c2v) = 0, in Ω,
∂u
∂ν
=
∂v
∂ν
= 0, on ∂Ω,

u > 0, v > 0, in Ω,

(1.1)

where ∆H is the degenerate subelliptic (also called hypoelliptic in [12]) operator. Here, di, ai, bi, ci(i =
1, 2) are positive constants, and αi j(i, j = 1, 2) are non-negative constants. For the degenerate of the
∆H, there are some different forms [14, 16, 28]; see Section 2 for further details.

Only one of the diffusion rates or one of the self-diffusion pressures needs to be large to prevent the
formation of a non-constant solution to (1.1).

Theorem 1.1. Suppose that a1
a2
, b1

b2
and a1

a2
, c1

c2
.

(i) There exists a positive constant C1 = C1(di, ai, bi, ci, α12, α21) such that problem (1.1) has no
non-constant solution if max{α11, α22} ≥ C1.

(ii) There exists a positive constant C2 = C2(ai, bi, ci, αi j) such that if max{d1, d2} ≥ C2, then
problem (1.1) has no non-constant solution provided that both α11 and α22 are positive.
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In the case of weak competition, if self-diffusion is weaker than diffusion, then (1.1) still has no
non-constant solution.

To obtain some non-existence results from Theorem 1.1, we mainly study the effects of diffusion
and self-diffusion in the strongly-coupled subelliptic system

∆H[(d1 + α11u + α12v)u] + u f (u, v) = 0, in Ω,

∆H[(d2 + α21u + α22v)v] + vg(u, v) = 0, in Ω,
∂u
∂ν
=
∂v
∂ν
= 0, on ∂Ω,

u > 0, v > 0, in Ω.

(1.2)

For the sake of convenience, we collect here all the assumptions on f , g, some of which will be made
at different times in this paper. Throughout this paper, we always follow the following hypotheses:
(H1) f (0, 0) = a1, g(0, 0) = a2,

∂ f
∂u ≤ −b1,

∂g
∂u ≤ −b2,

∂ f
∂v ≤ −c1,

∂g
∂v ≤ −c2, for all u ≥ 0, v ≥ 0, where ai, bi

and ci are all positive constants for i = 1, 2.
(H1′) f (0, 0) = a1, g(0, 0) = a2,

∂ f
∂u ≤ −b1,

∂g
∂u ≤ 0, ∂ f

∂v ≤ 0, ∂g
∂v ≤ −c2, for all u ≥ 0, v ≥ 0, where a1, a2, b1

and c2 are all positive constants.
(H2) Both {u > 0 | f (u, 0) = g(u, 0) = 0} and {v > 0 | f (0, v) = g(0, v) = 0} are empty.
(H3) f (u, v) = g(u, v) = 0 has a unique positive root (u∗, v∗).

It is easy to see that (H1) is more restrictive than (H1′). From (H1′), it follows that if (u, v) is a
positive root of f (u, v) = g(u, v) = 0, then u ≤ a1

b1
and v ≤ a2

c2
. For the special case f = u(a1 − b1u − c1v)

and g = v(a2 − b2u − c2v), it is trivial to check that (H1) and (H1′) hold, and that (H2) is equivalent to
a1
a2
, b1

b2
and a1

a2
, c1

c2
, while (H3) is satisfied only in b1

b2
> a1

a2
> c1

c2
and b1

b2
< a1

a2
< c1

c2
.

For the generalized predator-prey subelliptic system with cross-diffusion and homogeneous
Neumann boundary conditions, we investigate the existence and non-existence of non-constant
positive solutions to the following subelliptic system

d1∆H[(1 + ᾱ12v)u] + uq(u) − p(u)v = 0, in Ω,

d2∆H[(1 + ᾱ21u)v] + v(−a2 + c2 p(u)) = 0, in Ω,
∂u
∂ν
=
∂v
∂ν
= 0, on ∂Ω,

u ≥ 0, v ≥ 0, in Ω.

(1.3)

The functions q(u) ∈ C1([0,+∞)) and p(u) ∈ C1([0,+∞))
⋂

C2((0,+∞)) are assumed to satisfy the
following two hypotheses throughout this paper:
(H4) q(0) > 0, q′(u) < 0, for all u ≥ 0. And there exists a unique positive constant S , such that
q(S ) = 0.
(H5) p(0) = 0, lim

u→0+
p′(u) < ∞, cp(S ) > a2 and p′(u) > 0 for all 0 < u ≤ S .

For the case ᾱ21 = 0 of the subelliptic system (1.3), we have the following theorem.

Theorem 1.2. There are positive constants d̃1, d̃2, α̃12 such that if d1 ≥ d̃1, d2 ≥ d̃2 and ᾱ12 ≤ α̃12, then
problem (1.3) has no non-constant solution.

In general, for the subelliptic system (1.3), we obtain the following theorem.
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Theorem 1.3. There are positive constants d̃1, d̃2, α̃12, α̃21 such that if d1 > d̃1, d2 > d̃2 and ᾱ12 <

α̃12, ᾱ21 < α̃21, then problem (1.3) has no non-constant solution.

The paper is organized as follows. In Section 2, we collect some well-known facts about Hn and the
subelliptic operator ∆H. Section 3 gives an overview of competition-diffusion in the strongly-coupled
model. Section 4 is devoted to studying diffusion and self-diffusion in the strongly-coupled model. In
Section 5, we derive the predator-prey model.

2. Preliminaries

In this section, we list some facts related to the Heisenberg group and sub-Laplacian ∆H. For proofs
and more information, we refer, for example, to [3, 4, 8, 9, 12].

The Heisenberg group Hn is the Euclidean space R2n+1(n ≥ 1) endowed with the group action ◦
defined by

ξ0 ◦ ξ = (x + x0, y + y0, t + t0 + 2
n∑

i=1

(xiyi0 − yixi0)), (2.1)

where ξ = (x1, · · · , xn, y1, · · · , yn, t) := (x, y, t) ∈ Rn × Rn × R, ξ0 = (x0, y0, t0). Let us denote by δλ the
dilations on R2n+1, i.e.,

δλ(ξ) = (λx, λy, λ2t) (2.2)

which satisfies δλ(ξ0 ◦ ξ) = δλ(ξ0) ◦ δλ(ξ).
The left invariant vector fields corresponding to Hn are of the form

Xi =
∂

∂xi
+ 2yi

∂

∂t
, i = 1, · · · , n,

Yi =
∂

∂yi
− 2xi

∂

∂t
, i = 1, · · · , n,

T =
∂

∂t
.

The Heisenberg gradient of a function u is defined as

∇Hu = (X1u, · · · , Xnu,Y1u, · · · ,Ynu). (2.3)

The sub-Laplacian ∆H on Hn is

∆H =

n∑
i=1

Xi
2 + Yi

2, (2.4)

with the expansion

∆H =

n∑
i=1

∂2

∂xi
2 +
∂2

∂yi
2 + 4yi

∂2

∂xi∂t
− 4xi

∂2

∂yi∂t
+ 4(xi

2 + yi
2)
∂2

∂t2 .

It is easy to check that

[Xi,Y j] = −4Tδi j, [Xi, X j] = [Yi,Y j] = 0, i, j = 1, · · · , n
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and {X1, · · · , Xn,Y1, · · · Yn} satisfies the Hörmander’s rank condition (see [12]). In particular, this
implies that ∆H is hypoelliptic (see [12]), and the solution of equation including ∆H satisfies the
maximum principle (see [2, 4]).

Denote by Q = 2n + 2 the homogeneous dimension of Hn. The norm |ξ|H is the distance of ξ to the
origin (see [8]),

ρ = |ξ|H = (
n∑

i=1

(xi
2 + yi

2)2 + t2)
1
4 . (2.5)

Using this norm, one can define the distance between two points in Hn in the natural way

dH(ξ, η) =
∣∣∣η−1 ◦ ξ

∣∣∣
H
,

where η−1 denotes the inverse of η with respect to the group action ◦, i.e., η−1 = −η.
The open ball of radius R > 0 centered at ξ0 is the set

BH(ξ0,R) = {η ∈ Hn | dH(η, ξ0) < R} .

By the dilation of the group, ξ → |ξ|H is homogeneous of degree one with respect to δλ and

|BH(ξ0,R)| = |BH(0,R)| = |BH(0, 1)|RQ,

where |·| denotes the Lebesgue measure. Noting that Xi and Yi are homogeneous of degree minus one
with respect to δλ, i.e.,

Xi(δλ) = λδλ(Xi),Yi(δλ) = λδλ(Yi),

then ∆H is homogeneous of degree minus two and left invariant.
We denote the Sobolev space by

∥u∥Lp(Ω) = (
∫
Ω

|u(ξ)|pdξ)
1
p , 1 ≤ p < ∞,

∥u∥L∞(Ω) = ess supξ∈Ω|u(ξ)|.

and
W1,2(Ω) = {u | u,∇Hu ∈ L2(Ω)},

which is a Banach space about the norm

∥u∥W1,2(Ω) = ∥u∥L2(Ω) + ∥∇Hu∥L2(Ω).

Denote by W1,2
0 (Ω) the closure of C∞0 (Ω) in W1,2(Ω).

Let us state Sobolev’s and Poincaré’s inequalities in Hn, see [10, 13, 17].

Lemma 2.1. Let U be a bounded domain in Hn and Ω ⊂⊂ U. If 1 < p < Q and u ∈ W1,p
0 (Ω), then

there exists C > 0 depending on n, p and Ω, such that for any 1 ≤ q ≤ pQ
Q−p ,

(
∫
Ω

|u|q)
1
q ≤ C(

∫
Ω

|∇Hu|p)
1
p . (2.6)

If 1 ≤ p < ∞ and u ∈ W1,p
0 (Ω), then ∫

Ω

|u|p ≤ C
∫
Ω

|∇Hu|p. (2.7)
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For the maximum principle, we refer to [2, 4].

Lemma 2.2. Let Ω be a bounded domain and K(ξ) > 0, u satisfies

−∆Hu + K(ξ)u ≥ 0 on Ω, u = 0 in ∂Ω,

then u ≥ 0 on Ω. Furthermore, u > 0 on Ω, unless u ≡ 0.

The following Hopf-type lemma is from [4, 6, 26].

Lemma 2.3. For a domain V in Ĥn := Hn × R ⊂ Cn+1, let the point P0 ∈ ∂V satisfy the interior
Heisenberg ball condition (see [6]). Assume that U ∈ C2(V) ∩C1(V) is a solution to

−LαU ≥ c1(z)U,

for c1(z) ∈ L∞(V), where

Lα =
∂2

∂λ2 +
1 − α
λ

∂

∂λ
+

n∑
i=1

(
∂2

∂xi
2 +
∂2

∂yi
2 + 4yi

∂2

∂xi∂t
− 4xi

∂2

∂yi∂t
) + 4(λ2 +

n∑
i=1

(xi
2 + yi

2))
∂2

∂t2 .

If U(z) > U(P0) = 0, z ∈ V, then
∂U
∂ν

(P0) > 0,

where ν is the outer unit normal to ∂V at P0.
If c1(z) = 0, then the above conclusion is also valid when we drop the assumption U(P0) = 0.

To handle the equations in this paper, we also give a maximum principle as follows.

Lemma 2.4. Suppose that h ∈ C(Ω × R).
(i) If w ∈ C2(Ω)

⋂
C1(Ω) satisfies

∆Hw + h(ξ,w(ξ)) ≥ 0 on Ω,
∂w
∂ν
≤ 0 in ∂Ω, (2.8)

and w(ξ0) = max
Ω

w, then h(ξ0,w(ξ0)) ≥ 0.

(ii) If w ∈ C2(Ω)
⋂

C1(Ω) satisfies

∆Hw + h(ξ,w(ξ)) ≤ 0 on Ω,
∂w
∂ν
≥ 0 in ∂Ω, (2.9)

and w(ξ0) = min
Ω

w, then h(ξ0,w(ξ0)) ≤ 0.

Proof. We prove (i) only since (ii) can be established in a similar way.
If ξ0 ∈ Ω. Since w(ξ0) = max

Ω

w, we have ∆Hw(ξ0) ≤ 0. Thus, the conclusion holds from (2.8).

If ξ0 ∈ ∂Ω. We argue by contradiction. Suppose that h(ξ0,w(ξ0)) < 0. Then, by the continuity of
h and w, there exists a small ball BH in Ω with ∂BH

⋂
∂Ω = {ξ0} such that h(ξ,w(ξ)) < 0 for ξ ∈ BH.

Therefore, by (2.8), we have ∆Hw(ξ) > 0 for all ξ ∈ BH.
Since w(ξ0) = max

BH
w, it follows from the Hopf boundary Lemma 2.3 that ∂w

∂ν
(ξ0) > 0, which

contradicts the boundary condition in (2.8). □
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For the following Harnack inequality, we refer to [3, 23, 25].

Lemma 2.5. Let Ω be a bounded domain and K(ξ) ∈ C(Ω), u satisfies

−∆Hu + K(ξ)u = 0 on Ω, u = 0 in ∂Ω,

then there exists a positive constant C = C(∥K(ξ)∥L∞(Ω),Ω), such that max
Ω

u ≤ C min
Ω

u.

3. Competition-diffusion model

In this section, we consider the non-existence of non-constant solutions to the following semilinear
subelliptic system 

d1∆Hu + u f (u, v) = 0, in Ω,

d2∆Hv + vg(u, v) = 0, in Ω,
∂u
∂ν
=
∂v
∂ν
= 0, on ∂Ω,

u > 0, v > 0, in Ω.

(3.1)

Throughout this section, C and Ci will always denote generic positive constants depending only on f , g
and/or Ω. Let (u∗, v∗) be a positive root to f (u, v) = g(u, v) = 0,

M =

( ∂ f
∂u

∂ f
∂v

∂g
∂u

∂g
∂v

)
(u,v)=(u∗,v∗)

(3.2)

and |M| denotes the determinant of the matrixM.

Theorem 3.1. Suppose that (H1′) and (H3) hold. Then (u, v) = (u∗, v∗) is the only solution of
problem (3.1) if either

(i) |M| > 0 or
(ii) |M| ≤ 0 and max{d1, d2} ≥ C1 for some constant C1.

To prove Theorem 3.1, we need some preliminary results. In this section, set

Γ1 = {(u, v) ∈ R+ × R+ | f (u, v) = 0},

Γ2 = {(u, v) ∈ R+ × R+ | g(u, v) = 0},

I1 = {(u, v) ∈ R+ × R+ | f (u, v) ≥ 0 ≥ g(u, v)},

I2 = {(u, v) ∈ R+ × R+ | f (u, v) ≤ 0 ≤ g(u, v)}.

Lemma 3.2. Suppose that (H1′) and (H3) hold.
(i) If |M| > 0, then

I1 ⊂ {(u, v) ∈ R+ × R+ | u ≤ u∗, v ≥ v∗} and I2 ⊂ {(u, v) ∈ R+ × R+ | u ≥ u∗, v ≤ v∗}. (3.3)

(ii) |M| < 0, then

I1 ⊂ {(u, v) ∈ R+ × R+ | u ≥ u∗, v ≤ v∗} and I2 ⊂ {(u, v) ∈ R+ × R+ | u ≤ u∗, v ≥ v∗}. (3.4)

(iii) |M| = 0, then there are three possibilities: the two sets I1 and I2 satisfy (3.3), or they satisfy (3.4),
or one of them is equal to the set {(u∗, v∗)}.
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Proof. We shall show (i) only, since parts (ii) and (iii) can be shown in similar ways. By (H1′), the
curves Γ1,Γ2 can be represented as

Γ1 = {u = F(v), 0 < v < ∞}, Γ2 = {v = G(u), 0 < u < ∞}.

It is easy to show that F,G are non-increasing functions with F(v∗) = u∗ and G(u∗) = v∗. Then, our
conclusion follows from (H3) and the observation that if |M| > 0, Γ1 lies above Γ2 for 0 < u < u∗ in uv
plane, and Γ1 is below Γ2 for u ≥ u∗. □

Lemma 3.3. Suppose that (H1′) and (H3) hold.
(i) If |M| > 0, then (u, v) = (u∗, v∗) is the only solution of problem (3.1).
(ii) If |M| ≤ 0, then any solution (u, v) of problem (3.1) satisfies the following estimate:

max
Ω

u ≥ u∗ ≥ min
Ω

u, max
Ω

v ≥ v∗ ≥ min
Ω

v. (3.5)

Proof. Let u(ξ0) = max
Ω

u, by Lemma 2.4 and (H1′), we have

0 ≤ f (u(ξ0), v(ξ0)) ≤ f (max
Ω

u,min
Ω

v), (3.6)

and in a similar way, we can obtain that

f (min
Ω

u,max
Ω

v) ≤ 0,

g(min
Ω

u,max
Ω

v) ≥ 0,

g(max
Ω

u,min
Ω

v) ≤ 0.

(3.7)

The (3.6) and (3.7) show that

(max
Ω

u,min
Ω

v) ∈ I1 and (min
Ω

u,max
Ω

v) ∈ I2.

By Lemma 3.2, we have, if |M| > 0,

max
Ω

u ≤ u∗ ≤ min
Ω

u, max
Ω

v ≤ v∗ ≤ min
Ω

v.

This implies that (u, v) = (u∗, v∗), hence (i) is established. Part (ii) follows similarly from Lemma 3.2.
□

We shall present a priori estimates on solutions of the strongly-coupled subelliptic system (1.2).

Lemma 3.4. Suppose that (H1) holds. Then, there exists a positive constant C̃ = C̃(ai, bi, ci) such that
for any solution (u, v) of problem (1.2) satisfying the following estimates:

max
Ω

u ≤ C̃(1 +
α12

d1
), max

Ω

v ≤ C̃(1 +
α21

d2
). (3.8)
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Proof. Let Ψ = u(d1 + α11u + α12v), then Ψ satisfies
∆HΨ + u f (u, v) = 0, in Ω,
∂Ψ

∂ν
= 0, on ∂Ω.

Let Ψ(ξ0) = max
Ω

Ψ, then by Lemma 2.2 and the positivity of u, we have f (u(ξ0), v(ξ0)) ≥ 0. Therefore,

f (0, 0) ≥ f (0, 0) − f (u(ξ0), v(ξ0))
=( f (0, 0) − f (u(ξ0), 0)) + ( f (u(ξ0), 0) − f (u(ξ0), v(ξ0)))

=(−
∂ f
∂u

(η1, 0))u(ξ0) + (−
∂ f
∂v

(u(ξ0), η2))v(ξ0)

≥b1u(ξ0) + c1v(ξ0),

where the last inequality follows from the assumption (H1) and η1 ≥ 0, η2 ≥ 0. Hence, we have
u(ξ0) ≤ a1

b1
and v(ξ0) ≤ a1

c1
. Then,

max
Ω

Ψ = Ψ(ξ0) ≤
a1

b1
(d1 + α11

a1

b1
+ α12

a1

c1
),

which in turn implies that

(d1 + α11 max
Ω

u) max
Ω

u ≤ max
Ω

Ψ ≤
a1

b1
(d1 + α11

a1

b1
+ α12

a1

c1
). (3.9)

If α11 ≤ d1, it follows directly from (3.9) that

max
Ω

u ≤
a1

b1
(1 +

a1

b1
+
α12a1

d1c1
). (3.10)

If α11 ≥ d1, by (3.9) we obtain

α11(max
Ω

u)2 ≤
a1

b1
(d1 + α11

a1

b1
+ α12

a1

c1
),

then
(max
Ω

u)2 ≤
a1

b1
(

d1

α11
+

a1

b1
+
α12a1

α11c1
) ≤

a1

b1
(1 +

a1

b1
+
α12a1

d1c1
). (3.11)

Combining (3.10) and (3.11), we obtain the first half of (3.8). The estimate of max
Ω

v can be obtained

in a similar way. □

Proof of Theorem 3.1. By Lemma 3.3, it suffices to consider the case |M| ≤ 0. Let (u, v) be an arbitrary
solution of (3.1). We claim that there exists a positive constant C, independent of (u, v), such that

∥u − ū∥L∞(Ω) ≤
C
d1
, (3.12)

where ū is the average of u in Ω, i.e., ū = 1
|Ω|

∫
Ω

u.
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Following the proof of Lemma 3.4, by (H1′), we obtain

max{∥u∥L∞(Ω), ∥v∥L∞(Ω)} ≤ C1 = max{
a1

b1
,

a2

c2
}. (3.13)

Substituting u − ū into the problem (3.1), we have
∆H(u − ū) +

f̃
d1
= 0, in Ω,

∂(u − ū)
∂ν

= 0, on ∂Ω,
(3.14)

where f̃ = u f (u, v) can be estimated by

∥ f̃ ∥L∞(Ω) = ∥u f (u, v)∥L∞(Ω) ≤ C = max
0≤u,v≤C1

|u f (u, v)|. (3.15)

Multiplying (3.14) by u − ū, by Green’s identity, Hölder’s inequality, and Poincaré’s inequality, we
derive ∫

Ω

|∇Hu|2 ≤
∥ f̃ ∥L∞

d1

∫
Ω

|u − ū| ≤
C
d1
∥u − ū∥L2(Ω) ≤

C
d1
∥∇Hu∥L2(Ω),

which implies that

∥u − ū∥L2(Ω) ≤
C
d1
. (3.16)

By Lemma 2.1 and (3.14), (3.15), we get

∥u − ū∥W2,2(Ω) ≤ C(∥u − ū∥L2(Ω) +
∥ f̃ ∥L∞(Ω)

d1
) ≤

C
d1
,

and hence, by Sobolev embedding theorem [3, 11],
∥u − ū∥L∞(Ω) ≤

C
d1

if Q ≤ 4,

∥u − ū∥
L

2Q
Q−4 (Ω)

≤
C
d1

if Q ≥ 5.

Since 2Q
Q−4 > 2, this proves (3.16). Iterating this argument finitely many times, we establish (3.12).

Furthermore, it follows from (3.12) that

|max
Ω

u −min
Ω

u| ≤ 2∥u − ū∥L∞(Ω) ≤
C
d1
. (3.17)

Then, we will show that there exists a positive constant C (independent of u and v), such that

∥u − u∗∥L∞(Ω) ≤
C
d1
. (3.18)

It follows from the above process and Lemma 3.3 that

ū −
C
d1
≤ min

Ω

u ≤ u∗ ≤ max
Ω

u ≤ ū +
C
d1
,
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that is
|ū − u∗| ≤

C
d1
,

which in turn implies that

∥u − u∗∥L∞(Ω) ≤ ∥u − ū∥L∞(Ω) + |ū − u∗| ≤
C
d1
.

Simultaneously, there exists a positive constant C (independent of u and v) such that the following
inequality holds

∥v − v∗∥L∞(Ω) ≤
C
d1
. (3.19)

From (3.7), it follows that for some ζ1 > 0, ζ2 > 0,

−
∂g
∂v

(max
Ω

u, ζ2)(max
Ω

v −min
Ω

v) =g(max
Ω

u −min
Ω

v) − g(max
Ω

u −max
Ω

v)

≤g(min
Ω

u −max
Ω

v) − g(max
Ω

u −max
Ω

v)

= −
∂g
∂u

(ζ1,max
Ω

v)(max
Ω

u −min
Ω

u).

Hence, by (H1′) and (3.17), we deduce that

max
Ω

v −min
Ω

v ≤
∥
∂g
∂u∥L∞(Ω)

c2
(max
Ω

u −min
Ω

u) ≤
C
d1
,

which, together with Lemma 3.3, shows that (3.19) holds.
At last, we prove that there exists a constant C1 (independent of u and v), such that if max{d1, d2} ≥

C1, then the only solution of (3.1) is (u, v) = (u∗, v∗).
Multiplying the first equation of (3.1) with u − ū, by Green’s identity, we obtain

d1

∫
Ω

|∇Hu|2 =
∫
Ω

(u − ū)(u f (u, v) − ū f (ū, v̄))

=

∫
Ω

(u − ū)((u − ū) f (u, v) + ū( f (u, v) − f (ū, v̄)))

≤C
∫
Ω

|u − ū|2 +C
∫
Ω

|u − ū||v − v̄|

=
C
ε

∫
Ω

|u − ū|2 + ε
∫
Ω

|v − v̄|2. (3.20)

For the second equation of (3.1), we proceed slightly differently, as follows.

d2

∫
Ω

|∇Hv|2 =
∫
Ω

(v − v̄)(vg(u, v) − v̄g(ū, v̄))

=

∫
Ω

[g(u, v)|v − v̄|2 + v̄(v − v̄)(g(ū, v) − g(ū, v̄)) + v̄(v − v̄)(g(u, v) − g(ū, v))]

=

∫
Ω

{[g(u, v) + v̄
∂g
∂v

(ū, ς2)]|v − v̄|2 + v̄
∂g
∂u

(ς1, v)(u − ū)v̄(v − v̄)}

AIMS Mathematics Volume 9, Issue 10, 29529–29555.



29540

≤ C
∫
Ω

(g(u, v) − c2v̄)|v − v̄|2 +C
∫
Ω

|u − ū||v − v̄|

=
C
ε

∫
Ω

|u − ū|2 +
∫
Ω

(g(u, v) − c2v̄ + ε)|v − v̄|2, (3.21)

where ς1(ξ) lies between ū and u(ξ), and ς2(ξ) lies between v̄ and v(ξ) for each ξ ∈ Ω. From the above
conclusions, it follows that (3.18) and (3.19) hold. And then, by (3.18) and (3.19), if d1 ≥ C,

g(u, v) − c2v̄ =g(u, v) − g(u∗, v∗) − c2v̄

=g(u, v) − g(u∗, v) + g(u∗, v) − g(u∗, v∗) − c2v̄

≤ − b2∥u − u∗∥L∞(Ω) − c2∥v − v∗∥L∞(Ω) − c2v̄

≤ − b2
C
d1
− c2

C
d1
− c2v̄

≤ −
c2v∗

2
.

Choosing ε = c2v∗

4 in (3.21), we have

d2

∫
Ω

|∇Hv|2 ≤ C
∫
Ω

|u − ū|2 −
c2v∗

4

∫
Ω

|v − v̄|2. (3.22)

Combing (3.20) and (3.22), we arrive at

d1

∫
Ω

|∇Hu|2 ≤ C
∫
Ω

|u − ū|2 ≤ C2

∫
Ω

|∇Hu|2,

which implies that if d1 > C2, then ∇Hu ≡ 0, i.e., u is constant.
Then, (3.22) guarantees that v ≡ v̄, a non-negative constant.
In view of part (ii) of Lemma 3.3, we see that these constants must be positive. Hence, from the

assumption (H3), we conclude that (u, v) ≡ (u∗, v∗).
A similar argument applies when d2 is large, leading to the same conclusion. This completes the

proof of Theorem 3.1. □

As a consequence of Theorem 3.1, we have the following corollary:

Corollary 3.5. If f = u(a1 − b1u − c1v) and g = v(a2 − b2u − c2v), then (u, v) = (u∗, v∗) is the only
solution of problem (3.1) if either
(i) b1

b2
> a1

a2
> c1

c2
or

(ii) b1
b2
< a1

a2
< c1

c2
and max{d1, d2} ≥ C1 for some constant C1.

Remark 1. The equations in Theorem 3.1 and Corollary 3.5 involve subelliptic operators, which are
more general than elliptic operator as described in [16], and the proof mainly relies on Lemma 2.4,
which is the subelliptic case.

4. Diffusion and self-diffusion model

In this section, we mainly study the effects of diffusion and self-diffusion in the strongly-coupled
subelliptic system (1.2). Throughout this section, C will always denote generic positive constants
depending only on d1, d2, α12, α21 and the nonlinearity f , g, but independent of α11, α22.
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Theorem 4.1. Suppose that the conditions (H1) and (H2) hold. Then, there exists a constant C such
that if max{α11, α22} ≥ C, the problem (1.2) has no non-constant solution.

Lemma 4.2. Suppose that (H1) and (H2) hold.
(i) If f (u, v) = g(u, v) = 0 has no positive root, then there exists a constant C such that (1.2) has no
solution provided that max{α11, α22} ≥ C.
(ii) If f (u, v) = g(u, v) = 0 has at least a positive root, then there every small ε > 0, there exists a
constant C(ε) such that if max{α11, α22} ≥ C(ε), for any solution (u, v) of (1.2), there are two positive
constants û, v̂ that f (û, v̂) = g(û, v̂) = 0 and ∥u − û∥L∞(Ω) + ∥v − v̂∥L∞(Ω) ≤ ε.

Proof. We prove (ii) at first; suppose that the conclusion is false. Without loss of generality, we assume
that there exists a constant ε0 > 0, and a sequence {α11,k, α22,k}

∞
k=1 with α11,k → ∞, such that

∥uk − û∥L∞(Ω) + ∥vk − v̂∥L∞(Ω) ≥ ε0 (4.1)

for any positive root (û, v̂) of f (u, v) = g(u, v) = 0, where (uk, vk) is a solution to

∆H[(d1 + α11,kuk + α12vk)uk] + uk f (uk, vk) = 0, in Ω,

∆H[(d2 + α21uk + α22,kvk)vk] + vkg(uk, vk) = 0, in Ω,
∂uk

∂ν
=
∂vk

∂ν
= 0, on ∂Ω,

uk > 0, vk > 0, in Ω.

(4.2)

We use the same notation of the subsequence of {uk}
∞
k=1 as for the original sequence {uk}

∞
k=1, such that

uk converges uniformly to a constant as k → ∞. Set

Φk = uk(uk +
d1

α11,k
+
α12

α11,k
vk),

then Φk satisfies 
α11,k∆HΦk + uk f (uk, vk) = 0, in Ω,
∂Φk

∂ν
= 0, on ∂Ω.

By Lemma 3.4 and the fact α11,k → ∞, we know that ∥Φk∥L∞(Ω) ≤ C. Hence by standard Lp estimates
and the Sobolev embedding theorem [5, 11, 24], we obtain ∥Φk∥C1,α(Ω) ≤ C for some α ∈ (0, 1).
Therefore, a subsequence of {Φk}

∞
k=1 converges to some nonnegative function Φ in C1(Ω), and Φ must

satisfy the following problem weakly 
∆HΦ = 0, in Ω,
∂Φ

∂ν
= 0, on ∂Ω.

By standard subelliptic regularity theory, Φ ∈ C2(Ω) and therefore Φ = Φ̂, where Φ̂ is a nonnegative
constant. Letting û =

√
Φ̂, we get that

u2
k − û2 = Φk − Φ̂ −

d1

α11,k
uk −

α12

α11,k
ukvk → 0
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as k → ∞. Hence uk → û uniformly.
Next, we claim the subsequence of {vk}

∞
k=1 and also denote {vk}

∞
k=1, such that vk → v̂ uniformly as

k → ∞, where v̂ is some nonnegative constant.
Before establishing the above assertion, we show how to derive a contradiction via the fact that

(uk, vk)→ (û, v̂) uniformly as k → ∞.
Integrating the equations of (4.2) in Ω, we have∫

Ω

uk f (uk, vk) =
∫
Ω

vkg(uk, vk) = 0. (4.3)

From this, we conclude that f (û, v̂) = g(û, v̂) = 0 for (û, v̂). Suppose that f (û, v̂) , 0. Without loss of
generality, we may assume that f (û, v̂) > 0. Since (uk, vk) → (û, v̂) uniformly, f (uk, vk) → f (û, v̂) as
k → ∞. Hence, f (ûk, v̂k) > 0 for k large, and therefore∫

Ω

uk f (uk, vk) > 0

for large k since uk is always positive, which contradicts (4.3). A similar contradiction can be deduced
if g(û, v̂) , 0.

By (H2) and the assumption that f (0, 0) = a1 > 0, g(0, 0) = a2 > 0, we must have

û > 0, v̂ > 0.

That is, (uk, vk)→ (û, v̂) uniformly with

û > 0, v̂ > 0 and f (û, v̂) = g(û, v̂) = 0,

which contradicts (4.1) and thus establishes (ii) of Lemma 4.2.
To finish the proof of part (ii) of Lemma 4.2, it remains to show the above assertion.
If {α22,k}

∞
k=1 is unbounded. We choose a subsequence of {α22,k}

∞
k=1, still denoted as {α22,k}

∞
k=1, such

that α22,k → ∞ as k → ∞. We can then argue in very much the same way as before to conclude that
vk → v̂ for some non-negative constant v̂.

If {α22,k}
∞
k=1 is bounded. Without loss of generality, we may assume that α22,k → α22 ∈ [0,∞). Set

Υk = (d2 + α21uk + α22,kvk)vk.

Since {α22,k}
∞
k=1 is bounded, by Lemma 3.4 it is easy to know that ∥Υk∥L∞(Ω) ≤ C. Hence, Υk satisfies

∆HΥk + vkg(uk, vk) = 0, in Ω,
∂Υk

∂ν
= 0, on ∂Ω.

(4.4)

By standard Lp estimate and the Sobolev embedding theorem, we obtain ∥Υk∥C1,α(Ω) ≤ C for some
α ∈ (0, 1). Then, by passing to a subsequence if necessary, we may assume that {Υk}

∞
k=1 converges to

some nonnegative function Υ in C1(Ω). By the definition of Υk and the fact u→ û, we see

Υ − (d2 + α21ûk + α22,kvk)vk → 0
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in C1(Ω). If α22 > 0, it is easy to get vk → ṽ in C1(Ω), where

ṽ =
−(d2 + α21û) +

√
(d2 + α21uk)2 + 4α22Υ

2α22
≥ 0.

Letting k → ∞ in (4.4), we can know that Υ satisfies the following problem weakly
∆HΥ + ṽg(û, ṽ) = 0, in Ω,
∂Υ

∂ν
= 0, on ∂Ω.

(4.5)

The standard subelliptic regularity theory ensures that Υ ∈ C2(Ω), and hence is a classical solution
of (4.5). Note that Υ ≥ 0. If Υ ≡ 0, then we claim that vk → 0 in C1(Ω). Since uk → û, by (4.2) we can
argue similarly as before to show that f (û, 0) = 0 and û > 0, which contradicts (H2). Therefore, Υ ≥ 0
and is not identically zero in Ω. The problem (4.5) can be rewritten as

∆HΥ +
g(û, ṽ)

d2 + α21u + α22v
Υ = 0, in Ω,

∂Υ

∂ν
= 0, on ∂Ω.

By Lemma 2.2, Υ > 0, and thus ṽ > 0 in Ω. Since ṽ is a solution of
∆H[(d2 + α21û + α22ṽ)ṽ] + ṽg(û, ṽ) = 0, in Ω,
∂ṽ
∂ν
= 0, on ∂Ω,

(4.6)

by Lemma 2.4 and the positivity of ṽ, we obtain g(û,max
Ω

ṽ) ≥ 0. Thus, from assumption (H1), it

follows that
g(û, ṽ(ξ)) ≥ g(û,max

Ω

ṽ) ≥ 0, ∀ξ ∈ Ω.

Integrating the equation of (4.6) in Ω shows

0 =
∫
Ω

ṽg(û, ṽ)) ≥
∫
Ω

ṽg(û,max
Ω

ṽ) = g(û,max
Ω

ṽ)
∫
Ω

ṽ ≥ 0,

which implies that ṽ ≡ max
Ω

ṽ > 0. That is, if α22,k → α22 > 0, then there exists a subsequence of

{α22,k}
∞
k=1 which converges uniformly to some positive constant.

If α22 = 0, we have already established that

vk → ṽ =
Υ

d2 + α21û

in C1(Ω) as k → ∞. Then, our conclusion that a subsequence of {vk}
∞
k=1 converges to some positive

constant follows from the same arguments as in the case α22 > 0 with obvious modifications. This
proves our assertion, and the proof of part (ii) is now complete.
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Finally, we return to the proof of part (i). Suppose that the conclusion in (i) fails. Then, we can
assume that there exists a sequence of solutions {(uk, vk)}∞k=1 to (4.2) with α11,k → ∞.

Similarly to the processes in part (ii), we show that there exists a subsequence of {(uk, vk)}∞k=1 that
converges uniformly to some non-negative (û, v̂). Again, (4.3) and the arguments following it guarantee
that f (û, v̂) = g(û, v̂) = 0. By (H1) and (H2), we conclude that û > 0 and v̂ > 0. However, this
contradicts our assumption of (i). □

Lemma 4.3. Suppose that (H1) and (H2) hold and min{d1, d2} ≥ ϵ.
(i) If f (u, v) = g(u, v) = 0 have no positive root, then there exists some positive constant C1 = C1(ϵ, α11,

α12, α21, α22) such that (1.2) has no solution provided that max{d1, d2} ≥ C1.
(ii) If f (u, v) = g(u, v) = 0 have a positive root, then for any small ε > 0, there exists a positive constant
C2 = C2(ε, ϵ, α11, α12, α21, α22) such that if max{d1, d2} ≥ C2, for any solution (u, v) of (1.2), there are
two positive constants û, v̂ that f (û, v̂) = g(û, v̂) = 0 and ∥u − û∥L∞(Ω) + ∥v − v̂∥L∞(Ω) ≤ ε.

Proof. We shall only prove part (ii), as (i) can be shown in a similar way. For the proof of (ii), we still
argue by contradiction. We assume that there exist two positive constants ϵ0 and ε0, and a sequence
{d1,k, d2,k}

∞
k=1 with d1,k → ∞ and d2,k ≥ ϵ0, such that

∥uk − û∥L∞(Ω) + ∥vk − v̂∥L∞(Ω) ≥ ε0 (4.7)

for any positive root (û, v̂) of f (u, v) = g(u, v) = 0, where (uk, vk) is a solution to

∆H[(d1,k + α11uk + α12vk)uk] + uk f (uk, vk) = 0, in Ω,

∆H[(d2,k + α21uk + α22vk)vk] + vkg(uk, vk) = 0, in Ω,
∂uk

∂ν
=
∂vk

∂ν
= 0, on ∂Ω,

uk > 0, vk > 0, in Ω.

(4.8)

For the problem (4.8), Lemma 3.4 implies that

max
Ω

{uk, vk} ≤ C1 = C1(ϵ, α11, α12, α21, α22).

To show that uk converges to some constant, let

Φk = uk(1 +
α11

d1,k
uk +

α12

d1,k
vk). (4.9)

Then by similar arguments as in the proof of Lemma 4.2, we see that Φk converges uniformly to some
non-negative constant Φ. By (4.9) and the fact d1,k → ∞, uk converges uniformly to Φ. If {d2,k}

∞
k=1

is unbounded, then it is easy to show that a subsequence of {d2,k}
∞
k=1 also converges to a non-negative

constant. If {d2,k}
∞
k=1 bounded, setting

Υk = (d2,k + α21uk + α22vk)vk,

we know that a subsequence of {Υk}
∞
k=1 converges to some non-negative function Υ, and hence a

subsequence of {vk}
∞
k=1 converges to a nonnegative function ṽ. Then, we can proceed further as in the

proof of Lemma 4.2 to show that ṽ is a constant that derives a contradiction. □
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Lemma 4.4. Suppose that (H1) and (H2) hold and α22 > 0.
(i) If f (u, v) = g(u, v) = 0 has no positive root, then there exists a positive constant C3 = C3(α11, α12,

α21, α22) such that (1.2) has no solution provided that d1 ≥ C3.
(ii) If f (u, v) = g(u, v) = 0 has a positive root, then for any small ε > 0, there exists a constant
C4 = C4(ε, α11, α12, α21, α22) such that if d1 ≥ C4, for any solution (u, v) of (1.2), there exist two
positive constants û, v̂ that f (û, v̂) = g(û, v̂) = 0 and ∥u − û∥L∞(Ω) + ∥v − v̂∥L∞(Ω) ≤ ε.
Similar results hold if α11 > 0 and d2 is large enough.

Proof. In view of Lemma 4.3, it suffices to consider the case d1,k → ∞ and d2,k → 0. For this case, by
following the proof of Lemma 4.3, we obtain

max
Ω

uk ≤
a1

b1
(1 +

a1

b1
+
α12

d1,k

a1

c1
) ≤

a1

b1
(1 +

a1

b1
+

a1

c1
),

and
max
Ω

vk ≤ [
a2

b2
(1 +

α21

α22

a2

b2
+

a2

c2
)]2,

for large k. Then, we can prove Lemma 4.4 in the same way as Lemma 4.3. □

Proof of Theorem 4.1. In view of part (i) of Lemma 4.2, we may assume that f (u, v) = g(u, v) = 0 has
at least a positive root. Setting

S = {(u, v) ∈ R+ × R+ | f (u, v) = g(u, v) = 0}.

By (H1) and (H2) we know
δ = inf

(u,v)∈S
{u, v} > 0.

Choosing ε = δ2 in Lemma 4.2, there is a positive constant C(δ) and C such that if max{α11, α22} ≥ C(δ),
then for any solution (u, v) of (1.2),

δ

2
≤ u(ξ), v(ξ) ≤ C, ∀ξ ∈ Ω. (4.10)

Without loss of generality, we may assume that α11 is sufficiently large. Let (ū, v̄) be the average of
(u, v) in Ω. Multiplying the first equation of problem (1.2) by u − ū and integrating in Ω, by the same
arguments as in (3.20), we get∫

Ω

[(d1 + 2α11u + α12v)|∇Hu|2 + α12u∇Hu · ∇Hv]

=

∫
Ω

(u − ū)u f (u, v)

≤
C
ε

∫
Ω

|u − ū|2 + ε
∫
Ω

|v − v̄|2. (4.11)

By Lemma 3.4, (4.10), and Poincaré’s inequality, we have∣∣∣∣∣ ∫
Ω

α12u∇Hu · ∇Hv
∣∣∣∣∣ ≤ C
ε

∫
Ω

|∇Hu|2 + ε
∫
Ω

|∇Hv|2.
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Using (4.10) and Poincaré’s inequality, we obtain

(α11δ −
C
ε

)
∫
Ω

|∇Hu|2 ≤ ε(1 +
1
λ1

)
∫
Ω

|∇Hv|2, (4.12)

where λ1 is the smallest positive eigenvalues of the sub-Laplace operator subject to the homogeneous
Neumann boundary condition (see [1]). For the second equation of problem (2.1), we proceed as
in (3.21) to obtain ∫

Ω

[(d2 + α21u + 2α22v)|∇Hv|2 + α21v∇Hu · ∇Hv]

=

∫
Ω

(v − v̄)vg(u, v)

≤
C
ε

∫
Ω

|u − ū|2 +
∫
Ω

(g(u, v) − c2v̄ + ε)|v − v̄|2. (4.13)

By Lemma 4.2, for any small ε, there exists C(ε) such that if α11 ≥ C(ε), then

∥u − û∥L∞(Ω) + ∥v − v̂∥L∞(Ω) ≤ ε

for some (û, v̂) ∈ S. And then

∥g(u, v)∥L∞(Ω) = ∥g(u, v) − g(û, v̂)∥L∞(Ω) ≤ Cε.

As v̄ ≥ δ2 , we know that for α11 ≥ C(ε) and ε small enough,

g(u, v) − c2v̄ + ε ≤ (C + 1)ε −
c2δ

2
≤ 0.

Therefore

d2

∫
Ω

|∇Hv|2 =
∫
Ω

α21v|∇Hu||∇Hv| +
C
ε

∫
Ω

|u − ū|2

≤
C
ε

∫
Ω

|∇Hu|2 + ε
∫
Ω

|∇Hv|2. (4.14)

Combining (4.12) and (4.14), we have

(α11δ −
C
ε

)
∫
Ω

|∇Hu|2 + (d2 − ε(2 +
1
λ1

))
∫
Ω

|∇Hv|2 ≤ 0. (4.15)

Choosing ε small enough, for α11 sufficiently large, ∇Hu = ∇Hv ≡ 0, then (u, v) is constant. □

Theorem 4.5. Suppose that the conditions (H1) and (H2) hold. For any ϵ > 0, there exists some
positive constant C5 = C5(ϵ, α11, α12, α21, α22) such that if min{d1, d2} ≥ ϵ and max{d1, d2} ≥ C5, then
problem (1.2) has no non-constant solution.

Proof. Replacing α11δ by d1 in both (4.12) and (4.15), and following the proof of Theorem 4.1 with
the help of Lemma 4.3 instead, we see immediately that this theorem holds. □
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Theorem 4.6. Suppose that the conditions (H1) and (H2) hold.
(i) There exists a positive constant C6 = C6(d2, α11, α12, α21, α22) such that if d1 ≥ C6, problem (1.2)
has no non-constant solution. Furthermore, if α22 > 0, then C6 can be chosen independent of d2.
(ii) There exists a positive constant C7 = C7(d1, α11, α12, α21, α22) such that if d2 ≥ C7, problem (1.2)
has no non-constant solution. Furthermore, if α11 > 0, then C7 can be chosen independent of d1.

Proof. We shall establish part (i) only, since (ii) can be shown in a similar way. By letting ϵ = d2 and
C6 = max{C5, d2} in Theorem 4.5, we know that the first assertion of (i) follows immediately from
Theorem 4.5. To prove the second assertion, we first note that by choosing ε = δ

2 , from Lemma 4.4
it follows that min

Ω

v ≥ δ
2 . Then, we modify the proof of Theorem 4.1 by replacing the constant d2

in (4.14) and (4.15) by 2α22 min
Ω

v, and the term α11δ by d1 in both (4.12) and (4.15). The remaining

arguments are rather similar as before and are thus omitted. □

It follows immediately from Theorem 4.6 that

Corollary 4.7. Suppose that the conditions (H1) and (H2) hold, α11 > 0 and α22 > 0. Then, there
exists a positive constant C8 = C8(α11, α12, α21, α22) such that if max{d1, d2} ≥ C8, problem (1.2) has
no non-constant solution.

Remark 2. We note that Theorem 1.1 follows from Theorem 4.1 and Corollary 4.7. Moreover, from
Theorem 4.1 and Corollary 4.7 we see that large self-diffusion seems to have a very similar effect to
large diffusion, as observed in [16].

5. Predator-prey model

In this section, we mainly study the predator-prey system (1.3). Throughout this section, C will
always denote generic positive constants.

At first, we study the case ᾱ21 = 0, and give the proof of Theorem 1.2. As a by-product a priori
estimate is established by using the maximum principle and the Harnack inequality.

Theorem 5.1. Suppose that d̃1, d̃2, and α̃12 are given positive constants. Then, there exists a positive
constant C = C(a2, c2, d̃1, d̃2, α̃12) such that if d1 ≥ d̃1, d2 ≥ d̃2 and ᾱ12 ≤ α̃12, then every positive
solution (u, v) of (1.3) satisfies C−1 < u, v < C.

Proof. Assume that (u, v) is a positive solution of problem (1.3) and denote Π = (1 + α12v)u. Then
problem (1.3) becomes 

d1∆HΠ + uq(u) − p(u)v = 0, in Ω,

d2∆Hv + v(−a2 + c2 p(u)) = 0, in Ω,
∂Π

∂ν
=
∂v
∂ν
= 0, on ∂Ω.

(5.1)

Let ξ1 ∈ Ω be a point where Π(ξ1) = max
Ω

Π(ξ). By Lemma 2.4, for the first equation of problem (5.1),

we obtain that
u(ξ1)q(u(ξ1)) − p(u(ξ1))v(ξ1) ≥ 0.

Therefore, u(ξ1)q(u(ξ1)) ≥ 0. By (H4), we have

0 < u(ξ1) ≤ S
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and
0 < v(ξ1) ≤

u(ξ1)q(u(ξ1))
p(u(ξ1))

≤
S q(u(ξ1))
p(u(ξ1))

:= M,

here, the condition lim
u→0+

p′(u) < ∞ in (H5) shows that sup
u∈(0,S )

uq(u)
p(u) < ∞. Thus,

max
Ω

u(ξ) ≤ max
Ω

Π(ξ) = (1 + ᾱ12v(ξ1))u(ξ1) ≤ (1 + ᾱ12M)S := C1.

Multiplying c2 to the first equation of (1.3) and adding it to the second equation of (1.3) and then
integrating over Ω, we obtain∫

Ω

{c2d1∆H[(1 + ᾱ12v)u] + d2∆Hv} =
∫
Ω

[a2v − c2uq(u)].

By Green’s identity, we know that∫
Ω

{c2d1∆H[(1 + ᾱ12v)u] + d2∆Hv} = 0.

So
a2

∫
Ω

v = c2

∫
Ω

uq(u) ≤ c2

∫
Ω

q(0)C1 = c2q(0)C1|Ω|,

that is, ∫
Ω

v ≤
c2q(0)C1|Ω|

a2
.

The problem (1.3) can also be written as

−∆HΠ =
q(u) − p(u)

u v
d1(1 + α12v)

Π, in Ω,

−∆Hv =
v(−a2 + c2 p(u))

d2
, in Ω,

∂Π

∂ν
=
∂v
∂ν
= 0, on ∂Ω.

For u < S and d2 ≥ d̃2, we see −a2+c2 p(u)
d2

< c2 p(S )
d̃2
< ∞, so the Lemma 2.5 holds for v,

max
Ω

v ≤ C0 min
Ω

v (5.2)

for some positive constant C0. Hence, we have

max
Ω

v ≤ C0 min
Ω

v ≤
C0

∫
Ω

v

|Ω|
≤

c2q(0)C1C0

a2
:= C2. (5.3)

By integrating the first equation of problem (1.3) over Ω, we have∫
Ω

(uq(u) − p(u)v) = 0. (5.4)
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Equation (5.4) implies that there exists a point ξ2 ∈ Ω, such that

(u(ξ2)q(u(ξ2)) − p(u(ξ2))v(ξ2)) = 0.

By assumptions (H4) and (H5), it follows that 0 < u(ξ2) < S . Then,

v(ξ2) =
u(ξ2)q(u(ξ2)

p(u(ξ2))
> 0.

If min
Ω

v = 0, by (5.2) it follows that max
Ω

v = 0. That means that v ≡ 0 uniformly in Ω, which is a

contradiction. Thus v has a positive lower bound for d2 ≥ d̃2.
In the following, we show that u has a positive lower bound.
By (H5) and p(u) ∈ C2((0,+∞)), it follows that

lim
u→0+

p(u)
u
= lim

u→0+
p′(u) < ∞,

there exists a positive constant p̄ such that p(u)
u ≤ p̄ for small 0 < u ≤ S . For d1 ≥ d̃1, we have

q(u) − p(u)
u v

d1(1 + ᾱ12v)
≤

q(0) + p̄C2

d̃1
< ∞.

Thus Lemma 2.5 holds for Π,
max
Ω

Π ≤ C̃0 min
Ω

Π (5.5)

for some positive constant C̃0. By (5.3) and (5.5), we get

max
Ω

u

min
Ω

u
≤

max
Ω

Π

min
Ω

Π
·

1 + ᾱ12 max
Ω

v

1 + ᾱ12 min
Ω

v
≤ C̃0C1(1 + ᾱ12 max

Ω

v) ≤ C̃0C1(1 + ᾱ12C2) := C3. (5.6)

To obtain a contradiction, assume that there exists a sequence {(d1,k, d2,k, ᾱ12,k)}∞k=1, satisfying d1,k ≥

d̃1, d2,k ≥ d̃2 and ᾱ12,k ≤ α̃12 for some α̃12 > 0, such that the corresponding positive solutions (uk, vk) of
problem (1.3) with (d1, d2, ᾱ12) = (d1,k, d2,k, ᾱ12,k) such that min

Ω

uk → 0 as k → ∞. Using (5.6), we have

max
Ω

uk → 0 as k → ∞. By the regularity theory for subelliptic equations, there exists a subsequence of

{(uk, vk)}, which will also be denoted by {(uk, vk)}, such that uk → 0 uniformly as k → ∞. Integrating
the second equation of problem (1.3) with (u, v) = (uk, vk), we obtain∫

Ω

vk(−a2 + c2 p(uk)) = 0. (5.7)

Since uk → 0 as k → ∞, we have −a2+c2 p(uk) < 0 inΩ for any large k. This contradicts the integrating
identity (5.7) as well as the fact that vk > 0. □

Theorem 5.2. Suppose that p(S ) ≤ a2
c2

, then problem (1.3) has no non-constant solution.
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Proof. Since q(u) < 0 for u ≥ S , we only need to consider the case u < S . Suppose, on the contrary,
that (1.3) has a non-constant positive solution (u, v) for p(S ) ≤ a2

c2
. Then, v must be non-constant;

otherwise, it is easily seen that u must be constant from the second equation of problem (1.3).
Using the fact that p(u) is increasing in u, and integrating the second equation of problem (1.3) over

Ω, we have

0 = −d2

∫
Ω

∆Hv =
∫
Ω

v(−a2 + c2 p(u)) <
∫
Ω

v(−a2 + c2 p(S )).

Since v > 0, we have p(S ) ≥ a2
c2

. This contradiction completes the proof. Thus, if (1.3) has a positive
solution, it must be that p(S ) ≥ a2

c2
, which is the condition that p(u) should satisfy according to (H5). □

Remark 3. Theorem 5.2 is directly characterized by the function p(u). When ᾱ21 = 0, we will prove
the non-existence result. Theorem 1.2, which considers the self-diffusion and cross-diffusion rates d1,

and d2, is given in [14].

Theorem 5.3. Suppose that d̃1 = λ1 + λ
−1
1 (q(0) + c2λ1K) and d̃2 = λ

−1
1 (−a2 + c2 p(C̃) + c2K+(d1ᾱ12C̃)2

4 )
where K = sup

Ω

v̄p′(u). If d1 ≥ d̃1 and d2 ≥ d̃2, then problem (1.3) has no non-constant solution.

Proof. Let (u, v) be a positive solution of problem (1.3). Multiplying the equations of problem (1.3) by
u − ū, v − v̄, and then integrating over Ω, using the mean value theorem, we get∫

Ω

[d1(1 + ᾱ12v)|∇Hu|2 + d2|∇Hv|2 + d1ᾱ12u∇Hu · ∇Hv]

=

∫
Ω

[(u − ū)(uq(u) − p(u)v) + (v − v̄)v(−a2 + c2 p(u))]

=

∫
Ω

(u − ū)[q(u)(u − ū) + ū(q(u) − q(ū)) − p(u)(v − v̄) − v̄(p(u) − p(ū))]

+

∫
Ω

(v − v̄)[−a2(v − v̄) + c2 p(u)(v − v̄) + c2v̄(p(u) − p(ū))]

=

∫
Ω

(u − ū)[q(u)(u − ū) + ūq′(η)(u − ū) − p(u)(v − v̄) − v̄p′(ζ)(u − ū)]

+

∫
Ω

(v − v̄)[−a2(v − v̄) + c2 p(u)(v − v̄) + c2v̄p′(ς)(u − ū)]

=

∫
Ω

[(u − ū)2(q(u) + ūq′(η) − v̄p′(ζ)) + (v − v̄)2(−a2 + c2 p(u)) + (u − ū)(v − v̄)(−p(u) + c2v̄p′(ς))]

<

∫
Ω

[q(0)|u − ū|2 + (−a2 + c2 p(C̃))|v − v̄|2 + c2K|u − ū||v − v̄|],

where 0 < η, ζ, ς ≤ C̃ and K = sup
Ω

v̄p′(u), we note here that p′(u) is bounded in any finite interval due

to the assumptions p(u) ∈ C2((0,+∞)) and (H5).
By Theorem 5.1, Cauchy’s inequality, and Poincaré’s inequality, we see∫

Ω

[d1(1 + ᾱ12v)|∇Hu|2 + d2|∇Hv|2]

<

∫
Ω

[(q(0) + c2KT )|u − ū|2 + (−a2 + c2 p(C̃) +
c2K
4T

)|v − v̄|2 + T |∇Hu|2 +
(d1ᾱ12u)2

4T
|∇Hv|2]
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<

∫
Ω

[(λ1 + λ
−1
1 (q(0) + c2λ1K))|∇Hu|2 + (λ−1

1 (−a2 + c2 p(C̃) +
c2K + (d1ᾱ12C̃)2

4
))|∇Hv|2],

where T is taken as any positive constant, specifically λ1. Hence, by the assumptions d1 ≥ d̃1, d2 ≥ d̃2,
we know that problem (1.3) has no non-constant positive solution. □

The Theorem 1.2 can be obtained from Theorem 5.3.

Remark 4. If ᾱ21 = 0 and ᾱ12 is small enough as [14], then Theorem 1.2 shows that problem (1.3)
does not admit a non-constant positive solution for some large enough d1, d2, which is consistent with
the result Theorem of 1.1.

Next, we prove Theorem 1.3.

Theorem 5.4. Suppose that d̃1, d̃2, α̃12, α̃21 are given positive constants. Then, there exists a positive
constant C = C(a2, c2, d̃1, d̃2, α̃12, α̃21) such that if d1 ≥ d̃1, d2 ≥ d̃2, ᾱ12 ≤ α̃12 and ᾱ21 ≤ α̃21, then every
positive solution (u, v) of (1.3) satisfies C−1 < u, v < C.

The proof of Theorem 5.4 is similar to Theorem 5.1.

Theorem 5.5. Suppose that d̃1 = λ
−1
1 q(0)+ c2K and d̃2 = λ

−1
1 (−a2 +

c2K+C̃2

4λ1
) with K = sup

Ω

v̄p′(u). Then,

there exists positive constants d̃1, d̃2, α̃12, α̃21 such that if d1 > d̃1 and d2 > d̃2, then problem (1.3) has
no non-constant solution when ᾱ12 < α̃12 and ᾱ21 < α̃21.

Proof. Let (u, v) be a positive solution of problem (1.3). Multiplying the equations of problem (1.3) by
u − ū, v − v̄, and then integrating over Ω, using the mean value theorem, we have∫

Ω

{(u − ū)d1∆H[(1 + ᾱ12v)u] + (v − v̄)d2∆H[(1 + ᾱ21u)v]}

=

∫
Ω

[d1(1 + ᾱ12v)|∇Hu|2 + d2(1 + ᾱ21u)|∇Hv|2 + (d1ᾱ12u + d2ᾱ21v)∇Hu · ∇Hv]

=

∫
Ω

[(u − ū)(uq(u) − p(u)v) + (v − v̄)v(−a2 + c2 p(u))]

=

∫
Ω

(u − ū)[q(u)(u − ū) + ū(q(u) − q(ū)) − p(u)(v − v̄) − v̄(p(u) − p(ū))]

+

∫
Ω

(v − v̄)[−a2(v − v̄) + c2 p(u)(v − v̄) + c2v̄(p(u) − p(ū))]

=

∫
Ω

(u − ū)[q(u)(u − ū) + ūq′(η)(u − ū) − p(u)(v − v̄) − v̄p′(ζ)(u − ū)]

+

∫
Ω

(v − v̄)[−a2(v − v̄) + c2 p(u)(v − v̄) + c2v̄p′(ς)(u − ū)]

=

∫
Ω

[(u − ū)2(q(u) + ūq′(η) − v̄p′(ζ)) + (v − v̄)2(−a2 + c2 p(u)) + (u − ū)(v − v̄)(−p(u) + c2v̄p′(ς))]

<

∫
Ω

[q(0)|u − ū|2 + (−a2 + c2 p(C̃))|v − v̄|2 + c2K|u − ū||v − v̄|],
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where 0 < η, ζ, ς ≤ C̃ and K = sup
Ω

v̄p′(u); here, we note that p′(u) is bounded in any finite interval in

view of the assumptions p(u) ∈ C2((0,+∞)) and (H5).
By Theorem 5.1, the Cauchy’s inequality, and Poincaré’s inequality, we have∫

Ω

[d1|∇Hu|2 + d2|∇Hv|2]

≤

∫
Ω

[d1(1 + ᾱ12v)|∇Hu|2 + d2(1 + ᾱ21u)|∇Hv|2]

<

∫
Ω

[(q(0) + c2KT )|u − ū|2 + (−a2 + c2 p(C̃) +
c2K
4T

)|v − v̄|2

+ (T (d1ᾱ12)2 +
C̃2

4T
)|∇Hu|2 + (T (d2ᾱ21)2 +

C̃2

4M
)|∇Hv|2]

<

∫
Ω

[(λ−1
1 (q(0) + c2λ1K + (λ1d1ᾱ12)2 +

C̃2

4
)|∇Hu|2

+ (λ−1
1 (−a2 + c2 p(C̃) +

c2K
4λ1
+ (λ1d2ᾱ21)2 +

C̃2

4
)|∇Hv|2],

where T is taken as any positive constant, specifically λ1. Recall that C1 = (1+ ᾱ12M)S in the proof of
Theorem 5.1. Hence,

d1 > λ
−1
1 (q(0) + c2λ1K + (λ1d1ᾱ12)2 +

C̃2

4
) and d2 > λ

−1
1 (−a2 + c2 p(C̃) +

c2K
4λ1
+ (λ1d2ᾱ21)2 +

C̃2

4
)

i.e.,

ᾱ12 < α̃12 = 2

√
λ1d1 − q(0) − c2λ1K
2(λ1d2ᾱ21)2 + (KS )2 and ᾱ21 < α̃21 =

√
λ1d2 + a2 −

c2K+(1+ᾱ12 M)2S 2

4

4λ1
,

we know that, under the given assumptions, Theorem 1.3 implies that problem (1.3) has no non-
constant positive solution. □

The Theorem 1.3 can be obtained from Theorem 5.5.

Remark 5. If ᾱ12 and ᾱ21 are small enough as [28], then Theorem 1.3 shows that problem (1.3) does
not admit a non-constant positive solution for some large enough d1, d2, which is consistent with the
result of Theorem 1.1.

6. Conclusions

We consider the Neumann boundary value problem for the strongly-coupled subelliptic system and
the predator-prey subelliptic system on the Heisenberg group. We provide a priori estimates and non-
existence results for non-constant positive solutions of the strongly-coupled and predator-prey systems
with coefficients under different conditions. Only one of the diffusion rates or one of the self-diffusion
pressures needs to be large to prevent the formation of non-constant solutions in the strongly-coupled
subelliptic systems. For the predator-prey subelliptic system with cross-diffusion and homogeneous
Neumann boundary conditions, we investigate the existence and non-existence of non-constant positive
solutions.
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