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1. Introduction

In recent ecological research, the intricate dynamics inherent in three-species food chain models
have sparked substantial interest, prompting a deeper understanding of complex ecological
relationships [2, 8, 9, 12, 23, 25, 33, 43, 44]. This fascination has driven investigations into omnivory, a
phenomenon where species feed across multiple trophic levels, with particular attention directed
towards intraguild predation (IGP) [19, 48, 50, 51]. IGP, a specialized form of omnivory, involves
intricate interactions between a resource (prey), an intermediate predator preying exclusively on the
prey and a top predator (referred to as an intraguild predator or IG predator) that consumes both the
prey and the intermediate predators [14, 16]. Given its pronounced impact on species coexistence and
the emergence of chaos, the dynamics of IGP have become a central topic in ecological studies.
Panja [38] analyzed a fractional-order prey-predator model with intraguild predation and observed
instability in the system for integer-order derivatives. In contrast, the system remained stable with
fractional-order derivatives. In [20], the authors explored intraguild predation dynamics, focusing on
the impact of interference and predation strength on the coexistence of intraguild predators and prey.
Gómez-Hernández et al. [13] explored an intraguild predation model and found that interspecific
competition consistently reduces infection rates in both species.

Previous research has unveiled various mathematical models to capture the complex dynamics of
IGP and its intricate interactions within predator-prey systems. In the realm of ecological modeling,
diffusion stands as a fundamental factor closely tied to real environmental processes, influencing a
myriad of dynamic behaviors. A wealth of research has delved into the dynamics of diffusive versions
of ecological models, shedding light on their intricate mechanisms. Notably, Chen and Wu, in their
work [4], illuminated the role of attractive predator-taxis in driving Turing bifurcation and the
consequent emergence of spatiotemporal patterns within a predator-prey model characterized by
nonlinear harvesting. Conversely, they found that the presence of repulsive predator-taxis or the
complete absence thereof did not give rise to such phenomena. Moreover, this study provides valuable
insights into how diffusion ratios and nonlinear harvesting practices impact the spatial distribution of
species and the direction of Turing bifurcation.

In [5], the authors undertook a study focusing on the stability of bifurcating solutions within a
predator-prey diffusive model with prey-taxis, where they not only confirmed the occurrence of steady
state bifurcations but also explored the influence of repulsive prey-taxis in promoting this
phenomenon. This research further delved into the determination of bifurcating solution stability.
These collective findings offer valuable insights into the realm of ecological dynamics and
diffusion-based ecological modeling. Hastings and Powell [15] highlighted the potential for chaos
within three-species food chain models. On the other hand, Holt and Polis [17] introduced a
Lotka-Volterra model characterized by linear functional responses, revealing that increased intensity
of IGP could induce destabilization within the system [26]. Research in the field of intraguild
predation (IP) has led to diverse insights into predator-prey dynamics. Hsu et al. [18] examined IGP
scenarios using Beddington-DeAngelis responses, studying coexistence and competitive exclusion.
They highlighted the significance of the interference parameter in shaping stability or oscillation.
Kang and Wedekin [21] explored type III functional responses for intermediate predators and IG
predators, revealing distinctions between generalist and specialist IG predators, and identifying
multiple attractors. Freeze et al. [10] introduced ratio-dependent functional responses, investigating
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persistence, permanence and stability through innovative methods. These studies have laid crucial
groundwork for understanding predator-prey interactions and set the stage for our exploration of
cooperative hunting effects in the context of IGP dynamics. Building on this foundation, Tanabe and
Namba [47] explored the emergence of chaotic dynamics within IGP scenarios, omitting intraspecific
competition among IG prey and predators. Recent advancements by Sen et al. [44] and
Majumder et al. [25] extended these models by incorporating saturating functional responses and
intraspecific competition among IG prey and predator, leading to enhanced insights into the rich
dynamics such as chaos of predator-prey interactions. However, Majumder et al. [25] control chaotic
behavior of the system through a memory effect.

Furthermore, cooperative hunting behaviors have emerged as crucial factors shaping ecological
stability. A range of adaptive characteristics have evolved among predators, including sharp teeth,
claws, fangs and other tools, to facilitate efficient hunting. Predators have developed various strategies
such as bait pursuit, collective hunting and other approaches. For instance, carnivores [24], lions [36],
wolves [42] and African wild dogs [7] frequently collaborate to capture and subdue their prey.
Similarly, ants [27] and spiders [49] exhibit cooperative behaviors in hunting, drawing considerable
attention. The concept of hunting cooperation was initially introduced by Cosner et al. [6] in a
predator-prey model. He proposed a functional response for predators that engage in spatially linear
hunting formations and aggregate when encountering significant prey groups. Cooperative foraging
has been explored in diverse predator-prey models, revealing scenarios of both destabilization and
stabilization [1, 3, 6, 11, 31, 32, 34]. The incorporation of cooperative hunting behavior among
predators in the prey-predator model reveals novel insights into the complex dynamics of ecological
systems [45, 46]. This growing understanding of cooperative behaviors’ influence on ecological
dynamics provides a strong motivation for our study.

We undertake a comprehensive investigation into the interplay between hunting cooperation
among IG predators and IG prey, aiming to elucidate its impact on the intricate dynamics of
predator-prey interactions. Our objective is to decipher how this cooperative dimension influences the
emergence of chaotic oscillations and its potential to shape the overall stability or instability of
ecological communities. By incorporating this cooperative aspect into our model, we aspire to
provide novel insights into the intricate interactions between predator and prey, specifically within the
context of IGP and the cooperative behaviors that can arise in these ecological systems. The
distinctive feature of our study, setting it apart from existing literature [25, 41, 44, 47] addressing
intraguild predation (IGP) scenarios, is the inclusion of cooperative hunting behavior within the
model. Through this endeavor, we seek to contribute to the deeper comprehension of the complexities
inherent in predator-prey interactions and the factors that govern their dynamics.

2. Model formulation

We focus on a three-species Lotka-Volterra model that incorporates intraguild predation dynamics.
The model involves three major species denoted as x, y and z, representing a basal prey, an
intermediate consumer (IG prey) and an omnivorous top predator (IG predator), respectively. We
adopt a linear functional response between these species, as discussed in [47]. Additionally, we
account for intraspecific competition within the intraguild prey and predator populations, as
elaborated in [44]. Given the limited availability of resources, competition becomes essential for their
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sustenance within the community. In our model, we introduce the concept of hunting cooperation,
which confers benefits to both intraguild prey and predator. Moreover, the success in capturing a basal
prey and intraguild prey increases with the density of intraguild prey and predator, respectively, as
highlighted in [37]. The model can be expressed as follows:

dx
dt
= r11x − d11x − α11x2 − (α12 + c11y)xy − α13xz = F1(x, y, z),

dy
dt
= e11(α12 + c11y)xy − α22y2 − (α23 + c22z)yz − d22y = F2(x, y, z), (2.1)

dz
dt
= e22(α23 + c22z)yz + α31xz − α33z2 − d33z = F3(x, y, z),

with non-negative initial conditions. The model parameters r11, d11, α11, α12, c11, α13, e11, α22,

α23, c22, d22, e22, α31, α33 and d33 are all positive constants and their ecological descriptions are
provided in Table 1. Our model is distinct from previous works like Kang and Wedekin [21] and
Tanabe and Namba [47] due to the incorporation of intraspecific competitions and hunting
cooperation behavior among intraguild prey and predator. Furthermore, compared to models studied
by Sen et al. [44] and Majumder et al. [25], our model employs different functional response types
between intraguild prey and predator, while also involving cooperative hunting.

Table 1. Details of parameters with their values and sources.

Parameters Description Values Source

r11 Birth rate of basal prey 5 [25]
d11 Death rate of basal prey 0.1 [28]
α11 Intraspecific competition within basal prey 0.38 [25]
α12 Consumption rate of IG prey to basal prey 1 [25]
c11 IG prey cooperation during hunting basal prey 0.15 [39]
α13 Consumption rate of IG predator to basal prey 35 [25]
e11 Conversion coefficient of basal prey to IG prey 0.9 [29]
α22 Intraspecific competition within IG prey 0.2 [25]
α23 Consumption rate of IG predator to IG prey 1 [25]
c22 IG predator cooperation during hunting IG prey 0.9 [39]
d22 Natural death rate of IG prey 1 [25]
e22 Conversion coefficient of IG prey to IG predator 0.95 [30]
α31 basal prey consumption into reproduction for IG predator 0.1 [25]
α33 Intraspecific competition within IG predator 0.3 [25]
d33 Natural death rate of IG predator 1.2 [25]

3. Positivity and boundedness of the solution

The positivity of state variables is a fundamental concept in ecological modeling, indicating that the
populations of the involved species remain non-negative within the system. Ensuring the positivity of
solutions in the proposed model (2.1) is crucial for understanding the persistence of populations.
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To establish the positivity of the system (2.1), we integrate its equations and utilize the given initial
conditions to obtain the following expressions:

x(t) = x(0) exp
(∫ t

0

[
r11 − d11 − α11x(s) − (α12 + c11y(s))y(s) − α13z(s)

]
ds

)
,

y(t) = y(0) exp
(∫ t

0
[e11(α12 + c11y(s))x(s) − α22y(s) − (α23 + c22z(s))z(s) − d22]ds

)
,

z(t) = z(0) exp
(∫ t

0
[e22(α23 + c22z(s))y(s) + α31x(s) − α33z(s) − d33]ds

)
.

The positivity of these solutions follows from the fact that the right-hand side of each equation is non-
negative given the non-negative initial conditions. Consequently, all solutions of the system (2.1) are
guaranteed to be non-negative.

While we have established the positivity of solutions, we omit the discussion of the boundedness of
solutions, as the boundedness property can be similarly proven and is straightforward in this context.

4. Equilibria analysis

An equilibrium point in a dynamical system is a state or configuration where the system’s variables
remain constant over time. In other words, it’s a point at which the system’s behavior does not change,
and the rates of change of the variables are all zero. Equilibrium points are also known as fixed points or
steady states. Mathematically, for a dynamical system described by a set of equations, an equilibrium
point is found by setting all the derivatives of the variables to zero. Equilibrium points play a crucial
role in the analysis of dynamical systems. They serve as important reference states to understand the
behavior of the system around those points.

The proposed IGP system has the following feasible equilibria.

(1) Population-free equilibrium E0(0, 0, 0) exists irrespective of any parametric restriction. From an
ecological viewpoint, this equilibrium represents a theoretical scenario where all species involved
in the model are entirely absent from the ecosystem. While such a scenario may not directly
correspond to a real ecological state, it is a critical reference point.

(2) Basal prey equilibrium E1

(
r11 − d11

α11
, 0, 0

)
exists under the parametric condition r11 > d11. From

an ecological viewpoint, this equilibrium reflects a scenario where the prey population is the only
species present with intermediate and top predator both at zero. Moreover, the existence of E1

suggests that when the prey species experiences a birth rate greater than its death rate, it can
maintain its population in the absence of predators.

(3) Basal prey-IG prey equilibrium E2(x2, y2, 0), where x2 and y2 are positive solution(s) of following
isoclines:

r11 − d11 − α11x − (α12 + c11y)y = 0, (4.1)
e11(α12 + c11y)x − α22y − d22 = 0. (4.2)

We can obtain x from first equation and then putting the value of x in the second equation we get
a cubic equation for y. This is little bit difficult to find the root (i.e., the component of equilibrium
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point). Therefore, we numerically check the existence E2 by plotting the above isoclines in x − y
space as depicted in Figure 1. Figure exhibits unique E2 for the parameter values mentioned in
the Table 1. The ecological significance of E2 lies in its representation of a complex ecological
interaction where both basal prey and intraguild prey species coexist without the presence of
intraguild predators. This equilibrium suggests the existence of resource partitioning mechanisms
or the presence of ecological niches that allow both the basal prey and intraguild prey to thrive
without direct predation pressure from higher trophic levels.

0.5 1 1.5 2

x

1

2

3

4

5

y

E
2
(1.2272, 3.0438, 0)

Figure 1. Isoclines (4.1) and (4.2) are plotted here. Red dot represents the intersection of
these lines. Parameters are chosen from Table 1.

(4) Basal prey-IG predator equilibrium E3

(
α13d33 − α33d11 + α33r11

α11α33 + α13α31
, 0,
α31r11 − α11d33 − α31d11

α11α33 + α13α31

)
.

E3 exists if the parametric conditions α13d33 + α33r11 > α33d11 and α31r11 > α11d33 + α31d11 hold.
Ecologically, this equilibrium illustrates the mechanisms that allow basal prey and intraguild
predator to coexist without one driving the intermediate predator to extinction. By understanding
the conditions that lead to the coexistence of these two species, ecologists can make more
informed decisions regarding the preservation of species and ecosystem health.

(5) Coexistence equilibrium E4(x4, y4, z4), where the components x4, y4 and z4 can be obtained from
following isoclines.

r11 − d11 − α11x − (α12 + c11y)y − α13z = 0, (4.3)
e11(α12 + c11y)x − α22y − (α23 + c22z)z − d22 = 0, (4.4)

e22(α23 + c22z)y + α31x − α33z − d33 = 0. (4.5)

Due to the difficulties of finding parametric values of the components of E4, we find it numerically
by plotting above isoclines in x − y − z space as illustrated in Figure 2. It is apparent from the
figure that for table parameter, E4 exists uniquely. The coexistence equilibrium E4 represents a
critical ecological scenario within a model where all three interacting species coexist within an
ecosystem. This equilibrium reflects the richness and stability of biodiversity, highlighting the
ability of different species to thrive without the extinction of any species.
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Figure 2. Equations (4.3)–(4.5) are plotted here. Red dot denotes intersecting point of the
planes, which is the E4. Parameters values are same as in Table 1.

5. Local stability analysis

Mathematically, local stability analysis involves linearizing the system’s equations of motion
around the equilibrium point. This is typically done by calculating the system’s Jacobian matrix at the
equilibrium, which describes how small changes in the variables affect the rates of change of the
variables themselves. The eigenvalues of this Jacobian matrix are crucial indicators of the local
stability properties of the system.

Local stability analysis provides valuable insights into the qualitative behavior of a dynamical
system around an equilibrium point. However, it is important to note that local stability analysis only
considers behavior near the equilibrium and may not fully capture more complex behaviors, such as
oscillations, bifurcations and global attractors, that can arise in nonlinear systems. Here, we check
local stability of the proposed system around the system’s equilibria. First, we evaluate the Jacobian
matrix of the system (2.1) as illustrated below.

J(x, y, z) =


A11 −c11xy − (c11y + α12)x −α13x

e11(c11y + α12)y A22 −c22yz − (c22z + α23)y
α31z e22(c22z + α23)z A33

 ,
where

A11 = −2α11x − d11 + r11 − (c11y + α12)y − α13z,

A22 = e11c11xy + e11(c11y + α12)x − 2α22y − (c22z + α23)z − d22,

A33 = e22c22zy + e22(c22z + α23)y + α31x − 2α33z − d33.

(1) Eigenvalues of the Jacobian matrix J(E0) are −d11 + r11, −d22 and −d33. From this eigenvalue
analysis, we can say that E0 is stable under the parametric condition d11 > r11. This stability
condition is opposite to the existence condition of E1. Thus, E0 and E1 are related via a
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transcritical bifurcation. Further, we verify the stability of E0 numerically as described in
Figure 3. In the figure, we choose r11 = 0.05 and d11 = 0.1. It is apparent from this figure that E0

is stable as condition d11 > r11 holds.

Figure 3. Stability of E0. Here, the green dot denotes the stable equilibrium point.
Parameters are taken from Table 1 except r11 = 0.05.

(2) Eigenvalues of the Jacobian matrix J(E1) are d11 − r11, −
α12d11e11 − α12e11r11 + α11d22

α11
and

−
α11d33 + α31d11 − α31r11

α11
. Hence, E1 is locally asymptotically stable if the parametric

conditions d11 < r11, α12d11e11 + α11d22 > α12e11r11 and α11d33 + α31d11 > α31r11 hold. E1 loses
its stability when either of the conditions fails. We verify its local stability numerically also as
described in Figure 4. The parameters used in this figure satisfy stability conditions, as a result,
it is stable as depicted in the figure.

0

0.05

1.50.5

z 

y 

1

0.1

x 

0.5
0 0

Figure 4. Stability of E1. Here, green and red dots denote the stable and unstable equilibrium
points, respectively. Parameters are taken from Table 1 except r11 = 0.5.
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(3) Jacobian matrix evaluated at E2 is given by

J(E2) =


−2α11x2 − d11 + r11 − (c11y2 + α12)y2 −c11x2y2 − (c11y2 + α12)x2 −α13x2

e11(c11y2 + α12)y2 e11c11x2y2 + e11(c11y2 + α12)x2 − 2α22y2 − d22 −α23y2

0 0 e22α23y2 + α31x2 − d33

 .
One eigenvalue of J(E2) is e22α23y2 + α31x2 − d33 and the other two eigenvalues are the roots of
the characteristic polynomial of the matrix

J̃(E2) =
[
−2α11x2 − d11 + r11 − (c11y2 + α12)y2 −c11x2y2 − (c11y2 + α12)x2

e11(c11y2 + α12)y2 e11c11x2y2 + e11(c11y2 + α12)x2 − 2α22y2 − d22

]
.

Now, eigenvalues of J̃(E2) have negative real part if tr(J̃(E2)) < 0 and det(J̃(E2)) > 0. Thus, E2

is stable under the following conditions

e22α23y2 + α31x2 < d33, tr(J̃(E2)) < 0 and det(J̃(E2)) > 0.

As it is difficult to follow these conditions for stability of E2, we numerically verify its stability,
Figure 5. The parameters used for numerical verification satisfy above stability conditions of E2.
As a result E2 is locally asymptotically stable as described in the figure.

0
0.5

2z 

10
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1.5

y 

4

x 

1
0.5

0 0

Figure 5. Stability of E2. Here, green and red dots denote the stable and unstable equilibrium
points, respectively. Parameters are taken from Table 1 except r11 = 0.75.

(5) The Jacobian matrix evaluated at E3 is given by

J(E3) =


B11 B12 B13

B21 B22 B23

B31 B32 B33

 ,
where

B11 =
−2α11(α13d33 − α33d11 + α33r11)

α11a33 + α13α31
− d11 + r11 +

α13(α11d33 + α31d11 − α31r11)
(α11α33 + α13α31)

,
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B12 =
−α12(α13d33 − α33d11 + α33r11)

(α11α33 + α13α31)
, B13 =

−α13(α13d33 − α33d11 + α33r11)
(α11α33 + α13α31)

, B21 = 0,

B22 =
e11α12(α13d33 − α33d11 + α33r11)

(α11α33 + α13α31)

+
(((−d11 + r11)c22 + α13α23)α31 + a11(α23α33 − c22d33))((d11 − r11)α31 + d33α11)

(α11α33 + α13α31)2 − d22,

B23 =0, B31 =
−(α11d33 + α31d11 − α31r11)α31

(α11α33 + α13α31)
,

B32 = −
e22(α11α23α33 − α11c22d33 + α13α23α31 − α31c22d11 + α31c22r11)(α11d33 + α31d11 − α31r11)

(α11α33 + α13α31)2 ,

B33 =
α31(α13d33 − α33d11 + α33r11)

(α11α33 + α13α31)
+

2α33(α11d33 + α31d11 − α31r11)
(α11α33 + α13α31)

− d33.

The characteristic equation associated with the matrix J(E3) is given by

λ3 + Γ2λ
2 + Γ1λ + Γ0 = 0, (5.1)

where
Γ2 = −tr(J(E3)), Γ1 = (B11B22 + B22B33 + B33B11), Γ0 = −det(J(E3)).

By Routh-Hurwitz criteria, E3 is stable if Γ2 > 0, Γ0 > 0 and Γ2Γ1 > Γ0. The expression of Γi,
i = 0, 1, 2, are large to say about the stability E3. So, we numerically investigate its stability as
depicted in Figure 6. It is apparent from the figure that E3 is stable since the parameter used here
holds its stability conditions.

0
5

0.01

15

z 

0.02

10
-3

y 

10

x 

0.03

5
0 0

Figure 6. Stability of E3. Here, green and red dots denote the stable and unstable equilibrium
points, respectively. Parameters are taken from Table 1 except e11 = 0.01.

(6) The Jacobian matrix evaluated at a representative coexisting equilibrium point

E4 = (x4, y4, z4)

is denoted as
J(E4) = [J4

i j]3×3
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with J4
i j representing the matrix components when J(x, y, z) is computed at

E4 = (x4, y4, z4).

The associated characteristic equation for the matrix J(E4) is given by

λ3 + ∆2λ
2 + ∆1λ + ∆0 = 0, (5.2)

where the coefficients are defined as follows:

∆2 = −tr(J(E4)), ∆1 = (J4
11J4

22 + J4
22J4

33 + J4
33J4

11), ∆0 = −det(J(E4)).

The stability of E4 can be determined using the Routh-Hurwitz criteria, which states that E4 is
stable if ∆2 > 0, ∆0 > 0 and ∆2∆1 > ∆0. The explicit expressions for the components of E4 are
not obtainable due to their complexity, leading to the inability to derive parametric restrictions
explicitly for the stability of E4. To validate the stability of E4, a numerical example is employed.
The chosen parameter values in Figure 7 adhere to the Routh-Hurwitz criteria for the stability of
E4. Consequently, E4 is demonstrated to be stable, as depicted in Figure 7.

0

0.005

0.01

z 

5

y 

0.015

2

x 
0 0

Figure 7. Stability of E4. Here, green and red dots denote the stable and unstable equilibrium
points, respectively. Parameters are taken from Table 1 except r11 = 2.5.

6. Bifurcation analysis

Bifurcations in a dynamical system are critical points where the qualitative behavior of the system
changes as one or more parameters are varied. In other words, they mark a point at which the stability,
periodicity, or overall behavior of the system undergoes a significant transformation. Bifurcations can
lead to the emergence of new patterns, such as oscillations, chaos or the creation and destruction of
equilibrium points. Bifurcations are fundamental to the study of nonlinear dynamical systems and play
a pivotal role in understanding the complex behaviors that can arise in such systems. They are often
associated with changes in the number or stability of equilibrium points or the appearance of periodic
solutions. Bifurcation analysis involves studying how the system’s behavior changes as the parameters
are continuously varied. In our proposed IGP system, two types of bifurcations occur: Transcritical
and Hopf, which are described in this section.
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Theorem 1. The system described by (2.1) undergoes a transcritical bifurcation at the parameter value

r11 = r[T B]
11 = d11

concerning the equilibrium point E0(0, 0, 0).

Proof. Let us consider the Jacobian matrix J(E0)|r[T B]
11

. One of its eigenvalues is zero, and the other two
are negative. Since two eigenvalues are consistently negative and the remaining one is zero, concluding
stability-instability is not feasible at this point.

Let
V = (1, 0, 0)T and W = (1, 0, 0)T

be the eigenvectors of J(E0) and J(E0)T corresponding to the zero eigenvalue, respectively. Next, we
define

F = [F1, F2, F3]T .

The conditions outlined by Sotomayor’s theorem [40] for a transcritical bifurcation are as follows:

(1) WT Fr11

(
E0, r

[T B]
11

)
= 0,

(2) WT
[
DFr11

(
E0, r

[T B]
11

)
V
]
= 0,

(3) WT
[
D2F

(
E0, r

[T B]
11

)
(V,V)

]
= −2α11 , 0.

It’s important to note that for a non-degenerate transcritical bifurcation, the second transversality
condition should not be zero [40]. Hence, the system defined by (2.1) experiences a degenerate
transcritical bifurcation [22] around E0 when

r11 = r[T B]
11 .

Consequently, E0 undergoes a transcritical bifurcation as the parameter r11 crosses the critical value

r11 = r[T B]
11 = d11,

and the conditions outlined in the theorem are satisfied. □

Next, we will establish the presence of a Hopf bifurcation concerning the model parameter r11. We
have designated the critical value of r11 as r[HB]

11 .

Theorem 2. The system defined by (2.1) exhibits a Hopf bifurcation if the condition

(∆1 − 3ω2)
(

d∆0

dr11
− ω2 d∆2

dr11

)
+ 2∆2ω

2 d∆1

dr11
, 0

is met when the parameter r11 crosses the critical value r11 = r[HB]
11 .

Proof. Considering that the equilibrium point E4 is dependent on the parameter r11, we apply the Hopf
bifurcation theorem [29]. The Hopf bifurcation occurs if the variation matrix J(E4) has one eigenvalue
with a negative real part, where

Re
(

dλ
dr11

)
r11=r[HB]

11

, 0,
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and the other two eigenvalues are purely imaginary. For purely imaginary eigenvalues, the
characteristic Eq (5.2) should satisfy ∆2∆1 − ∆0 = 0. We assume that iω represents the purely
imaginary eigenvalue corresponding to the parameter r[HB]

11 .
By differentiating both sides of the characteristic Eq (5.2) with respect to r11, we obtain

(3λ2 + 2∆2λ + ∆1)
dλ

dr11
+ λ2 d∆2

dr11
+ λ

d∆1

dr11
+

d∆0

dr11
= 0,

dλ
dr11

= −
λ2 d∆2

dr11
+ λ d∆1

dr11
+ d∆0

dr11

3λ2 + 2∆2λ + ∆1
.

Substituting λ = iω and considering the real part, we arrive at(
Re

(
dλ

dr11

))
λ=iω
= −

(∆1 − 3ω2)
(

d∆0
dr11
− ω2 d∆2

dr11

)
+ 2∆2ω

2 d∆1
dr11

(∆1 − 3ω2)2 + (2∆2ω)2 .

Therefore, the system described by (2.1) experiences a Hopf bifurcation concerning the parameter
r11 if the condition

(∆1 − 3ω2)
(

d∆0

dr11
− ω2 d∆2

dr11

)
+ 2∆2ω

2 d∆1

dr11
, 0

is satisfied at r11 = r[HB]
11 . □

7. Numerical simulation

In this section, we will delve into our bifurcation analysis results. We will start by examining the
bifurcation structure concerning the parameter r11, as depicted in Figure 8.
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Figure 8. Bifurcation structure of the proposed model. Parameters are adopted from Table 1.

This figure uncovers dynamic behaviors as r11 undergoes variations. For lower values of r11, the
system exclusively features the stable equilibrium E0. The presence of any other equilibria is absent
within this parameter range. As r11 increases, a critical value is reached, leading to the emergence of
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the stable equilibrium E1. Simultaneously, the previously stable equilibrium E0 shifts from stability
to instability, retaining this behavior for all subsequent higher values of r11. With further increments
in r11, another transcritical point comes into view. At this juncture, the stable equilibrium E2 arises,
causing the previously stable E1 to transition into an unstable state. This instability of E1 continues
for higher values of r11. Finally, the system encounters an additional transcritical point, resulting in
the emergence of the stable equilibrium E4, while the previously stable E2 transforms into an unstable
state.

Similarly, Figure 9 presents a transcritical bifurcation diagram involving the parameter e11. For
lower values of e11, the system displays a stable equilibrium E2. Beyond a critical value of e11, the
stable equilibrium E4 comes into play. Consequently, the previously stable E2 shifts into an unstable
state. These analyses provide valuable insights into the system’s behavior with varying parameters
r11 and e11. They reveal critical points where equilibria undergo shifts in stability and new equilibria
emerge, contributing to a deeper comprehension of predator-prey interactions within the context of
changing parameter values. Transcritical bifurcation is ecologically significant as it marks a critical
point in the dynamics of predator-prey relationships and can lead to shifts in population equilibrium,
which, in turn, can impact the stability and biodiversity of ecosystems. Understanding these dynamics
is crucial for effective ecological management and conservation efforts.
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y

E
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E
4
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E
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Figure 9. Transcritical bifurcation. Parameters are adopted from Table 1. Critical value of
e11 is e[TC]

11 = 0.083.

Continuing our exploration, we now delve into the system’s behavior surrounding the coexistence
equilibrium E4. This investigation involves the examination of phase portraits and time series solutions
for various values of r11, as showcased in Figure 10. As the parameter r11 undergoes increments, the
system’s dynamics around the coexistence equilibrium E4 progress through distinct phases, leading
to diverse patterns of behavior. For lower values of r11, the system exhibits a stable behavior around
the coexistence equilibrium, manifesting as confined trajectories in the phase portrait, Figure 10a. As
r11 increases, the system’s behavior shifts to one-period oscillations. Trajectories trace out regular,
repetitive patterns in the phase portrait, Figure 10b. Further increments in r11 lead to the emergence of
two-period oscillations, Figure 10c. Trajectories now complete two cycles before repeating themselves
in the phase portrait. The system continues to evolve with higher values of r11, resulting in four-period
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oscillations, Figure 10d. Trajectories now complete four cycles within the same phase portrait. As r11

further increases, the system transitions into chaotic behavior, Figure 10e.
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Figure 10. Phase portraits and respective time series for the parameter r11 = 2.58 in (a);
r11 = 2.85 in (b); r11 = 3.9 in (c); r11 = 4.35 in (d); r11 = 5 in (e). Rest are adopted from
Table 1.

Trajectories become highly sensitive to initial conditions, leading to unpredictable and complex
patterns in the phase portrait. Moreover, we observed that the chaotic attractors size increases on
increaing r11 (see Figure 11a). Finally, for larger values of r11 both the predator populations extinct
making the axial equilibrium point E1 stable (see Figure 11b). In essence, Figure 10 vividly portrays

AIMS Mathematics Volume 9, Issue 1, 1023–1045.



1038

the evolution of the system’s dynamics around the coexistence equilibrium E4 in response to changing
values of r11. This comprehensive visualization allows us to discern the progression from stable
behavior to chaotic complexity and highlights the intricate nature of predator-prey interactions in the
context of varying parameter settings. Chaotic dynamics in predator-prey systems can lead to
irregular and unpredictable population cycles. This unpredictability can help maintain biodiversity by
preventing any one species from dominating the ecosystem for extended periods, fostering
coexistence and preventing extinctions.
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Figure 11. Time series for the parameter r11 = 8 in (a) and r11 = 15.11 in (b). Rest are
adopted from Table 1.

Moving forward, our analysis takes us to the exploration of species’ maximum and minimum
densities while systematically varying a key model parameter, as detailed in Figure 12. The insights
gleaned from this visualization provide a comprehensive understanding of how the system’s behavior
evolves in response to specific parameter alterations. Figure 12a provides a revealing depiction of the
system’s response to changes in the parameter r11. Initially, the system sustains a stable coexistence
state. This phase occurs after a transcritical bifurcation point where a switch occurs between
equilibrium states. Then the system enters a phase of one-period oscillations, a behavior characterized
by regular and predictable cycles. As r11 continues to increase, the system progresses into a phase of
many-period oscillations. This pattern is marked by an increasing number of cycles within each
oscillatory pattern, indicating a higher level of complexity in the population dynamics. Ultimately, the
system experiences a transition into a chaotic state. In this phase, trajectories in the system become
highly sensitive to initial conditions, leading to unpredictable and irregular behavior. This chaotic
behavior underscores the intricate interactions that can arise within an ecosystem. Similar patterns of
behavior are observed for the parameter α23 (Figure 12f), with the primary distinction being the
absence of an initial transcritical bifurcation. Furthermore, we observe that parameter c22 (Figure 12b)
influences the system’s dynamics by inducing two cycles, leading to an increase in the number of
cycles and finally chaos. The presence of chaos and transitions between stable states and periodic
states can reflect the system’s ability to adapt to changing environmental conditions. Ecosystems that
exhibit such behavior may be more resilient, can support biodiversity, are capable of adjusting to
disturbances and evolving in response to environmental shifts.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. Bifurcation structure of the proposed system. Parameter values are adopted from
Table 1 except r11 = 4.35 in {b,c,d,e,f,g,h}.
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On the other hand, parameters α11 (Figure 12c), α22 (Figure 12d), d11 (Figure 12e) and α12

(Figure 12g) exert control over the chaotic behavior by modulating the transition from many-period
oscillations to one-period oscillations, bringing about a more ordered pattern and ultimately stable
coexistence. The ability to control chaotic behavior through specific parameters is ecologically
significant because it offers opportunities for managing, restoring and preserving ecosystems. Lastly,
Figure 12h demonstrates that the parameter c11 is capable of driving the system towards more orderly
behavior from an irregular behavior, as it produces a limit cycle through multiple cycles.

Finally, we present the two-parameter bifurcation structure, varying the IG prey cooperation during
hunting basal prey parameter (c11) and Consumption rate of IG predator to IG prey parameter (α23, as
shown in Figure 13. This figure reveals the division of the entire parameter space into five subregions,
each exhibiting distinct dynamics. The two-parameter bifurcation structure provide a comprehensive
view of the model’s behavior under varying two parameters, highlighting the occurrence of stable
regions, limit cycles, two period, four period and chaotic dynamics. We note that for low values of
consumption rate of IG predator, the cooperation of IG predator helps the system to keep in a stable
state position. However, increasing in the consumption rate of IG predators push on the system into
chaotic oscillations through periodic-doubling oscillations.

Figure 13. Two parameter bifurcation structure. Table 1 is used for parameter values.

8. Conclusions

In conclusion, we delve into a three-species Lotka-Volterra model embodying intraguild predation
dynamics. The model incorporates complex interactions between a basal prey, an intraguild prey and
an omnivorous top predator. These interactions are defined by linear functional responses, alongside
considerations for intraspecific competition and cooperative hunting, both of which play essential roles
in shaping population dynamics within the ecological community. The proposed model diverges from
prior works through its integration of intraspecific competition and cooperative hunting. We analyze
equilibria and parametric conditions under which they are stable. Numerical stability of all steady
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states are justified. Our exploration encompasses a comprehensive bifurcation analysis that reveals
intricate behaviors driven by parameter variations.

The examination of bifurcation structures, particularly concerning parameters such as r11 and e11,
showcases critical shifts in equilibria stability and the emergence of new equilibrium states. We
uncover transitions from stable to unstable states and vice versa, offering insights into the interplay
between predator-prey interactions and varying parameter values. Moreover, our investigation into the
dynamics around the coexistence equilibrium E4 illuminates a diverse range of behaviors as
parameter r11 evolves. These behaviors include stable coexistence, one-period oscillations,
multi-period oscillations and ultimately chaotic dynamics. This detailed analysis provides a nuanced
understanding of the system’s response to changing parameter values.

Furthering our comprehension, the exploration of species’ maximum and minimum densities in
response to parameter variations demonstrates distinct patterns. These patterns range from stable
coexistence to chaotic behavior, each induced by different parameter influences. Parameters such as
α12, c11 and d11 exert significant control over the system’s chaotic dynamics, promoting stable or
orderly behavior. Strong hunting cooperation behavior of intraguild predator produces chaos in the
system whereas the same behavior of intraguild prey can control the chaotic nature of the system. In
contrast to the findings of Sen et al. [44], our research demonstrates that a chaotic regime can emerge
from a state of stable coexistence when considering the consumption rate of intraguild predators
towards intraguild prey it may be due to the assumption of hunting cooperation. However,
Vandermeer [50] observed chaotic oscillations in an intraguild predation (IGP) system in the absence
of self-regulation for the same parameter. A recent study by Namba et al. [35] highlighted the
stabilizing influence of strong self-regulation on a similar tri-trophic food web featuring type-I
functional responses. Sen et al. [44] reported that robust self-regulation within both IG prey and
predator populations can drive the dynamics of the system from a chaotic state to stable steady-state
coexistence due to the saturated consumption of IG prey by IG predators. In our research, we extend
this concept by revealing that strong self-regulation has the potential to guide the system’s dynamics
from a chaotic regime to stable coexistence. This stabilization is facilitated by the phenomenon of
hunting cooperation. Also for low values of consumption rate of IG predator, the cooperation of IG
predator helps the system to keep in a stable state position but increasing in the consumption rate of
IG predators push on the system into chaotic oscillations through periodic-doubling oscillations.

In summary, this study offers a comprehensive understanding of complex predator-prey interactions
in the context of intraguild predation dynamics. The integrated effects of intraspecific competition and
cooperative hunting, coupled with systematic parameter variations, provide valuable insights into the
intricate behaviors exhibited by ecological systems. Our findings converge as well as diverge from the
existing literature. By shedding light on the intricate interplay between species and parameters, this
research contributes to the broader field of ecological modeling and enhances our understanding of the
complex dynamics that characterize natural ecosystems.
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