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1. Introduction

In recent years, numerous fields have recognised the effect of including random effects in modelling
and analysing physical processes. The optimum control systems modelled by stochastic and partial
differential equations have attracted a lot of attention (see [1–11]). Consequently, stochastic and
partial differential inclusion result from these optimal control problems. Fractional-order differential
equations can be used to solve some physical problems instead of integer-order differential equations.
As a result, a large number of researchers have recently made significant progress in a variety of fields,
including physics, fluid mechanics, control theory, image analysis, biology, engineering, porous media
and others. Many authors have investigated the theoretical results based on existence and uniqueness of
solutions to fractional differential equations in various forms (see [12–17]). Recently, a novel fractional
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derivative known as the AB fractional derivative was introduced by Atangana and Baleanu [18]). Many
studies and discussion related to AB fractional derivative have appeared in several areas of applications,
for example, Khan et al. [19] discussed the existence and data dependence theorems for solutions of an
ABC-fractional order impulsive system. Mallika et al. [20] studied a new class of Atangana-Baleanu
fractional Volterra-Fredholm integrodifferential inclusions with non-instantaneous impulses. Omaba
and Enyi [21] studied the Atangana–Baleanu time-fractional stochastic integro-differential equation by
using Banach fixed point theory. Panda et al. [22] discussed the results on system of Atangana-Baleanu
fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems.

The notion of controllability of dynamical systems is one of the fundamental concepts in
mathematical control theory which plays pivotal role in many areas of science and engineering
(see [23–28]). The dynamical systems must be treated by the weaker concept of controllability, namely
approximate controllability. There are many studies on the approximate controllability of stochastic
and deterministic systems, for example, Liu and Li [29] studied the approximate controllability
of fractional evolution systems with Riemann-Liouville fractional derivatives. Mahmudov and
Mckibben [30] investigated the approximate controllability of fractional evolution equations with
generalized Riemann-Liouville fractional derivative. Ahmed [31] discussed the approximate
controllability of impulsive neutral stochastic differential equations with fractional Brownian motion
in a Hilbert space. Subramaniam [32] studied the approximate controllability of Sobolev-type
nonlocal Hilfer fractional stochastic differential system. Ma et al. [33] investigated the approximate
controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with
nonlocal conditions.

To the best of our knowledge, no work has been reported in the literature regarding the approximate
controllability of Sobolev-type Atangana-Baleanu fractional stochastic differential inclusions with
fractional Brownian motion and Poisson jumps. Motivated by this, the aim of this paper is to study the
approximate controllability of Sobolev-type stochastic differential inclusions with fractional Brownian
motion and Poisson jumps, where the time fractional derivative is the Atangana-Baleanu fractional
derivative in the Caputo sense, of the form:

ABCDα
0+Φx(t) ∈ Ax(t) +Bu(t) + %(t, x(t))+ σ(t, x(t))

dBH(t)
dt

+

∫
Z
~(t, x(t), ξ)Ñ(dt, dξ), t ∈ J := (0,C],

x(0) = x0, (1.1)

where ABCDα
0+

is AB-Caputo fractional derivative of order 1
2 < α < 1. x(·) is the state variable in

separable Hilbert space X with ‖·‖ and 〈·, ·〉. Let BH be a fBm on separable Hilbert space Y with
H ∈ (1/2, 1). Φ and A are linear operators in X. % and σ are multi-valued functions satisfying some
assumptions. ~ : J × X × Z → X is a nonlinear function. The control function u(·) is given in L2(J,U),
the Hilbert space of admissible control functions with U as a separable Hilbert space. The symbol B
stands for a bounded linear operator from U into X.

The contributions of the present work:
• Sobolev-type Atangana-Baleanu fractional stochastic differential inclusions with Poisson jumps are
presented.
• Approximate controllability for (1.1) is investigated for the first time.
• An example is offered to define the primary results.
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2. Preliminaries

The following lemmas and definitions are used in the paper.
Let (Ω,=,P) be a complete probability space containing the entire family of right continuous

increasing sub-σ-algebras {=t}t∈J satisfying =t ⊂ = and C > 0 be arbitrary fixed horizons. Let
(Z,V, λ(dξ)) be a σ-finite measurable space. We are given a stationary Poisson point process (qt)t≥0,
which is defined on (Ω,=,P) with values in Z and with characteristic measure λ. Let M̃(dt, dξ)
be the counting measure of qt such that (s.t.) Ñ(t, `) = E(M̃(t, `)) = tλ(`) for ` ∈ V. Define
Ñ(t, dξ) := M̃(t, dξ) − tλ(dξ), the Poisson martingale measure generated by qt. An one-dimensional
fBm with the Hurst index H ∈ (1/2, 1) is a centred Gaussian process βH = {βH(t), 0 ≤ t ≤ C} with
covariance function

CH(t, s) = E(βH(t)βH(s)) =
1
2

(t2H + s2H− | t − s |2H).

Suppose L(Y,X) be the space of bounded linear operators from Y to X. Then, define the infinite
dimensional fBm on Y with covariance Θ as

BH(t) =

∞∑
n=1

βH
n (t)en

√
Zn,

where βH
n are real, independent fBm’s. This process is a Y-valued Gaussian, which starts from zero,

has zero mean and covariance

E[〈BH(t), d〉〈BH(s), g〉] = CH(t, s)〈Θ(d), g〉, d, g ∈ Y, t, s ∈ [0,C].

We propose the separable Hilbert space L2
Θ

(Y,X) of all Θ-Hilbert-Schmidt operators Ψ̂ : Y → X [34].

Lemma 2.1. If Ψ̂ : [0,C]→ L2
Θ

(Y,X) satisfies
∫ C

0
‖ Ψ̂(s) ‖2

L2
Θ

ds < ∞, then

E

∥∥∥∥∥∥
∫ t

0
Ψ̂(s)dBH(s)

∥∥∥∥∥∥2

≤ 2HC2H−1
∫ t

0

∥∥∥Ψ̂(s)
∥∥∥2

L2
Θ

ds.

Here, C(J,L2(Ω,X)) is the Banach space of all continuous maps from J into L2(Ω,X) equipped

with the supremum norm ‖x‖C = supt∈J

(
E ‖x(t)‖2

)1/2

.

Assume, A : D(A) ⊂ X→ X and Φ : D(Φ) ⊂ X→ X satisfy the following hypotheses:

(1) A and Φ are closed linear operators.
(2) D(Φ) ⊂ D(A) and Φ is bijective.
(3) Φ−1 : X → D(Φ) is continuous. Here, (1) and (2) together with the closed graph theorem imply

the boundedness of AΦ−1 : X → X, in addition, AΦ−1 is the infinitesimal generator of an α-
resolvent family (S α(τ))τ≥0, (Qα(τ))τ≥0 stands for the solution operator defined on a separable
Hilbert space X.

Let P(X) =

{
A ⊆ X : A , φ

}
be the family of all nonempty subsets of X,

Pcp(X) =

{
A ∈ P(X) : A is compact

}
, Pb(X) =

{
A ∈ P(X) : A is bounded

}
,
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Pcl(X) =

{
A ∈ P(X) : A is closed

}
, Pcv(X) =

{
A ∈ P(X) : A is convex

}
,

Pcp,cv(X) = Pcp(X) ∩ Pcv(X) denotes the collection of all non-empty compact and convex subsets of X.

Proposition 2.1. ( [35])

(i) A multivalued mapW : X→ 2X\∅ is convex (closed) valued ifW(g) is convex (closed) ∀ g ∈ X. W
is bounded on bounded sets, ifW(B) =

⋃
g∈BW(g) is bounded in X, for any bounded set B on X.

(ii) A mapW is said to be upper semi-continuous (u.s.c.) on X, if for each g0 ∈ X, the setW(g0) is a
nonempty closed subset of X and if for each open subset Ω of X containingW(g0), there exists an
open neighborhood Θ̂ of g0 such thatW(Θ̂) ⊆ Ω.

(iii) A mapW is said to be completely continuous, ifW(B) is relatively compact for every B ∈ Pb(X).
If the multi-valued map W is completely continuous with nonempty compact values, then W is
u.s.c. if and only if W has a closed graph, i.e., gn → g, un → u, un ∈ W(g0) imply u ∈ W(g). We
say thatW has a fixed point if there is g ∈ X such that g ∈ W(g).

Lemma 2.2. ( [36])W : I × X→ Pb,cl,cv(X) is measurable to t ∀ fixed x ∈ X , u.s.c. to x for each t ∈ J
and for each x ∈ C(J,X), the set SW,x := {f ∈ L1(J,X) : f(N) ∈ W(t, x(t))}, for a.e. t ∈ J is nonempty.
Let N be a linear continuous mapping from L1(J,X) into C(J,X). Then, the operator

N ◦ SW : C(J,X)→ Pb,cl,cv(C(J,X)),
x 7→ N ◦ SW(x) = N(SW),

is a closed graph operator in C(J,X) × C(J,X).

Lemma 2.3. ( [35]) Let D be a nonempty subset of X which is bounded, closed and convex. Suppose
Q : D → 2X is u.s.c. with closed, convex values s.t. Q(D) ⊂ D and Q(D) is compact. Then, Q has a
fixed point.

Definition 2.1. ( [18]) The AB fractional derivative is defied by the following in the Caputo sense: for
f ∈ H1(a, b); a < b and at t ∈ (a, b) of order α ∈ (0, 1), we have

ABCDα
a+f(t) =

V(α)
1 − α

∫ t

a
f
′

(s)Eα(−ν(t − s)α)ds, (2.1)

where the function ν = α
1−α , Eα(·) is the one parameter Mittag-Leffler function defined by

Eα(z) =

∞∑
n=0

zn

Γ(nα + 1)
,

and the normalization function V(α) = (1 − α) + α
Γ(α) is any function with V(0) = V(1) = 1.

The fractional integral of AB is provided by

ABIαa+f(t) =
1 − α
V(α)

f(t) +
α

V(α)Γ(α)

∫ t

a
(t − s)α−1

f(s)ds. (2.2)

Definition 2.2. ( [37]) x ∈ C(J,L2(Ω,X)) is a mild solution of (1.1), if it satisfies the following
conditions:
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(1) x(0) = x0 ∈ L
2(Ω,X)) and u(·) ∈ L2(J,U),

(2) ∃ f ∈ S%,x s.t. f(t) ∈ %(t, x(t)), h ∈ Sσ,x s.t. h(t) ∈ σ(t, x(t)), y ∈ S~,x s.t. y(t, ξ) ∈ ~(t, x(t), ξ) and x(t)
verifies the following equation:

x(t) = Φ−1<S α(t)Φx0 +
℘<(1 − α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

{
Bu(s) + f(s)

}
ds

+
℘<(1 − α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1h(s)dBH(s) +

℘<(1 − α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

∫
Z

y(s, ξ)Ñ(ds, dξ)

+
α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

{
Bu(s) + f(s)

}
ds +

α<2

V(α)

∫ t

0
Φ−1Qα(t − s)h(s)dBH(s)

+
α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

∫
Z

y(s, ξ)Ñ(ds, dξ),

where< = ϑ∗(ϑ∗I − A)−1 and ℘ = −δ∗A(ϑ∗I − A)−1, with ϑ∗ =
V(α)
1−α , δ∗ = α

1−α ,

S α(t) = Eα(−℘tα) =
1

2πi

∫
Υ

estsα−1(sαI − ℘)−1ds,

Qα(t) = tα−1
Eα,α(−℘tα) =

1
2πi

∫
Υ

est(sαI − ℘)−1ds,

and the path Υ is lying on Ξ(χ,M).

We need the following assumption:

(A0) A ∈ ℵα(α0, l0) then ‖S α(t)‖ ≤ Jelt and ‖Qα(t)‖ ≤ <elt(1 + tα−1), for every t > 0, l > l0. Thus,
J∗ = supt≥0 ‖S α(t)‖, J∗1 = supt≥0<elt(1 + tα−1). So, we get ‖S α(t)‖ ≤ J∗ and ‖Qα(t)‖ ≤ J∗1tα−1.

To study the approximate controllability for (1.1), we first consider the fractional stochastic linear
system:

ABCDα
0+Φx(t) ∈ Ax(t) +Bu(t), t ∈ J := (0,C]

x(0) = x0. (2.3)

Let x(C; γ, u) be the state value of (1.1) at the terminal state b, corresponding to the control u and the

initial value γ. Denote by R(C, γ) =

{
x(C; γ, u) : u ∈ L2(J,U)

}
the reachable set of (1.1) at terminal

time C, its closure in X is denoted by R(C, γ).

Definition 2.3. ( [37]) (1.1) be approximately controllable on the interval [0,C] if R(C, γ) = L2(Ω,X).

Remark 2.1. (2.3) is approximately controllable on J, if and only if κℵ(κ,∆C0 )→ 0 strongly as κ → 0+.

It is appropriate to introduce two pertinent operators now,

∆C0 =

∫ C

0
Φ−1Qα(C − s)BB∗Φ−1Q∗α(C − s)ds,

where B∗ and Q∗α are the adjoint of B and Qα, respectively.

ℵ(κ,∆C0 ) = (κI + ∆C0 )−1, κ > 0.
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Lemma 2.4. ( [37]) For any x̃C ∈ L2(Ω,X), ∃ γ̃(s) ∈ L2(Ω;L2(J,L2
Θ

)), s.t.

x̃C = Ex̃C +

∫ C

0
γ̃(s)dBH(s).

3. Main result

Let us begin with some notations.

‖B‖
2 = ςB, C

∗ =

(
1 − q
α − q

)2(1−q)

, ι = C∗C2(α−q).

To illustrate the main result, we introduce the following assumptions:

(A1) (Qα(t))t≥0 be compact and
∥∥∥κℵ(κ,∆C0 )

∥∥∥ ≤ 1, ∀κ > 0.
(A2) % : J × X→ Pb,cl,cv(X) satisfies:

(1) %(t, ·) : X → X is u.s.c. ∀ t ∈ J and for each x ∈ X, the function %(·, x) : J → X is strongly

measurable to t, and for each x ∈ X, the set S%,x :=
{
f ∈ L1(J,X) : f(t) ∈ %(t, x(t))

}
, for a.e.

t ∈ J is nonempty.
(2) ∃ a function n(t) ∈ L1/q, q ∈ (0, α) and a continuous nondecreasing function Ψ : [0,∞) →

(0,∞), s.t. for any (t, x) ∈ J × X, we have

E ‖%(t, x)‖2 = sup{‖f(t)‖2 : f(t) ∈ %(t, x)} ≤ n(t)Ψ(‖x‖2), lim inf
r→∞

Ψ(r)
r

= Π < ∞.

(A3) σ : J × X→ L2
Θ

(Y,X) satisfies:

(1) σ(·, x) is measurable ∀ x ∈ X, and σ(t, ·) : X→ L2
Θ

(Y,X) is u.s.c. ∀ t ∈ J and ∀ x ∈ X, the set

Sσ,x :=
{

h ∈ L2
Θ

(Y,X) : h(t) ∈ σ(t, x)
}

, for a.e. t ∈ J is nonempty.

(2) gr(t) : J → R+, r ∈ N, r > 0 s.t.

sup
{
E

∥∥∥∥h
∥∥∥∥2

: h ∈ σ(t, x)
}
≤ gr(t),

∀ t ∈ J and s 7→ (t − s)2(α−1)gr(t) ∈ L1([0, t],R+) and ∃ Λ > 0 s.t.

lim inf
r→0

∫ t

0
(t − s)2(α−1)gr(s)ds

r
= Λ < ∞.

(A4) ~ : J × X × Z → X satisfies:

(1) ~(·, x, ξ) is measurable ∀ (x, ξ) ∈ X × Z, and ~(t, ·, ·) : X × Z → X is u.s.c. ∀ t ∈ J.

For each (x, ξ) ∈ X × Z, the set S~,x :=
{

y ∈ L2(Y,X) : y(t, ξ) ∈ ~(t, x, ξ)
}

, for a.e. t ∈ J is

nonempty.
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(2) Cr(t) : J → R+, r ∈ N, r > 0 s.t.

sup
{∫

Z
E ‖y‖2 λdξ : y(t, ξ) ∈ ~(t, x, ξ)

}
≤ Cr(t),

for a.e. t ∈ J and s 7→ (t − s)2(α−1)Cr(t) ∈ L1([0, t],R+) and ∃ Λ > 0 s.t.

lim inf
r→0

∫ t

0
(t − s)2(α−1)Cr(s)ds

r
= Λ < ∞.

(A5) ℘ and< are bounded linear operators, ∃ θ and ψ s.t.
∥∥∥<∥∥∥ ≤ θ and ‖℘‖ ≤ ψ.

(A6) [
Λ +

C2α−1

2α − 1
‖n‖L1/q Πι + 2HC2H−1Λ

]{
9
[
θψ(1 − α)

∥∥∥Φ−1
∥∥∥

V(α)Γ(α)

]2

+ 9
[
θ2α

∥∥∥Φ−1
∥∥∥J∗1

V(α)

]2}
K̃ < 1,

where

K̃ =

{
1 + 8

[
θψ(1 − α)

∥∥∥Φ−1
∥∥∥J∗1ςB

V(α)Γ(α)κ

]2
C4α−2

(2α − 1)2 + 8
[
θ2α

∥∥∥Φ−1
∥∥∥J∗1ςB

V(α)κ

]2
C4α−2

(2α − 1)2

}
.

(A7) %, σ and ~ are uniformly bounded ∀ t ∈ J and x ∈ C.

Theorem 3.1. Assume that (A0) through (A6) are satisfied. Then, (1.1) has a mild solution on
C(J,L2(Ω,X)).

Proof. Let Qr :=
{
x ∈ C(J,L2(Ω,X)) : ‖x‖C ≤ r, r ≥ 0, 0 ≤ t ≤ C

}
. Obviously, Qr is a bounded, closed,

convex set in C(J,L2(Ω,X)).
For κ > 0, for all x(·) ∈ C(J,L2(Ω,X)), we take,

u(t) = B∗Q∗α(C − t)ℵ(κ,∆C0 )P(x(·)),

where

P(x(·)) = Ex̃C +

∫ C

0
γ̃(s)dBH(s) − Φ−1<S α(C)Φx0 −

℘<(1 − α)
V(α)Γ(α)

∫ C

0
Φ−1(C − s)α−1

f(s)ds

−
℘<(1 − α)
V(α)Γ(α)

∫ C

0
Φ−1(C − s)α−1h(s)dBH(s) −

α<2

V(α)

∫ C

0
Φ−1Qα(C − s)f(s)ds

−
α<2

V(α)

∫ C

0
Φ−1Qα(C − s)h(s)dBH(s)

−
℘<(1 − α)
V(α)Γ(α)

∫ C

0
Φ−1(C − s)α−1

∫
Z

y(s, ξ)Ñ(ds, dξ)

−
α<2

V(α)

∫ C

0
Φ−1Qα(C − s)

∫
Z

y(s, ξ)Ñ(ds, dξ).

The operator T : C → P(C) is defined in terms of this control as follows:

T(x) =

{
U ∈ C : U(t) = Φ−1<S α(t)Φx0 +

℘<(1 − α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

{
Bu(s) + f(s)

}
ds
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+
℘<(1 − α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1h(s)dBH(s) +

℘<(1 − α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

×

∫
Z

y(s, ξ)Ñ(ds, dξ) +
α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

{
Bu(s) + f(s)

}
ds

+
α<2

V(α)

∫ t

0
Φ−1Qα(t − s)h(s)dBH(s) +

α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

∫
Z

y(s, ξ)Ñ(ds, dξ)
}
.

We shall prove, T : C → P(C) has a fixed point for κ > 0.
The proof is now divided into five steps.

Step 1. ∀ x ∈ Qr the operator T is convex.
Assume that U1,U2 ∈ T(x), then ∃ f1, f2 ∈ S%,x, h1, h2 ∈ Sσ,x, and y1, y2 ∈ S~,x s.t.

Ui(t) = Φ−1<S α(t)Φx0 +
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1fi(s)ds +

℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1BB∗Q∗α(C − s)ℵ(κ,∆C0 )

×

{
Ex̃C +

∫ C
0
γ̃(s)dBH(s) − Φ−1<S α(C)Φx0 −

℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1fi(s)ds

−
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1hi(s)dBH(s) − α<2

V(α)

∫ C
0

Φ−1Qα(C − s)fi(s)ds

−α<
2

V(α)

∫ C
0

Φ−1Qα(C − s)hi(s)dBH(s) − ℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1

×
∫

Z
yi(s, ξ)Ñ(ds, dξ) − α<2

V(α)

∫ C
0

Φ−1Qα(C − s)
∫

Z
yi(s, ξ)Ñ(ds, dξ)

}
ds

+
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1hi(s)dBH(s) +

℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

∫
Z

yi(s, ξ)Ñ(ds, dξ)

+α<2

V(α)

∫ t

0
Φ−1Qα(t − s)fi(s)ds + α<2

V(α)

∫ t

0
Φ−1Qα(t − s)hi(s)dBH(s)

+α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

∫
Z

yi(s, ξ)Ñ(ds, dξ) + α<2

V(α)

∫ t

0
Φ−1Qα(t − s)BB∗Q∗α(C − s)ℵ(κ,∆C0 )

×

{
Ex̃C +

∫ C
0
γ̃(s)dBH(s) − Φ−1<S α(C)Φx0 −

℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1fi(s)ds

−
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1hi(s)dBH(s) − α<2

V(α)

∫ C
0

Φ−1Qα(C − s)fi(s)ds

−α<
2

V(α)

∫ C
0

Φ−1Qα(C − s)hi(s)dBH(s) − ℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1
∫

Z
yi(s, ξ)Ñ(ds, dξ)

−α<
2

V(α)

∫ C
0

Φ−1Qα(C − s)
∫

Z
yi(s, ξ)Ñ(ds, dξ)

}
ds, i = 1, 2.

Let K ∈ [0, 1], then we get

KU1 + (1 − K)U2 = Φ−1<S α(t)Φx0 +
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

[
Kf1(s) + (1 − K)f2(s)

]
ds

+
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1BB∗Q∗α(C − s)ℵ(κ,∆C0 ) ×

{
Ex̃C +

∫ C
0
γ̃(s)dBH(s)

−Φ−1<S α(C)Φx0 −
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1

[
Kf1(s) + (1 − K)f2(s)

]
ds

−α<
2

V(α)

∫ C
0

Φ−1Qα(C − s)
[
Kf1(s) + (1 − K)f2(s)

]
ds
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−α<
2

V(α)

∫ C
0

Φ−1Qα(C − s)
[
Kh1(s) + (1 − K)h2(s)

]
dBH(s)

−
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1

[
Kh1(s) + (1 − K)h2(s)

]
dBH(s)

−
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1
∫

Z

[
Ky1(s, ξ) + (1 − K)y2(s, ξ)

]
Ñ(ds, dξ)

−α<
2

V(α)

∫ C
0

Φ−1Qα(C − s)
∫

Z

[
Ky1(s, ξ) + (1 − K)y2(s, ξ)

]
Ñ(ds, dξ)

}
ds

+
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

[
Kh1(s) + (1 − K)h2(s)

]
dBH(s)

+α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

[
Kf1(s) + (1 − K)f2(s)

]
ds

+
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

∫
Z

[
Ky1(s, ξ) + (1 − K)y2(s, ξ)

]
Ñ(ds, dξ)

+α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

[
Kh1(s) + (1 − K)h2(s)

]
dBH(s)

+α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

∫
Z

[
Ky1(s, ξ) + (1 − K)y2(s, ξ)

]
Ñ(ds, dξ)

+α<2

V(α)

∫ t

0
Φ−1Qα(C − s)BB∗Q∗α(C − s)ℵ(κ,∆C0 ) ×

{
Ex̃C +

∫ C
0
γ̃(s)dBH(s)

−Φ−1<S α(C)Φx0 −
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1

[
Kf1(s) + (1 − K)f2(s)

]
ds

−
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1

[
Kh1(s) + (1 − K)h2(s)

]
dBH(s)

−α<
2

V(α)

∫ C
0

Φ−1Qα(C − s)
[
Kf1(s) + (1 − K)f2(s)

]
ds

−α<
2

V(α)

∫ C
0

Φ−1Qα(C − s)
[
Kh1(s) + (1 − K)h2(s)

]
dBH(s)

−
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1
∫

Z

[
Ky1(s, ξ) + (1 − K)y2(s, ξ)

]
Ñ(ds, dξ)

−α<
2

V(α)

∫ C
0

Φ−1Qα(C − s)
∫

Z

[
Ky1(s, ξ) + (1 − K)y2(s, ξ)

]
Ñ(ds, dξ)

}
ds.

Since S%,x, Sσ,x, and S~,x are convex sets, Kf1(s) + (1−K)f2(s) ∈ S%,x, Kh1(s) + (1−K)h2(s) ∈ Sσ,x,
and Ky1(s, ξ) + (1 − K)y2(s, ξ) ∈ S~,x. Thus,

KU1 + (1 − K)U2 ∈ T(x).

Step 2. ∀ κ > 0, ∃ a positive constant r0 = r(κ), s.t. T(Qr0) ⊂ Qr0 .
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If the opposite is true, then for any r > 0 ∃ x ∈ Qr, u ∈ L2(J,U) corresponding to x, s.t. T(x) * Qr,

E ‖T(x)‖2C = sup{‖U‖2C : U ∈ T(x)} ≥ r.

r ≤ E ‖T(x)‖2 ≤ 9E
∥∥∥Φ−1<S α(t)Φx0

∥∥∥2
+ 9E

∥∥∥∥℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1Bu(s)ds

∥∥∥∥2

+9E
∥∥∥∥℘<(1−α)

V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1f(s)ds

∥∥∥∥2
+ 9E

∥∥∥∥℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1h(s)dBH(s)

∥∥∥∥2

+9E
∥∥∥∥℘<(1−α)

V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

∫
Z

y(s, ξ)Ñ(ds, dξ)
∥∥∥∥2

+ 9E
∥∥∥∥α<2

V(α)

∫ t

0
Φ−1Qα(t − s)Bu(s)ds

∥∥∥∥2

+9E
∥∥∥∥α<2

V(α)

∫ t

0
Φ−1Qα(t − s)f(s)ds

∥∥∥∥2
+ 9E

∥∥∥∥α<2

V(α)

∫ t

0
Φ−1Qα(t − s)h(s)dBH(s)

∥∥∥∥2

+9E
∥∥∥∥α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

∫
Z

y(s, ξ)Ñ(ds, dξ)
∥∥∥∥2

=
∑9

n=1 In.

By Using Hölder′s inequality and assumptions (A1)–(A5), for some f ∈ S%,x, h ∈ Sσ,x and y ∈ S~,x,
we have

I1 = 9E
∥∥∥Φ−1<S α(t)Φx0

∥∥∥2
≤ 9 ‖Φ‖2

∥∥∥Φ−1
∥∥∥2

(J∗θ)2E ‖x0‖
2 ,

I2 = 9E
∥∥∥∥℘<(1−α)

V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1Bu(s)ds

∥∥∥∥2

≤ 9
{
θψ(1−α)‖Φ−1‖J∗1ςB

V(α)Γ(α)κ

}2
C4α−2

(2α−1)2 × 8
[{
E ‖x̃C‖2 + 2HC2H−1

∫ C
0
E ‖γ̃(s)‖2

L2
Θ

ds
}

+
∥∥∥Φ−1

∥∥∥2
‖Φ‖2 (θJ∗)2E ‖x0‖

2 +

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2
C2α−1

2α−1 Ψ(‖x‖2) ‖n‖L1/q ι

+

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2

2HC2H−1
∫ C

0
(C − s)2(α−1)gr(s)ds

+

{
θ2α‖Φ−1‖J∗1

V(α)

}2
C2α−1

2α−1 Ψ(‖x‖2) ‖n‖L1/q ι +

{
θ2α‖Φ−1‖J∗1

V(α)

}2

2HC2H−1
∫ C

0
(C − s)2(α−1)gr(s)ds

+

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2 ∫ C
0

(C − s)2(α−1)Cr(s)ds +

{
θ2α‖Φ−1‖J∗1

V(α)

}2 ∫ C
0

(C − s)2(α−1)Cr(s)ds
]
,

I3 = 9E

∥∥∥∥∥∥℘<(1 − α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

f(s)ds

∥∥∥∥∥∥2

≤ 9
{
θψ(1 − α)

∥∥∥Φ−1
∥∥∥

V(α)Γ(α)

}2
C2α−1

2α − 1
Ψ(‖x‖2) ‖n‖L1/q ι,

I4 = 9E

∥∥∥∥∥∥℘<(1 − α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1h(s)dBH(s)

∥∥∥∥∥∥2

≤ 9
{
θψ(1 − α)

∥∥∥Φ−1
∥∥∥

V(α)Γ(α)

}2

2HC2H−1
∫ t

0
(t−s)2(α−1)gr(s)ds,

I5 = 9E
∥∥∥∥℘<(1−α)

V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

∫
Z

y(s, ξ)Ñ(ds, dξ)
∥∥∥∥2

≤ 9
{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2 ∫ t

0
(t − s)2(α−1) ×

∫
Z
E ‖y‖2 λ(dξ)ds ≤ 9

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2 ∫ t

0
(t − s)2(α−1)Cr(s)ds,
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I6 = 9E
∥∥∥∥α<2

V(α)

∫ t

0
Φ−1Qα(t − s)Bu(s)ds

∥∥∥∥2

≤ 9
{
θ2α‖Φ−1‖J∗1ςB

V(α)κ

}2
C4α−2

(2α−1)2 × 8
[{
E ‖x̃C‖2 + 2HC2H−1

∫ C
0
E ‖γ̃(s)‖2

L2
Θ

ds
}

+
∥∥∥Φ−1

∥∥∥2
‖Φ‖2 (θJ∗)2E ‖x0‖

2

+

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2
C2α−1

2α−1 Ψ(‖x‖2) ‖n‖L1/q ι +

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2

2HC2H−1
∫ C

0
(C − s)2(α−1)gr(s)ds

+

{
θ2α‖Φ−1‖J∗1

V(α)

}2
C2α−1

2α−1 Ψ(‖x‖2) ‖n‖L1/q ι +

{
θ2α‖Φ−1‖J∗1

V(α)

}2

2HC2H−1
∫ C

0
(C − s)2(α−1)gr(s)ds

+

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2 ∫ C
0

(C − s)2(α−1)Cr(s)ds +

{
θ2α‖Φ−1‖J∗1

V(α)

}2 ∫ C
0

(C − s)2(α−1)Cr(s)ds
]
,

I7 = 9E

∥∥∥∥∥∥α<2

V(α)

∫ t

0
Φ−1Qα(t − s)f(s)ds

∥∥∥∥∥∥2

≤ 9
{
θ2α

∥∥∥Φ−1
∥∥∥J∗1

V(α)

}2
C2α−1

2α − 1
Ψ(‖x‖2) ‖n‖L1/q ι,

I8 = 9E

∥∥∥∥∥∥α<2

V(α)

∫ t

0
Φ−1Qα(t − s)h(s)dBH(s)

∥∥∥∥∥∥2

≤ 9
{
θ2α

∥∥∥Φ−1
∥∥∥J∗1

V(α)

}2

2HC2H−1
∫ t

0
(t−s)2(α−1)gr(s)ds,

I9 = 9E
∥∥∥∥α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

∫
Z

y(s, ξ)Ñ(ds, dξ)
∥∥∥∥2

≤ 9
{
θ2α‖Φ−1‖J∗1

V(α)

}2 ∫ t

0
(t − s)2(α−1)

∫
Z
E ‖y‖2 λ(dξ)ds ≤ 9

{
θ2α‖Φ−1‖J∗1

V(α)

}2 ∫ t

0
(t − s)2(α−1)Cr(s)ds.

Combining these estimates, I1–I9 yields

r ≤ O + 9
[{

θψ(1−α)‖Φ−1‖
V(α)Γ(α)

}2
C2α−1

2α−1 Ψ(‖x‖2) ‖n‖L1/q ι +

{
θ2α‖Φ−1‖J∗1

V(α)

}2
C2α−1

2α−1 Ψ(‖x‖2) ‖n‖L1/q ι

+

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2

2HC2H−1
∫ t

0
(t − s)2(α−1)gr(s)ds +

{
θ2α‖Φ−1‖J∗1

V(α)

}2

2HC2H−1
∫ t

0
(t − s)2(α−1)gr(s)ds

+

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2 ∫ t

0
(t − s)2(α−1)Cr(s)ds +

{
θ2α‖Φ−1‖J∗1

V(α)

}2 ∫ t

0
(t − s)2(α−1)Cr(s)ds

]
+72

{
θψ(1−α)‖Φ−1‖J∗1ςB

V(α)Γ(α)κ

}2
C4α−2

(2α−1)2

[{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2
C2α−1

2α−1 Ψ(‖x‖2) ‖n‖L1/q ι

+

{
θ2α‖Φ−1‖J∗1

V(α)

}2
C2α−1

2α−1 Ψ(‖x‖2) ‖n‖L1/q ι +

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2

2HC2H−1
∫ C

0
(C − s)2(α−1)gr(s)ds

+

{
θ2α‖Φ−1‖J∗1

V(α)

}2

2HC2H−1
∫ C

0
(C − s)2(α−1)gr(s)ds +

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2 ∫ C
0

(C − s)2(α−1)Cr(s)ds

+

{
θ2α‖Φ−1‖J∗1

V(α)

}2 ∫ C
0

(C − s)2(α−1)Cr(s)ds
]

+72
{
θ2α‖Φ−1‖J∗1ςB

V(α)κ

}2
C4α−2

(2α−1)2

[{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2
C2α−1

2α−1 Ψ(‖x‖2) ‖n‖L1/q ι
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+

{
θ2α‖Φ−1‖J∗1

V(α)

}2
C2α−1

2α−1 Ψ(‖x‖2) ‖n‖L1/q ι +

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2

2HC2H−1
∫ C

0
(C − s)2(α−1)gr(s)ds

+

{
θ2α‖Φ−1‖J∗1

V(α)

}2

2HC2H−1
∫ C

0
(C − s)2(α−1)gr(s)ds +

{
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

}2 ∫ C
0

(C − s)2(α−1)Cr(s)ds

+

{
θ2α‖Φ−1‖J∗1

V(α)

}2 ∫ C
0

(C − s)2(α−1)Cr(s)ds
]
, (3.1)

where

O = 9 ‖Φ‖2
∥∥∥Φ−1

∥∥∥2
(J∗θ)2E ‖x0‖

2
[
1 + 8

{θψ(1 − α)
∥∥∥Φ−1

∥∥∥J∗1ςB
V(α)Γ(α)κ

}2 C4α−2

(2α − 1)2

+8
{θ2α

∥∥∥Φ−1
∥∥∥J∗1ςB

V(α)κ

}2 C4α−2

(2α − 1)2

]
+72

[{θψ(1 − α)
∥∥∥Φ−1

∥∥∥J∗1ςB
V(α)Γ(α)κ

}2 C4α−2

(2α − 1)2

{
E ‖x̃C‖2 + 2HC2H−1

∫ C

0
E ‖γ̃(s)‖2

L2
Θ

ds
}

+
{θ2α

∥∥∥Φ−1
∥∥∥J∗1ςB

V(α)κ

}2 C4α−2

(2α − 1)2

{
E ‖x̃C‖2 + 2HC2H−1

∫ C

0
E ‖γ̃(s)‖2

L2
Θ

ds
}]
.

Dividing both sides of (3.1) by r and taking the lower limit r → +∞, we get

1 ≤ 9
{[

θψ(1−α)‖Φ−1‖
V(α)Γ(α)

]2

[C
2α−1

2α−1 ‖n‖L1/q Πι + 2HC2H−1Λ + Λ]

+

[
θ2α‖Φ−1‖J∗1

V(α)

]2

[C
2α−1

2α−1 ‖n‖L1/q Πι + 2HC2H−1Λ + Λ]
}

+72
[
θψ(1−α)‖Φ−1‖J∗1ςB

V(α)Γ(α)κ

]2
C4α−2

(2α−1)2

{[
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

]2

[C
2α−1

2α−1 ‖n‖L1/q Πι + 2HC2H−1Λ + Λ]

+

[
θ2α‖Φ−1‖J∗1

V(α)

]2

[C
2α−1

2α−1 ‖n‖L1/q Πι + 2HC2H−1Λ + Λ]
}

+72
[
θ2α‖Φ−1‖J∗1ςB

V(α)κ

]2
C4α−2

(2α−1)2

{[
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

]2

[C
2α−1

2α−1 ‖n‖L1/q Πι + 2HC2H−1Λ + Λ]

+

[
θ2α‖Φ−1‖J∗1

V(α)

]2

[C
2α−1

2α−1 ‖n‖L1/q Πι + 2HC2H−1Λ + Λ]
}
,

We can then obtain this by performing some simplifications,

1 ≤
[
Λ +

C2α−1

2α − 1
‖n‖L1/q Πι + 2HC2H−1Λ

]{
9
[
θψ(1 − α)

∥∥∥Φ−1
∥∥∥

V(α)Γ(α)

]2

+ 9
[
θ2α

∥∥∥Φ−1
∥∥∥J∗1

V(α)

]2}
K̃ ,

where

K̃ =

{
1 + 8

[
θψ(1 − α)

∥∥∥Φ−1
∥∥∥J∗1ςB

V(α)Γ(α)κ

]2
C4α−2

(2α − 1)2 + 8
[
θ2α

∥∥∥Φ−1
∥∥∥J∗1ςB

V(α)κ

]2
C4α−2

(2α − 1)2

}
,

which is a contradiction to (A6). Thus, for every κ > 0, there exists r0, s.t. T maps Qr0 into itself.
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Step 3. T(Qr) is equicontinuous.
Let 0 < t1 < t2 ≤ C. For each x ∈ Qr, there exist f ∈ S%,x, h ∈ Sσ,x and y ∈ S~,x, s.t.

E ‖U(t2) − U(t1)‖2 ≤ 17E
∥∥∥Φ−1<(S α(t2) − S α(t1))Φx0

∥∥∥2

+17E

∥∥∥∥∥∥℘<(1−α)
V(α)Γ(α)

∫ t1
0

Φ−1

[
(t2 − s)α−1 − (t1 − s)α−1

]
Bu(s)ds

∥∥∥∥∥∥2

+17E
∥∥∥∥℘<(1−α)

V(α)Γ(α)

∫ t2
t1

Φ−1(t2 − s)α−1Bu(s)ds
∥∥∥∥2

+17E

∥∥∥∥∥∥℘<(1−α)
V(α)Γ(α)

∫ t1
0

Φ−1

[
(t2 − s)α−1 − (t1 − s)α−1

]
f(s)ds

∥∥∥∥∥∥2

+17E
∥∥∥∥℘<(1−α)

V(α)Γ(α)

∫ t2
t1

Φ−1(t2 − s)α−1f(s)ds
∥∥∥∥2

+17E

∥∥∥∥∥∥℘<(1−α)
V(α)Γ(α)

∫ t1
0

Φ−1

[
(t2 − s)α−1 − (t1 − s)α−1

]
h(s)dBH(s)

∥∥∥∥∥∥2

+17E
∥∥∥∥℘<(1−α)

V(α)Γ(α)

∫ t2
t1

Φ−1(t2 − s)α−1h(s)dBH(s)
∥∥∥∥2

+17E

∥∥∥∥∥∥℘<(1−α)
V(α)Γ(α)

∫ t1
0

Φ−1

[
(t2 − s)α−1 − (t1 − s)α−1

] ∫
Z

y(s, ξ)Ñ(ds, dξ)

∥∥∥∥∥∥2

+17E
∥∥∥∥℘<(1−α)

V(α)Γ(α)

∫ t2
t1

Φ−1(t2 − s)α−1
∫

Z
y(s, ξ)Ñ(ds, dξ)

∥∥∥∥2

+17E

∥∥∥∥∥∥α<2

V(α)

∫ t1
0

Φ−1

[
Qα(t2 − s) − Qα(t1 − s)

]
Bu(s)ds

∥∥∥∥∥∥2

+17E
∥∥∥∥α<2

V(α)

∫ t2
t1

Φ−1Qα(t2 − s)Bu(s)ds
∥∥∥∥2

+17E

∥∥∥∥∥∥α<2

V(α)

∫ t1
0

Φ−1

[
Qα(t2 − s) − Qα(t1 − s)

]
f(s)ds

∥∥∥∥∥∥2

+17E
∥∥∥∥α<2

V(α)

∫ t2
t1

Φ−1Qα(t2 − s)f(s)ds
∥∥∥∥2

+17E

∥∥∥∥∥∥α<2

V(α)

∫ t1
0

Φ−1

[
Qα(t2 − s) − Qα(t1 − s)

]
h(s)dBH(s)

∥∥∥∥∥∥2

+17E
∥∥∥∥α<2

V(α)

∫ t2
t1

Φ−1Qα(t2 − s)h(s)dBH(s)
∥∥∥∥2

+17E

∥∥∥∥∥∥α<2

V(α)

∫ t1
0

Φ−1

[
Qα(t2 − s) − Qα(t1 − s)

] ∫
Z

y(s, ξ)Ñ(ds, dξ)

∥∥∥∥∥∥2

+17E
∥∥∥∥α<2

V(α)

∫ t2
t1

Φ−1Qα(t2 − s)
∫

Z
y(s, ξ)Ñ(ds, dξ)

∥∥∥∥2
.

Applying the Hölder inequality and conditions (A0)–(A5), we get

E ‖U(t2) − U(t1)‖2 ≤ 17
[
θψ(1−α)‖Φ−1‖ςB

V(α)Γ(α)

]2 ∫ t1
0

[
(t2 − s)α−1 − (t1 − s)α−1

]
×

∫ t1
0

[
(t2 − s)α−1 − (t1 − s)α−1

]
E ‖u(s)‖2 ds + 17θ2

∥∥∥Φ−1
∥∥∥2
‖Φ‖2 E ‖(S α(t2) − S α(t1))x0‖

2
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+17
[
θψ(1−α)‖Φ−1‖ςB

V(α)Γ(α)

]2{
(t2−t1)α

α

} ∫ t2
t1

(t2 − s)α−1E ‖u(s)‖2 ds

+17
[
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

]2 ∫ t1
0

[
(t2 − s)α−1 − (t1 − s)α−1

]
×

∫ t1
0

[
(t2 − s)α−1 − (t1 − s)α−1

]
E ‖f(s)‖2 ds

+17
[
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

]2{
(t2−t1)α

α

} ∫ t2
t1

(t2 − s)α−1E ‖f(s)‖2 ds

+17
[
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

]2

2HC2H−1
∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]2

gr(s)ds

+17
[
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

]2

2HC2H−1
∫ t2

t1
(t2 − s)2α−2gr(s)ds

+17
[
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

]2 ∫ t1
0

[
(t2 − s)α−1 − (t1 − s)α−1

]2

Cr(s)ds

+17
[
θψ(1−α)‖Φ−1‖

V(α)Γ(α)

]2 ∫ t2
t1

(t2 − s)2α−2Cr(s)ds

+17
[
θ2α‖Φ−1‖ςB

V(α)

]2 ∫ t1
0
‖Qα(t2 − s) − Qα(t1 − s)‖2 E ‖u(s)‖2 ds

+17
[
θ2α‖Φ−1‖J∗1ςB

V(α)

]2{
(t2−t1)α

α

} ∫ t2
t1

(t2 − s)α−1E ‖u(s)‖2 ds

+17
[
θ2α‖Φ−1‖

V(α)

]2 ∫ t1
0
‖Qα(t2 − s) − Qα(t1 − s)‖2 E ‖f(s)‖2 ds

+17
[
θ2α‖Φ−1‖J∗1

V(α)

]2{
(t2−t1)α

α

} ∫ t2
t1

(t2 − s)α−1E ‖f(s)‖2 ds

+17
[
θ2α‖Φ−1‖

V(α)

]2

2HC2H−1
∫ t1

0
‖Qα(t2 − s) − Qα(t1 − s)‖2 gr(s)ds

+17
[
θ2α‖Φ−1‖

V(α)

]2

2HC2H−1
∫ t2

t1
‖Qα(t2 − s)‖2 gr(s)ds

+17
[
θ2α‖Φ−1‖

V(α)

]2 ∫ t1
0
‖Qα(t2 − s) − Qα(t1 − s)‖2 Cr(s)ds + 17

[
θ2α‖Φ−1‖

V(α)

]2 ∫ t2
t1
‖Qα(t2 − s)‖2 Cr(s)ds.

The right-hand side of the aforementioned inequality tends to zero as t2 → t1 due to the strongly
continuous operator Qα(t). As a result, uniform operator topological continuity is required
by (A1). T(Qr) is hence equicontinuous.

Step 4. E(t) =

{
U(t),U ∈ T(Qr)

}
is a relatively compact on X.

The case t = 0 is trivial. Consider 0 < t ≤ C, x ∈ Qr. Then, for all K ∈ (0, t), define an operator

UK(t) = Φ−1<S α(t)Φx0 +
℘<(1−α)
V(α)Γ(α)

∫ t−K

0
Φ−1(t − s)α−1

{
Bu(s) + f(s)

}
ds
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+
℘<(1−α)
V(α)Γ(α)

∫ t−K

0
Φ−1(t − s)α−1h(s)dBH(s) +

℘<(1−α)
V(α)Γ(α)

∫ t−K

0
Φ−1(t − s)α−1

∫
Z

y(s, ξ)Ñ(ds, dξ)

+α<2

V(α)

∫ t−K

0
Φ−1Qα(t − s)

{
Bu(s) + f(s)

}
ds + α<2

V(α)

∫ t−K

0
Φ−1Qα(t − s)h(s)dBH(s)

+α<2

V(α)

∫ t−K

0
Φ−1Qα(t − s)

∫
Z

y(s, ξ)Ñ(ds, dξ),

where f ∈ S%,x, h ∈ Sσ,x and y ∈ S~,x. From (A1), therefore, EK(t) =

{
UK(t),UK ∈ TK(x), x ∈ Qr

}
is

relatively compact in X for all K ∈ (0, t). In addition, for every x ∈ Qr, by using Hölder inequality,
we have

E ‖U(t) − UK(t)‖2 ≤ 8E

∥∥∥∥∥∥℘<(1 − α)
V(α)Γ(α)

∫ t

t−K
Φ−1(t − s)α−1

Bu(s)ds

∥∥∥∥∥∥2

+8E

∥∥∥∥∥∥℘<(1 − α)
V(α)Γ(α)

∫ t

t−K
Φ−1(t − s)α−1

f(s)ds

∥∥∥∥∥∥2

+ 8E

∥∥∥∥∥∥℘<(1 − α)
V(α)Γ(α)

∫ t

t−K
Φ−1(t − s)α−1h(s)dBH(s)

∥∥∥∥∥∥2

+8E

∥∥∥∥∥∥℘<(1 − α)
V(α)Γ(α)

∫ t

t−K
Φ−1(t − s)α−1

∫
Z

y(s, ξ)Ñ(ds, dξ)

∥∥∥∥∥∥2

+ 8E

∥∥∥∥∥∥α<2

V(α)

∫ t

t−K
Φ−1Qα(t − s)Bu(s)ds

∥∥∥∥∥∥2

+8E

∥∥∥∥∥∥α<2

V(α)

∫ t

t−K
Φ−1Qα(t − s)f(s)ds

∥∥∥∥∥∥2

+ 8E

∥∥∥∥∥∥α<2

V(α)

∫ t

t−K
Φ−1Qα(t − s)h(s)dBH(s)

∥∥∥∥∥∥2

+8E

∥∥∥∥∥∥α<2

V(α)

∫ t

t−K
Φ−1Qα(t − s)

∫
Z

y(s, ξ)Ñ(ds, dξ)

∥∥∥∥∥∥2

.

Hence,

E ‖U(t) − UK(t)‖2 ≤ 8
[{
θψ(1 − α)

∥∥∥Φ−1
∥∥∥ ςB

V(α)Γ(α)

}2

+

{
θ2α

∥∥∥Φ−1
∥∥∥J∗1ςB

V(α)

}2]
Kα

α

∫ t

t−K
(t − s)α−1E ‖u(s)‖2 ds

+8
[{
θψ(1 − α)

∥∥∥Φ−1
∥∥∥

V(α)Γ(α)

}2

+

{
θ2α

∥∥∥Φ−1
∥∥∥J∗1

V(α)

}2]
Kα

α

∫ t

t−K
(t − s)α−1E ‖f(s)‖2 ds

+8
[{
θψ(1 − α)

∥∥∥Φ−1
∥∥∥

V(α)Γ(α)

}2

+

{
θ2α

∥∥∥Φ−1
∥∥∥J∗1

V(α)

}2]
2HC2H−1

∫ t

t−K
(t − s)2α−2E

∥∥∥∥h(s)
∥∥∥∥2

ds

+8
[{
θψ(1 − α)

∥∥∥Φ−1
∥∥∥

V(α)Γ(α)

}2

+

{
θ2α

∥∥∥Φ−1
∥∥∥J∗1

V(α)

}2]
Kα

α

∫ t

t−K
(t − s)α−1E

∥∥∥∥∥∫
Z

y(s, ξ)Ñ(ds, dξ)
∥∥∥∥∥2

.

The above inequality gives us,

E ‖U(t) − UK(t)‖2 → 0, whenK→ 0+.

Hence, there are relatively compact sets arbitrarily close to the set E(t) =

{
U(t),U ∈ T(Qr)

}
which implies E(t) is also relatively compact in X.

Step 5. T(x) has a closed graph.
Let xm → x∗(m → ∞), Um → U∗(m → ∞). We will prove that U∗ ∈ T(x∗). Since Um ∈ T(xm),
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there exist fm ∈ S%,xm , h
m
∈ Sσ,xm and ym

∈ S~,xm , s.t. for each t ∈ (0,C),

Um(t) = Φ−1<S α(t)Φx0 +
℘<(1−α)
V(α)Γ(α)

∫ t−K

0
Φ−1(t − s)α−1

{
Bu(s) + fm(s)

}
ds

+
℘<(1−α)
V(α)Γ(α)

∫ t−K

0
Φ−1(t − s)α−1h

m
(s)dBH(s) +

℘<(1−α)
V(α)Γ(α)

∫ t−K

0
Φ−1(t − s)α−1

∫
Z

ym(s, ξ)Ñ(ds, dξ)

+α<2

V(α)

∫ t−K

0
Φ−1Qα(t − s)

{
Bu(s) + fm(s)

}
ds + α<2

V(α)

∫ t−K

0
Φ−1Qα(t − s)h

m
(s)dBH(s)

+α<2

V(α)

∫ t−K

0
Φ−1Qα(t − s)

∫
Z

ym(s, ξ)Ñ(ds, dξ).

Finally, we will prove the existence of f∗ ∈ S%,x∗ , h
∗

∈ Sσ,x∗ and y∗ ∈ S~,x∗ s.t. for each t ∈ (0,C]

U∗(t) = Φ−1<S α(t)Φx0 +
℘<(1−α)
V(α)Γ(α)

∫ t−K

0
Φ−1(t − s)α−1

{
Bu(s) + f∗(s)

}
ds

+
℘<(1−α)
V(α)Γ(α)

∫ t−K

0
Φ−1(t − s)α−1h

∗

(s)dBH(s) +
℘<(1−α)
V(α)Γ(α)

∫ t−K

0
Φ−1(t − s)α−1

∫
Z

y∗(s, ξ)Ñ(ds, dξ)

+α<2

V(α)

∫ t−K

0
Φ−1Qα(t − s)

{
Bu(s) + f∗(s)

}
ds + α<2

V(α)

∫ t−K

0
Φ−1Qα(t − s)h

∗

(s)dBH(s)

+α<2

V(α)

∫ t−K

0
Φ−1Qα(t − s)

∫
Z

y∗(s, ξ)Ñ(ds, dξ).

Now,

E

∥∥∥∥∥∥
{
U

m(t) − Φ−1<S α(t)Φx0

}
−

{
U
∗(t) − Φ−1<S α(t)Φx0

}∥∥∥∥∥∥2

→ 0 as m→ ∞.

Consider
Σ : L2(J,X)→ C(J,X),

where

(f, h, y)→ Σ(f, h, y)(t) =
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1f(s)ds + α<2

V(α)

∫ t

0
Φ−1Qα(t − s)f(s)ds

+
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1h(s)dBH(s) + α<2

V(α)

∫ t

0
Φ−1Qα(t − s)h(s)dBH(s)

+
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1

∫
Z

y(s, ξ)Ñ(ds, dξ) + α<2

V(α)

∫ t

0
Φ−1Qα(t − s)

∫
Z

y(s, ξ)Ñ(ds, dξ)

−
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1BB∗Q∗α(C − s)ℵ(κ,∆C0 ) ×[

℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1f(s)ds + α<2

V(α)

∫ C
0

Φ−1Qα(C − s)f(s)ds
]
ds

−α<
2

V(α)

∫ t

0
Φ−1Qα(t − s)BB∗Q∗α(C − s)ℵ(κ,∆C0 ) ×[

℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1f(s)ds + α<2

V(α)

∫ C
0

Φ−1Qα(C − s)f(s)ds
]
ds

−
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1BB∗Q∗α(C − s)ℵ(κ,∆C0 ) ×[

℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1h(s)dBH(s) + α<2

V(α)

∫ C
0

Φ−1Qα(C − s)h(s)dBH(s)
]
ds
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−α<
2

V(α)

∫ t

0
Φ−1Qα(t − s)BB∗Q∗α(C − s)ℵ(κ,∆C0 ) ×[

℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1h(s)dBH(s) + α<2

V(α)

∫ C
0

Φ−1Qα(C − s)h(s)dBH(s)
]
ds

−
℘<(1−α)
V(α)Γ(α)

∫ t

0
Φ−1(t − s)α−1BB∗Q∗α(C − s)ℵ(κ,∆C0 ) ×[

℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1
∫

Z
y(s, ξ)Ñ(ds, dξ) + α<2

V(α)

∫ C
0

Φ−1Qα(C − s)
∫

Z
y(s, ξ)Ñ(ds, dξ)

]
ds

−α<
2

V(α)

∫ t

0
Φ−1Qα(t − s)BB∗Q∗α(C − s)ℵ(κ,∆C0 ) ×[

℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1(C − s)α−1
∫

Z
y(s, ξ)Ñ(ds, dξ) + α<2

V(α)

∫ C
0

Φ−1Qα(C − s)
∫

Z
y(s, ξ)Ñ(ds, dξ)

]
ds.

It is evident from Lemma 2.2 that Σ ◦ S%,σ,~ is a closed graph operator, where S%,σ,~ =

{
f ∈

%(t, x(t))
}
×

{
h ∈ σ(t, x(t))

}
×

{
y ∈ ~(t, x(t))

}
. From the definition of Σ, we get

{
U

m(t) − Φ−1<S α(t)Φx0

}
∈ Σ

(
S%,σ,~,xm

)
.

Since, xm tends to x∗, as a result of Lemma 2.2,{
U
∗(t) − Φ−1<S α(t)Φx0

}
∈ Σ

(
S%,σ,~,x∗

)
.

It is clear from this that U∗ ∈ T(x∗). Hence, T has a closed graph.
Since T is a completely continuous multi-valued map with a compact value, we can infer that T is
u.s.c. from Proposition 2.1. According to Lemma 2.3, operator T has a fixed point on Qr, which
is a mild solution of (1.1).

�

Theorem 3.2. If (A0)–(A7) are satisfied, then (1.1) is approximately controllable on J.

Proof. We can quickly demonstrate that the operator T has a fixed point in Qr, where r = r(κ), for
every 0 < κ < 1 by using the method described in Theorem 3.1. A fixed point of T in Qr is defined
as xκ(·). Any fixed point of the operator T is a mild solution of (1.1). This indicates that for each
t ∈ (0,C], by stochastic Fubini theorem, there exists fκ ∈ S%,xκ , h

κ
∈ Sσ,xκ and yκ ∈ S~,xκ ,

xκ(C) = x̃C − κ(κI − ∆C0 )−1

{
Ex̃C +

∫ C
0
γ̃(s)dBH(s) − Φ−1<S α(C)Φx0

}
+
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1κ(κI − ∆C0 )−1(C − s)α−1fκ(s)ds

+
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1κ(κI − ∆C0 )−1(C − s)α−1h
κ
(s)dBH(s)

+
℘<(1−α)
V(α)Γ(α)

∫ C
0

Φ−1κ(κI − ∆C0 )−1(C − s)α−1
∫

Z
yκ(s, ξ)Ñ(ds, dξ)

+α<2

V(α)

∫ C
0

Φ−1κ(κI − ∆C0 )−1Qα(C − s)fκ(s)ds + α<2

V(α)

∫ C
0

Φ−1κ(κI − ∆C0 )−1Qα(C − s)h
κ
(s)dBH(s)
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+α<2

V(α)

∫ C
0

Φ−1κ(κI − ∆C0 )−1Qα(C − s)
∫

Z
yκ(s, ξ)Ñ(ds, dξ).

In addition, the Dunford-Pettis theorem and conditions on f, h and y, we have that fκ, h
κ

and yκ

are weakly compact in L2(J,X). Thus, there are subsequences determined by fκ, h
κ

and yκ weakly
converging to say f, h and y. Now, we have

E ‖xκ(C) − x̃C‖
2
≤ 14E

∥∥∥∥∥∥κ(κI − ∆C0 )−1
[
Ex̃C − Φ−1<S α(C)Φx0

]∥∥∥∥∥∥2

+ 28HC2H−1
∫ C

0
E ‖γ̃(s)‖2

L2
Θ

ds

+14
[
℘<(1 − α)
V(α)Γ(α)

]2

E

{∫ C

0

∥∥∥∥∥∥Φ−1κ(κI − ∆C0 )−1(C − s)α−1
{
f
κ(s) − f(s)

}∥∥∥∥∥∥ ds
}2

+14
[
℘<(1 − α)
V(α)Γ(α)

]2

E

{∫ C

0

∥∥∥Φ−1κ(κI − ∆C0 )−1(C − s)α−1
f(s)

∥∥∥ ds
}2

+28HC2H−1
[
℘<(1 − α)
V(α)Γ(α)

]
E

{∫ C

0

∥∥∥∥∥∥Φ−1κ(κI − ∆C0 )−1(C − s)α−1
{

h
κ
(s) − h(s)

}∥∥∥∥∥∥ ds
}2

+28HC2H−1
[
℘<(1 − α)
V(α)Γ(α)

]
E

{∫ C

0

∥∥∥∥Φ−1κ(κI − ∆C0 )−1(C − s)α−1h(s)
∥∥∥∥ ds

}2

+14
[
℘<(1 − α)
V(α)Γ(α)

]
E

{∫ C

0

∥∥∥∥∥Φ−1κ(κI − ∆C0 )−1(C − s)α−1
∫

Z
y(s, ξ)Ñ(ds, dξ)

∥∥∥∥∥ }2

+14
[
℘<(1 − α)
V(α)Γ(α)

]
E

{∫ C

0

∥∥∥∥∥∥Φ−1κ(κI − ∆C0 )−1(C − s)α−1
∫

Z

{
yκ(s, ξ) − y(s, ξ)

}
Ñ(ds, dξ)

∥∥∥∥∥∥
}2

+14
[
α<2

V(α)

]2

E

{∫ C

0

∥∥∥∥∥∥Φ−1κ(κI − ∆C0 )−1Qα(C − s)
{
f
κ(s) − f(s)

}∥∥∥∥∥∥ ds
}2

+14
[
α<2

V(α)

]2

E

{∫ C

0

∥∥∥Φ−1κ(κI − ∆C0 )−1Qα(C − s)f(s)
∥∥∥ ds

}2

+28HC2H−1
[
α<2

V(α)

]
E

{∫ C

0

∥∥∥∥∥∥Φ−1κ(κI − ∆C0 )−1Qα(C − s)
{

h
κ
(s) − h(s)

}∥∥∥∥∥∥2

ds
}2

+28HC2H−1
[
α<2

V(α)

]
E

{∫ C

0

∥∥∥∥Φ−1κ(κI − ∆C0 )−1Qα(C − s)h(s)
∥∥∥∥ ds

}2

+14
[
α<2

V(α)

]
E

{∫ C

0

∥∥∥∥∥∥Φ−1κ(κI − ∆C0 )−1Qα(C − s)
∫

Z

{
yκ(s, ξ) − y(s, ξ)

}
Ñ(ds, dξ)

∥∥∥∥∥∥
}2

+14
[
α<2

V(α)

]
E

{∫ C

0

∥∥∥∥∥Φ−1κ(κI − ∆C0 )−1Qα(C − s)
∫

Z
y(s, ξ)Ñ(ds, dξ)

∥∥∥∥∥ }2

.

According to the assumption (A0), the operator κ(κI − ∆C0 )−1 → 0 strongly as κ → 0+ and also κ(κI −
∆C0 )−1 ≤ 1. Thus, by the Lebesgue dominated convergence theorem and the compactness of Qα(t), it is
implied that

E ‖xκ(C) − x̃C‖
2
→ 0 as κ → 0+.

Hence, we deduce the approximate controllability of the system (1.1). �
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4. Application

We consider the stochastic partial differential inclusion with the AB fractional derivative:

ABCD3/4
0+

[{
1 − ∂2

∂ζ2

}
x(t, ζ)

]
∈ ∂2

∂ζ2 x(t, ζ) + ϕ̃(t, ζ) + e−t

1+e−t sin(x(t, ζ)) + σ(t, x(t, ζ)) dBH(t)
dt

+
∫

Z
~(t, x(t, ζ), ξ)Ñ(dt, dξ), t ∈ J := (0, 1], ζ ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ∈ (0, 1]. (4.1)

To write the above system (4.1) into the abstract system (1.1), we choose the space X = Y = U =

L2([0, π],R) and define the operators A : D(A) ⊂ X→ X and Φ : D(A) ⊂ X→ X, t ≥ 0 by A = ∂2

∂ζ2 and

Φ = 1−A with D(A) = D(Φ) =

{
x ∈ X; x, ∂x

∂ζ
be absolutely continuous, ∂

2 x
∂ζ2 ∈ X, x(0)= x(π) = 0

}
.

Then, A and Φ can be written as

Ax =

∞∑
k=1

k2〈x, xk〉xk, x ∈ D(A),

Φx =

∞∑
k=1

(1 + k2)〈x, xk〉xk, x ∈ D(Φ).

Furthermore, for x ∈ X we get

AΦ−1x =

∞∑
k=1

k2

1 + k2 〈x, xk〉xk,

Φ−1x =

∞∑
k=1

1
1 + k2 〈x, xk〉xk.

AΦ−1 is self-adjoint and xk =

√
2
π
sin(kx), k = 1, 2, · · · be the orthonormal basis of X. However,

AΦ−1 forms a uniformly strongly continuous semigroup of bounded linear operators S (t), t ≥ 0, on a
separable Hilbert space X which is in the form

S (t)x =

∞∑
k=1

e−k2t〈x, xk〉xk, x ∈ D(A).

Assume that $(t)(ζ) = x(t, ζ), t ∈ J, ζ ∈ [0, π]. Now, construct the bounded linear operator B : U →
X and the function % : J × X→ X, respectively, for any $(t) ∈ X.

%(t, $(t))(ζ) =
e−t

1 + e−t sin(x(t, ζ)),

Bu(t)(ζ) = ϕ̃(t, ζ), 0 < ζ < π,

where ϕ̃ : J × [0, π] → [0, π] is continuous in t and B = B∗ = I. Therefore, (4.1) can be reformulated
as the abstract system (1.1). Clearly, all the assumptions of Theorem 3.1 are satisfied, and[

Λ +
C2α−1

2α − 1
‖n‖L1/q Πι + 2HC2H−1Λ

]{
9
[
θψ(1 − α)

∥∥∥Φ−1
∥∥∥

V(α)Γ(α)

]2

+ 9
[
θ2α

∥∥∥Φ−1
∥∥∥J∗1

V(α)

]2}
K̃ < 1,
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where

K̃ =

{
1 + 8

[
θψ(1 − α)

∥∥∥Φ−1
∥∥∥J∗1ςB

V(α)Γ(α)κ

]2
C4α−2

(2α − 1)2 + 8
[
θ2α

∥∥∥Φ−1
∥∥∥J∗1ςB

V(α)κ

]2
C4α−2

(2α − 1)2

}
.

As a result, the system (4.1) has a mild solution on J, in addition, it is approximately controllable on J,
according to Theorem 3.2.

5. Conclusions

In this work, a new control model was presented with the Sobolev-type Atangana-Baleanu fractional
stochastic differential inclusions including the fractional Brownian motion and Poisson jumps. We
investigated the approximate controllability for the proposed problem (1.1). Our results were obtained
with the aid of nonsmooth analysis, fractional calculus, stochastic analysis, and fixed-point theorems.
Finally, we provided an example to illustrate the applicability of the results.

For future work, we can present neutral Atangana-Baleanu fractional stochastic differential
inclusions with Clarke subdifferential.
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