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1. Introduction

In recent years, numerous fields have recognised the effect of including random effects in modelling
and analysing physical processes. The optimum control systems modelled by stochastic and partial
differential equations have attracted a lot of attention (see [1-11]). Consequently, stochastic and
partial differential inclusion result from these optimal control problems. Fractional-order differential
equations can be used to solve some physical problems instead of integer-order differential equations.
As aresult, a large number of researchers have recently made significant progress in a variety of fields,
including physics, fluid mechanics, control theory, image analysis, biology, engineering, porous media
and others. Many authors have investigated the theoretical results based on existence and uniqueness of
solutions to fractional differential equations in various forms (see [12—17]). Recently, a novel fractional
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derivative known as the AB fractional derivative was introduced by Atangana and Baleanu [18]). Many
studies and discussion related to AB fractional derivative have appeared in several areas of applications,
for example, Khan et al. [19] discussed the existence and data dependence theorems for solutions of an
ABC-fractional order impulsive system. Mallika et al. [20] studied a new class of Atangana-Baleanu
fractional Volterra-Fredholm integrodifferential inclusions with non-instantaneous impulses. Omaba
and Enyi [21] studied the Atangana—Baleanu time-fractional stochastic integro-differential equation by
using Banach fixed point theory. Panda et al. [22] discussed the results on system of Atangana-Baleanu
fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems.

The notion of controllability of dynamical systems is one of the fundamental concepts in
mathematical control theory which plays pivotal role in many areas of science and engineering
(see [23-28]). The dynamical systems must be treated by the weaker concept of controllability, namely
approximate controllability. There are many studies on the approximate controllability of stochastic
and deterministic systems, for example, Liu and Li [29] studied the approximate controllability
of fractional evolution systems with Riemann-Liouville fractional derivatives. Mahmudov and
Mckibben [30] investigated the approximate controllability of fractional evolution equations with
generalized Riemann-Liouville fractional derivative. @~ Ahmed [31] discussed the approximate
controllability of impulsive neutral stochastic differential equations with fractional Brownian motion
in a Hilbert space. Subramaniam [32] studied the approximate controllability of Sobolev-type
nonlocal Hilfer fractional stochastic differential system. Ma et al. [33] investigated the approximate
controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with
nonlocal conditions.

To the best of our knowledge, no work has been reported in the literature regarding the approximate
controllability of Sobolev-type Atangana-Baleanu fractional stochastic differential inclusions with
fractional Brownian motion and Poisson jumps. Motivated by this, the aim of this paper is to study the
approximate controllability of Sobolev-type stochastic differential inclusions with fractional Brownian
motion and Poisson jumps, where the time fractional derivative is the Atangana-Baleanu fractional
derivative in the Caputo sense, of the form:

H
ABCD2 dx(f) € Wx(t) + Bu(t) + o(t, x()+ o (t, x(1)) dBdt(t) + fh(t, x(1), E)N(dt, d¢), teJ:=(0,C],
z

x(0) = X0, (1.1)
where ABCD8+ is AB-Caputo fractional derivative of order % < a < 1. x(-) is the state variable in
separable Hilbert space X with ||| and (-,-). Let B be a fBm on separable Hilbert space Y with
H € (1/2,1). ® and U are linear operators in X. o and o are multi-valued functions satisfying some
assumptions. 7 : J X X X Z — X is a nonlinear function. The control function u(-) is given in L,(J, U),
the Hilbert space of admissible control functions with U as a separable Hilbert space. The symbol B
stands for a bounded linear operator from U into X.

The contributions of the present work:
e Sobolev-type Atangana-Baleanu fractional stochastic differential inclusions with Poisson jumps are
presented.
e Approximate controllability for (1.1) is investigated for the first time.
e An example is offered to define the primary results.
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2. Preliminaries

The following lemmas and definitions are used in the paper.

Let (Q,3,P) be a complete probability space containing the entire family of right continuous
increasing sub-o-algebras {J,},c; satisfying 3, ¢ J and € > 0 be arbitrary fixed horizons. Let
(Z,V, A(d¢)) be a o-finite measurable space. We are given a stationary Poisson point process (q;);»0,
which is defined on (Q, J,P) with values in Z and with characteristic measure A. Let M(dt, d¢)
be the counting measure of q; such that (s.t.) N(t,0) = E(M(t,0)) = tA() for € € V. Define
N(t,d€) = M(t,dé) — tA(d€), the Poisson martingale measure generated by g,. An one-dimensional
fBm with the Hurst index H € (1/2,1) is a centred Gaussian process 87 = {87(¢),0 < t < €} with
covariance function

Cu(t, s) = EB"(0B"(5)) = %(IZH + 52— s ).

Suppose L(Y, X) be the space of bounded linear operators from Y to X. Then, define the infinite
dimensional fBm on Y with covariance © as

B(1) = ) Bl (hen 30,
n=1

where ﬁf are real, independent fBm’s. This process is a Y-valued Gaussian, which starts from zero,
has zero mean and covariance

E[(B"(1),D)(B"(s),3)] = Cy(t, s)(O(0),8), d,g€Y, t,5€[0,C]
We propose the separable Hilbert space 25 (Y, X) of all ©-Hilbert-Schmidt operators ¥y - X[34].
Lemma 2.1. If ¥ : [0, €] — L2(Y, X) satisfies fog | #(s) ||§2 ds < oo, then
(€]

2
E < 2HEH! ft 1|5 ds.
0 ~e

f W(5)dB"(s)
0

Here, C(J, L2(Q, X)) is the Banach space of all continuous maps from J into £2(€, X) equipped
1/2

with the supremum norm |[|x||c = sup,; (E Ilx(D)|I?
Assume, A : D(A) Cc X —» X and @ : D(®) C X — X satisfy the following hypotheses:

(1) Aand @ are closed linear operators.
(2) D(®) c D) and D is bijective.
(3) @' : X — D(®P) is continuous. Here, (1) and (2) together with the closed graph theorem imply

the boundedness of AD~! : X — X, in addition, AD~! is the infinitesimal generator of an a-
resolvent family (S ,(7))r>0, (Qo(7))r>0 stands for the solution operator defined on a separable
Hilbert space X.

Let P(X) = {‘21 CX: U+ ¢} be the family of all nonempty subsets of X,
P.,(X) = {?I ePX): U is compact}, Py(X) = {‘21 ePX): U is bounded},
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PuX) = {‘l[ ePX): U is closed}, P.(¥) = {‘21 ePX): U is convex},

Py oo(X) = P, (X) N P, (X) denotes the collection of all non-empty compact and convex subsets of X.
Proposition 2.1. ( /35])

(i) A multivalued map W : X — 2¥\0 is convex (closed) valued if V3(g) is convex (closed) ¥ g € X. W
is bounded on bounded sets, if W(B) = | J,cp W(9) is bounded in X, for any bounded set B on X.

(ii) A map W is said to be upper semi-continuous (u.s.c.) on X, if for each gy € X, the set W(q) is a
nonempty closed subset of X and if for each open subset Q of X containing V3(qy), there exists an
open neighborhood © of ay such that W(O) C Q.

(iii) A map W is said to be completely continuous, if W(B) is relatively compact for every B € P,(X).
If the multi-valued map W is completely continuous with nonempty compact values, then W is
u.s.c. if and only if W has a closed graph, i.e., g, — §,u, — u,u, € W(go) imply u € W(g). We
say that W has a fixed point if there is ¢ € X such that g € (g).

Lemma 2.2. ( [36]) W : I X X = Py (X) is measurable to t Y fixed x € X , u.s.c. to x for each t € J
and for each x € C(J, X), the set Sqsx 1= {f € LY(3, %) : (M) € W(t, x(1))}, for a.e. t € T is nonempty.
Let N be a linear continuous mapping from L'(3, X) into C(J, X). Then, the operator

N oSy : C(J, X) = Ppae(C(S, X)),
x> N o Sp(x) = N(Sw),

is a closed graph operator in C(J, X) X C(3, X).

Lemma 2.3. ( [35]) Let © be a nonempty subset of X which is bounded, closed and convex. Suppose
Q: D — 2% is u.s.c. with closed, convex values s.t. QD) C D and QD) is compact. Then, Q has a
fixed point.

Definition 2.1. ( [18]) The AB fractional derivative is defied by the following in the Caputo sense: for
fe H'(a,b);a < band att € (a,b) of order « € (0, 1), we have

“%mﬂn=¥%;ffuwaﬂm—@%m, @.1)

where the function v = 1%, €,(-) is the one parameter Miitag-Leffler function defined by

& n

_ Z
%@‘ZRETE

n=0

and the normalization function V(a) = (1 — @) + %y) is any function with V(0) = V(1) = 1.

The fractional integral of AB is provided by

AB ya _ l -« @ ' _ el
I7,§() = V@) f(r) + V@ f(;(t ) {(s)ds. (2.2)

Definition 2.2. ( [37]) x € C(J, L*(Q, X)) is a mild solution of (1.1), if it satisfies the following
conditions:
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(1) x(0) = xo € L2, X)) and u(-) € L(J, U),
(2) AF€ S, s.t. {(2) € o(t, x(1)), h € Six 5.1. h(t) € o(t, x(1)), ¥y € Sy 5.1. Y(t,&) € I(t, x(t), &) and x(t)
verifies the following equation:

PR -a) (7

_ -l
x(®) = DT RS () DPxy + V@r@ Jo

ol - s)“-l{%u(s) + f(s)}ds

pR(1-a) (M, a-17 H pR(1 -a) (7
V@) J, & ¢ dB O+ 5oy ),
a,%z !

(¢ - 5! f 55, YN (ds, dé)
7z

2t
+V(oz) i Q. (1 - s){%u(s) + T(s)}ds + 3?2) fo‘ o0, (t - S)E(s)dBH(s)
2t
+a% D' Q,(t - 5) f Y(s,&)N(ds, d€),
V(@) J 5

where R = & (1 - W) and p = =AW — W™, with 9* = L2 5 = =

1-a’

1
S . (1) Co(—ptY) = — f e s (5T — )7 ds,
2 Jy

1
Q.(1) 17 oo (—1") = —— fesr(sal - )'ds,
2mi T

and the path Y is lying on Z, o).
We need the following assumption:

(A0) A € N¥ay, ) then ||S ()|l < Je' and [|Q,(1)]| < Rel'(1 + t*71), for every t > 0,1 > ;. Thus,
I = supso IS oIl I} = sup,.o Re(1+127). So, we get S ()] < I and [|Qa (0] < Fjz7 .

To study the approximate controllability for (1.1), we first consider the fractional stochastic linear
system:

ABCDE Ox(r) € Ax(t) + Bu(r), teJ:=(0,C]

+

x(0) = xo. (2.3)
Let x(C; y, u) be the state value of (1.1) at the terminal state b, corresponding to the control u and the

initial value y. Denote by R(C,y) = {x((i; vou) :ue€ LrJ,U )} the reachable set of (1.1) at terminal

time €, its closure in X is denoted by R(C, y).
Definition 2.3. ( [37]) (1.1) be approximately controllable on the interval [0, €] if R(C€,y) = L*(Q, X).
Remark 2.1. (2.3) is approximately controllable on J, if and only if kN(k, Ag) — 0 strongly as k — 0*.

It is appropriate to introduce two pertinent operators now,

¢
AG = f D' Q,(€ - 5)BB OO (C — s)ds,
0
where B* and Q;, are the adjoint of B and Q,, respectively.

Nk, AY) = (I + A5, k> 0.
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Lemma 2.4. ( [37]) For any %¢ € L*(Q, %), A7(s) € L2(Q; L*(J, Qé)), s.t.
¢
%¢ = B¢ + f ¥(s)dB (s).
0

3. Main result

Let us begin with some notations.
2(1-¢)
1-
IBI* = ¢u, € = (—q) . 1=,
a—-q
To illustrate the main result, we introduce the following assumptions:

(A1) (Qu(1))0 be compact and ||/<N(K, Ag)” <1, V«k>0.
(A2) 0: J X X = Py (X) satisfies:

(1) o(t,-) : X > Xisu.s.c. YVt € J and for each x € X, the function o(:, x) : J — X is strongly
measurable to ¢, and for each x € X, the set S, := {T e L'(J,X) : §(®) € o(t, x(t))}, for a.e.

t € J is nonempty.
(2) 3 afunction n(¢t) € L4, g € (0, @) and a continuous nondecreasing function ¥ : [0, c0) —
(0, 00), s.t. for any (¢, x) € J X X, we have

b4
E llo(z, 0)I* = sup{IF()I* : 7(2) € o(z, )} < n(e)¥ (), liglglfg =l <oco

(A3) 0 : Jx X - £1(Y, X) satisfies:
(1) o(-,x)ismeasurable Y x € X, and o°(¢,) : X — i%(Y, X)isu.s.c. Vre Jand V¥ x € X, the set

Sex i= {E € L2(Y, %) : h(t) € o1, x)}, for a.e. t € J is nonempty.

2) g/(t):J >R, reN,r>0s.t.
e —
sup {E 7| <7 e ot x)} < &0,
ViteJand s (t— )@ Vg.(r) € L'([0,],R*) and I A > O s.t.

1
(1 — )" Vg, (s)ds
lim inf fo 8 =A

r—0 r

< 00,

(A4) h: J X X X Z — X satisfies:
(1) A, x,&) is measurable V (x,¢é) € XX Z, and 7i(¢t,-,-) : XX Z — Xisu.s.c. Vt e J.

For each (x,£&) € X X Z, the set Sy, 1= {y € L2V, X) : Y(t,&) € I, x, f)}, fora.e. t € Jis

nonempty.
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) C(t): >R, reN,r>0s.t.

sup { f E [yl Ad¢ : ¥(t,€) € A, x, f)} < C(1),
Z

forae.te Jand s — (t — 5> VC,(t) € L'([0,¢],R*)and I A > O s.t.

S Iyt = 2@ DC,(s)ds
1m 1n =

r—0 r

< 00.

(A5) p and R are bounded linear operators, 1 6 and ¥ s.t. ||%|| < fand ||p|l <.
(A6)

G201 - ol - |0 |17 [a|@ 3T -
A+ 20[_1||n||L./qHL+2HC£ A]{9[ V@l ] +9[ V@) ]}7(< 1,

where

i - {1 N 8[990(1 —a)||q>—1||3y;%]z a2 . 8[92a|l®_1||3>;§%]2 a2 }
V(o) (a)k a - 1) V(a)k Qa - 1)

(A7) 0,0 and % are uniformly bounded V ¢ € J and x € C.

Theorem 3.1. Assume that (AO) through (A6) are satisfied. Then, (1.1) has a mild solution on
C(J, LX(Q, X)).

Proof. Let Q, := {x € C(J, L2(Q. %)) : |lxllc < .7 2 0,0 < t < €}. Obviously, @, is a bounded, closed,
convex set in C(J, L2(Q, X)).
For « > 0, for all x(-) € C(J, L*(Q, X)), we take,

u(t) = B* 0, (€ — NR(x, Ag)P(x()),

where
¢ _ ¢
P() = EXe+ f F(IAB(s) — D IRS (OB — P =D (7 (¢ _ T

0 VoI'(a) Jo

oR(1-a) ¢ __, - . aR? (S

V@ J, & Cm9ThdBNs) - pos | 0T0(E - 9f(s)ds

aR2 (C » 3 ;

Vi ), @€ = Dh)B()

PR -a) (. a_lf_ _

Vor@ J, & E97 | s HNds,df)

aR? ¢

— -1 _ — ~
Vi) J, P 0.(C—) fz (s, &)N(ds, df).

The operator T : C — P(C) is defined in terms of this control as follows:

pR(1-a) (7

— N = ! Vio(a)
W = {uec.u(r) = O RSOPx0+ GO

ol - s)"_l{%u(s) + f(s)}ds

AIMS Mathematics Volume 8, Issue 10, 25288-25310.
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pRA-a) (M 1 o7 H pR( - a) a-1
V@@ 0<D (t—=95)""h(s)dB7(s) + ————— V@ fq) (t—y1)

% fz 3 3(0) OICD_IQ(,(t—s){%u(s)+f(s)}ds

aR® " -1 T H
+V(a) i O Q,(t — s)h(s)dB V@

We shall prove, T : C — P(C) has a fixed point for « > 0.
The proof is now divided into five steps.

00,19 f Y5, )N (ds, d-f)}.
7z

Step 1. ¥V x € Q, the operator T is convex. o
Assume that U, 2, € T(x), then A§,,§, € S, 1, hi,hy € Sy, and y,, y, € Sy s.t.

Wi(1) = DR L (Hxo + T4 [T D711 — 5)* i (s)ds + T [T @1(r - )27 BB Q;(C — 5)N(k, AY)

V(o)(a@)

- ¢ _ _ SR(1-a) (€ < _ o
><{ExE + [) Y(9)dB(s5) = DTIRS ((€)Dxg — D [T O7H(E — 5)* 7 fi(s)ds

— g f S O7C 9 S)AB () = §5 [ 07 Qu(€ = 9)Ti(s)ds

V(a)(@) V()
_aR? (e 7 H pRU-) (¢ x1 a-1
V(a) o Qd(Q - S)hl(s)dB (S) - V(o) () j(; (D ((S - S)

x [, 3(s.)N(ds, dg) — 2% 0“ D' Q,(C — 5) [ (s, &N(ds, dg)}ds

e b @7 - >“-1E~(s)dBH<s>+%?{<3§ ko= 97" 55, HN(ds, dé)

V(a)l"(a)
(x‘Rz
+22 Q10 (1 — $)u(s)ds + £ [ O Qu(r — $)hu(s)dBY(s)

+9B 0710, - 5) [ 55, E)N(ds, d&) + £ [T 0710, (t — BB Q4(C - 5)N(x, AY)

~ ~ — ¢ - ¢ — a—
x{Exc + [ ¥(s)dB!(5) - OV RS (€)Dx, — %}(a; fi @€ - )M i(s)ds

~IRA-) (€ 1§ — ) (5)dBY(s) — 2 [ D71 0,(€ — 9)i(s)ds

V(a)F(a)
_aR? pR(1-a) a— b N
9B (€ o10,(6 — V()ABY () — SR [ @1(€ - )1 [ 5,(s, )N (ds, d)

i D710,(C—5) [[T(s,ONs, dg)}ds, i=1,2.

Let & € [0, 1], then we get

KU+ (1= KU, = O7'RS (()Dxg + L= [T~I(¢ - s)”‘l[Rfl(s) +(1 - R)fz(s)]ds

+2R0D (1 — ) BB QL (€ - 5N (K, A) X {Efccs + [ 7(s)dB"(s)

V(o) (a)

V(a)I'(a)

_(I)—l"?xSa(@)q)xo _ pR(d-0) LG (D_l((g _ S)Q_I[Rfl(s) + (1 _ R)fz(s)]ds
(XI/?ZZ) foG D' Q4 (€ - S)[RTI(S) + (1 - R)fz(s)]ds
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i @ Qa<¢—s>[Rh1(s>+(1 R)Ez(S)]dBH(s)

O - ¢ . _ a— 7 7
— S [T (€ - ) ‘[Rhl(s)+(1 —R)hz(s)]dBH(s)

_ pR(1-a)
V(@)T(@)

Fot@-so [ [sws, &+ (1 - R)7,(s, g)]mczs, d)

_oR? ¢
V(e) Jo

10, (€ - ) fz [Ryl(s, &+ (1 = K)y,(s, f)]N(ds, df)}ds

+o0) ot~ S)“‘l[ﬁﬁl(s) +(1 —R)Ez(s)]dBH(s)

+(11/?22) 0[ (D_lQa(t - S)[RT](S) + (1 - R)fz(s)]ds

Jy @l —s " [Ril(s, &) + (1 = K)y,(s, f)]N(ds, dé)

W‘R(l -a)
V((l)l"(w)

4R (T gy Qa(t—s)[Rhl(s)+(1—R)hz(s)]dBH(s)

V(a) 0
Cv”?ff) [ @' Qult~5) [, [Ryl(s &) + (1 = K)y,(s, f)]N(ds de)
+2B [ D710, (€ — BB QL(C - 5)N(k, AF) X {EXL + [ ¥(s)dB(s)

Kfi(s) + (1 - R)Tz(S)]ds

_ pR(1-a) (¢ 5 a-
—O7'RS (O)Dxo - SEm [ O7HE - 5!

e foG O7H(E - )7 [Rﬁl(s) +(1 - R)Ez(S)]dBH(S)

(\Z/?Zz) fo D' Q,(€ - S)[Rfl(s) + (1 - R)fz(s)]ds

_f‘l/?zz) OQ O'Q,(€ - s)[REl(s) +( - R)Ez(s)]dBH(S)

ff O (E -5 [ [ﬁyl(s, &) + (1 = K)y,(s, f)]N(ds, d¢)

_pR(-a)
V(@) (@)

F070,C ) [ [Ryms &)+ (1 - KOs, f)]N(ds df)}ds

V(a) 0

Since S, x, Sqx, and Sy, ; are convex sets, ]f;(s) + (1 — K)f2(s) € S, 5, Rfll(s) + (1 =8R)hy(s) € S,

and 85, (s, &) + (1 = R)3,(s, €) € Sy Thus,
KU, + (1 — SO, € T(x).

Step 2. ¥V x > 0, 3 a positive constant ry = r(«), s.t. T(Q,,) C Q,,
Volume 8, Issue 10, 25288-25310.

AIMS Mathematics



25297

If the opposite is true, then for any r > 0 Ax € Q,, u € L,(J, U) corresponding to X, s.t. T(X) € Q,,

ElIT@)I = sup(IIg - We T(®)} > r

r <EIT@I < 9207 RS (00| + 9B || 2242 [ - s)"_l%u(s)dst

V(o))

+9E

SR [ 11— 5y () B (o)

V(o) '(a)

pR(1-a) fot Ot - s)“‘IT(S)dSW + 9E‘

V(a)I'(a)

R 1D Q, (1 - s)%u(s)ds“z
R [ @1, (1 - is)ds|  +9E |32 Ot(I)‘lQa(t—s)E(s)dBH(s)Hz

2 (0710, ) [, (s, HNs.de)| = T2, L.

+9EHM Lt CI)_I(t— s)a/—l Ly(s’g)]v(ds,dé—‘)‘r + 9E

V(@I (@)

+9E

+9E

By Using Holder’s inequality and assumptions (A1)—(A5), for some f € S, ,, he Sexandy € S; 4,
we have
- 2 —1|? o
I = 9E || 07" RS (()@xo||” < 9NIIF @7 (370’ llxoll

2
R(l-a) (! 53— a—
I = 9E' “o/(a()lr(a)) fo Ot - ) 1%u(s)a’s”
2
Oy(1—a)||@~! 4a-2 - _ {0y -
< 9{ V(J!r(a)'l‘““} TLEINE {Ellxgllz +2HEH [CRIV)IE, ds}

2
_1112 ~x y(1-a)||®~! 2a-1
+ ||| 1l o3 )2E||xo||2+{ ol “} (1) [l ¢

V(o) '(a) 2a—1

2
Oy(l-a)||o~! 1 < o
+{ el ”} 2HE! [H(E = 572 Dg,(s)ds

2 2
al|o! RN §2e-1 2 alld! R B o ~
+{ o] 1} B (xiP) hall o ¢+ 4 PR 2 g2t (€6 — 20g,()ds

1-a)||®! _ o|® o—
+{9‘”(v<afr”(a) ”} INCEDEE 1>cr<s>cw+{€ ”v<a>”"‘} f@- s “c,(s)ds],

_ pRA-a) (" 1 ’ (1l -a) ”(D_l” ’ 2
I3 = 9E'| V@@ J, Q™ (1 - )" T(s)ds|| < 9{ V@ 7o 7 VU Hall o e,
_ pR(1-a) (M _ae-l7 H ’ Op(1 - a) ”(D_l”}2 2H-1 ft _ \2(e-1)
1, =9E HW O (t— )" h(s)dB" (s)|| < 9{ V@) 2HE . (t—s) gr(S)dS,

~ 2
Is = 9B|920 [t - 5! [[5(s, Vs, dg)”

Oy(1-a)||@~! - _ Oy(1-a)||® —
< 9{ -l ”} [t = s 5 [ BIFIP A(de)ds < 9{ -l ”} [t = s (s)ds,
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16 = 9E Vo Jo

aR (Ml s)EBu(s)dsHZ

2
< 9{eza||®-l||s:%} @ g

V(a)k 2a-1)?

=~ - ¢ =~ —11? Ok
{Enx@n2 +2HE [FEIF(9)IlG ds} + || @71 11PIP (63*)2E Ilxol

2 2
Oy(1-a)||@! 201 Oy(1-a)||@~! 1 € B
+{ V(a)rll(a) II} S W(|IxlP) Il o ¢ + {w DHEH1 [4(G - 5)%@Dg,(s)ds

2 2
Pal|lo!||5¢ 201 5 Gal|lo!||3* 3 © -
+{ ] } (Pl ¢+ PR o et (g - 2D, (s)ds

2 2
oy (1-a)| |0~ ¢ Fal|o™||3; C o
Bl - s+ {2 st s

Q%Z t B 2 92 ||(1) 1||c~* 2 2 1 ,
I; =9E V@) Jo O Q0,1 — 5)i(s)ds|| < 9{ V@) } S I‘I’(lell MInllzg ¢
2 t _ 2 ) 1 cw* 2 "
Iy = 9E ok D71 Q,(t — Hh(s)dB(s)|| <9 {ﬁ} 2HEH! f (t—5)* Vg, (s5)ds,
Vi) Jo V(a) 0

Iy =

2 [ 0710, 5) [,5(s. ON(ds. o)
< 9{92Clltlza)”\sl} fo(t §)2@=D sz”y”Z Adé)ds < 9{9 altlza)ﬂél} ﬁ)(t $)2@DC (5)ds.

Combining these estimates, /,—/y yields

r<0+9

2 2
Oy(1-a) @-! §2e-1 2 al|l®! RH 21 2
{ Lol ”} 20_1T(||x||)||n||w+{ IS L P il

) 2
oy(1-a)|[ o] 2H-1 (* 2(a-1) | | 2H-1 (! 2(a-1)
+{W 2HG fo(t - 5) g-(s)ds + Vo 2HC fo(l - ) gr(s)ds
oy(1-a)||0!]| 2a-1) Paf|o”][3} 2(a-1)
+{ ot fo (t— ) C,(s)ds + Vi fo(t s) C,(s)ds
1704 W0-0]|07][Sjsx ’ glo2 | | ypi-a)|jo!]] 262””\1'(” 1) Il
V@@ @a-12 [\~ V@@r@ [ 2a-1 * X)Lyt

2 2
0a||o7!||3; | g2t ) Oy(1-a)||0! 1 (¢ _
+{ ] } ) il ¢+ § L S prent (€6 - spang, syas

2 2
Gel|lo7!||3t 2H-1 € Ha—1 oy(1-a)| |0~ C a1
+{ |L(a)|| 1} 2HE fo (€ — 5)Xe )g,(s)dS+ W fo (€ — 5)2@DC (5)ds
92"”‘[’ ISt 2a-1)
v fo (€ — )@ VC,(s)ds

oo s | oy
0°a||D7|[J]sn a2 Oy(1-a)||@~ §2a-1 2

+72{ V(a)x l } 2a—1)?2 [{ V(e)[(a) } 2a—1 ‘P(HXH )”n”Ll/q L
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2 2
o R 2 Oy(1-a)||@! 4 € _
+{ sl } SR il o+ § Ll o g2t (¥ — 520 Dg (s)ds
ol 57| v RN
O || [|5) 2H-1 (¢ 2(a-1) Op(-a)||@” ¢ 2(a-1)
+{W} 2HE! [(E = 2 Vg ()ds + { i (o (€= 92 VCls)ds

{02(41/(1()&)”3] } fo € - )2(“_1)Cr(s)dS], (3.1

where
(1 — o) |07 Jjsw }2 gla2
V(o) (a)x Qa - 1)?
Fallo™!|Jjsn 2 g
" { V(a)k Qa - 1)2]
—1| o ¢
72[{9¢’(1 ;/Zj)!fa)ﬂdlg% }2 (2;54_ i)z {E||)~CG||2 + DHE2H-1 j(: E||5/(s)||i%9 dS}

LN ‘
E|l% 2+2H@2H-1f15 YOI ds |-
Vi }(za_l)z{ el  El7)lg, ds

Dividing both sides of (3.1) by r and taking the lower limit » — 400, we get

0 = 9o o[ (F*0’E Ixol?

1+8{

2
- -1 a—
I < 9{[9‘”(;@}”(3 ”] [ il The + 2HEHIA + A]

V(a) 2a—1

2
20|01 ||5* "
+[9 [[© ”“1] [ 1l e HL+2H¢2H—1A+A]}

+72

2 2
op(1-o)||o7!||Jjsn [ o2 || owi-a)|[o"|| | | g2e-! 2H-1
V@) (@)« Qa=1y V@l (@) (35— Inllzye TIe + 2HEIA + A]

V(a) 2a—1

2
20|01 |5 "
+[9 Lo ”“1] [ il HL+2H¢2H—1A+A]}

2 2
| TR op(1-a)||@7!]] | | g2e-t 2H-1
+72[ Vion Qo 1? V@ [20_1 |7l Tl + 2HE A+ A]

2
20|01 ||%* .
+[9 Lo ”‘*1] [ il The + 2HE2H- 1A+A]}

V(a)

We can then obtain this by performing some simplifications,

wo- ol goule

V() (@) V(a)

2a—1

1<|A+ Wl e e + 2HE*HTA L9
20 -1

where

_ o1 — ) |07 Jjsu] a2 O |07 Jisu] o2
K= {1 * 8[ V@@ ] Qa—12 " 8[ V) ] Qa - 1)2}’

which is a contradiction to (A6). Thus, for every x > 0, there exists ry, s.t. T maps Q,, into itself.
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Step 3. T(Q,) is equicontinuous. . B
Let0 <t <t <C. Foreach x € Q, thereexistf € S, ,, h € S,y and y € Sy, s.t.

E|[U(52) = W) < 17E |0 R(S ult2) = S (1)) Dxo]

2
+17E || 220 [0 q)_l[(tz =) = (1 - s)”_l]iBu(S)ds
—a) (2 . - 2
HITE |00 [ 071 (1, - )7 Bu(s)ds|
2
+17E X;ffj)lr;g; " q)_l[(tz -5 = (1 - S)a_l]f(S)ds

2
HITE 280 [ 071 (1, — )" f(s)ds|

2
+17E

V(o)I'(e) Jo

pRU-a) [N (D_l[(lz - = - S)Q_I]E(S)dBH(S)

+17E ‘ V@@ Jn

— 2
PR [ @76 = 9 h(s)dBY(s)|

2
+17E

i 0ot - o7 L fande

- 2
HITE |28 [ 0711, — 5! [, 5(s, )N (ds, dé)
2
+17E % j(;tl q)_l[Qa(tz - S) - Q(l(tl - S):|§BI/I(S)dS
2
HITE |2 [ 01 Qu(ts - 5)Bu(s)ds|
2
+7B |55 [ q)_l[Qa(lz — 5) = Qult) - S)]f(s)ds
5 2
HTE |2 [* 071 0,0 - 9)i(s)ds
2
HTE |2 [ 71| 0,12 - 5) - Qults - s)]ms)dBH(s)
—_ 2
+17B (225 [ 0710, - s)h(s)dBH(s)H
2
+17E|[2 [ cD-l[Qa(tz — 8) = Qa(t; — s>] [, 3(s.&)N(ds, dé)

- 2
HTE[ 2 [* 07 0u(ns - 5) [[5(s, N s, d)| -

Applying the Holder inequality and conditions (A0)—(AS), we get

2
Oy (1-a)||[@7 s _ a—
E () - WP < 17 %] X [(tz—S)al—(l‘l—S) l]x

=97 = - s)“-l]E lu()IP ds + 176 |&! | IDIP B NI(S u(t2) = S a(t) ol
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+17

2
w-a)l|ojes | | - | (o ol 5
V@)l(@) a fn (1, — )" Ellu(s)ll"ds
x|«

2
Oy(1-a)||@~! —)2 1 a—
“7[ e ”] {(’2 - }f,f(rz — BRI ds

2 2
Oy(1-a)||@! . o o
+17[ lpv(a)r”(a) ”] 2HE! fotl [(fz - = (t —s) ]] g-(s)ds

2
—o)||o!
+17[91ﬁ(1—)”¢’”] Otl [(t2 _ s)(y—l _ S)a 1

V(ao)I'(a)

=) = (1 - S)"‘I]EIIT(S)II2dS

+17

2
op(-e)||e”']] 2H-1 (2 20-2
V(@(@) 2HC le (ty = 5) g/(s)ds

2
ou(1—-a)||® . o
+17 (pV(a)l“(a) ”] fo [(t 5= (1 — 5) ]] C.(s)ds
Oy(1-a)||D ) _
+17 l//(V(a))FlLy) ”] ft (tr — 8)**2C,(s)ds
+17 _gzanqu;;”%] [ N1Qu(t = 5) = Qulty = S)IPE Nlu(s)I ds

2
Pal|d |3 s —1)® 153 _ 2
+17[ o B] (e} 21, — )" E Ju(s)|F ds

2
+17[9 “v”fi> ”] [ 10u(t2 = ) = Qulty = HIP BRI ds

2
||| e o
+17[ ”V@”"] (Lot} (22, — 5) B ()P ds

¢af |0

2
=G ] 2HEH! fotl 10a(tz — 5) — Qulty — 9|1 g,(s)ds

+17[6 |l ”] 2HEH [ 10,1 - 9 g.(s)ds

¢af |0

2
V@ ] Otl 10a(tz — 5) = Qulty — II* Co(s)ds + 17

|

V() ] ftltz 10.(t> — $)II* C,(5)ds.

+17

The right-hand side of the aforementioned inequality tends to zero as t, — t; due to the strongly
continuous operator Q,(#). As a result, uniform operator topological continuity is required
by (A1). T(Q,) is hence equicontinuous.

Step 4. E(t) = {H(t), Ue 1(5,)} is a relatively compact on X.

The case t = O is trivial. Consider0 <t < €, x € a Then, for all & € (0, r), define an operator

V(o)I'(a)

Ug (1) = D' RS ()Dxp + 2L (17 @yl (7 — s)“‘l{%u(s) + f(s)}ds
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’ — -8 a-17. —a -] . a— — ~
+ORCD R0t — 5) h(s)dB(5) + S [ 7 (e - 5)7! [ 3(5.£)N(ds, dE)

ozl (o (D‘lQa(t—s){%u(s)+f(S)}dS+ 2R 00, (1 — $)h(s)dBY(s)

+& (N0 (1 5) [ (s, N (ds, dg),

where f € S, ,, he Sexandy € Sy . From (A1), therefore, Eq(f) = {Hg(t), Uq € Ta(x), x € @} 18

relatively compact in X for all & € (0, 7). In addition, for every x € Q, by using Holder inequality,
we have
2

E [|1(7) — Ug(D)]I* < 8E O (¢ — )" ' Bu(s)ds

‘gm(l—a) d

Vol'(a) Ji-s
2

PRUA-a) (M o e ? pRU-a) (" 1 o7 .
+8E V@@ ;-R(D (t— )" f(s)ds +8EH—V(a)F(a) t_RcD (t — ) 'h(s)dB(s)
pRU-a) M a—1f— < ’ a'R? ft -1 _
+8E V@@ I_RCD (t—s) Zy(s,f)N(ds,df) +8E”V(a) I_R(D 0.t — )Bu(s)ds
aR? ! » 2 aR2 [ | _ ; )
V@) J & Qe s +8EHV(Q) f 70,1~ DB (s)
aR? (M, ~ 3 2
+8E O™ Q1= 9) f y(s,E)N(ds, d€)|| .
V(@) Ji-s z
Hence,
] S R L R L
2 a-1 2
2@ = el 58[{ V(a)() } +{ V(a) }]; v[_ﬁ(t—s) E llu(s)|I* ds
) L I i sl B R D
+8,{ V(o) (a) } +{Ta)}‘; t_ﬁ(f = )" E[f(9I" ds
[ (OU(]1 — d-! 2 02a llo—| 2 ; B
+8{ w(V(a;}(|c|x) ”} +{ a|\|/(a)”\§]} 2H(SZH_If‘k(t—S)Z(’_Z]EHh(s)szs
N L ol B N O T
+8{ V() (a) } +{ V(@) } o )Y E‘ j; ¥(s, ON(ds, )| -

The above inequality gives us,

E () — Ua(D)|* = 0, whenf — 0.

Hence, there are relatively compact sets arbitrarily close to the set E(¢) = {H(Z), U e 1(5,)}

which implies E(¢) is also relatively compact in X.

Step 5. T(x) has a closed graph.
Let X" — x*(m — o0), U" — W' (m — o0o0). We will prove that U* € T(x*). Since U" € T(x™),
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there exist " € S, o, n e Sem and y" € Sy, s.t. for each ¢ € (0, €),

W'(1) = O'RS L (NDxp + T2 [ gl s)“‘l{%u(s) + f’"(s)}ds

V(a)I'(a)

oR(1-a R o a-17" - R a— —m v
+2RA0) (TR l(r - )07 R (5)dB(s) + i) fof Ot — )" [ (5, &)N(ds, dé)

V(a)I'(a)
aR? m aR? - 7"
+W [, O Qa( - s){%u(s) + (s)}ds + Tt b Y 010,(t - )" (s)dB (s)

+25 (1,1 - 5) [ 5" (5. £)N(ds, d).

Finally, we will prove the existence of {* € S, ,-, n e Sex and y* € S; - s.t. for each t € (0, €]

(1) = ORS (Nxo + Sm4=) [ 17— s)“‘l{%u(s) + f*(s)}ds

1—R

— -] _ a— —* —a — a— —k A7
e b 7= 9 R ()dB () + s [T 07 = 9! [ (5. HN(ds, dE)

+2R (1 g Qa(z—s){%u(s)ﬁ(s)}dm% (7 710yt - 9B ()dB(5)

+25 (1,1 - ) [ 7 (5. ON(ds, dé).

Now,
2
E H{u’"(r) - c1>-19%50(t)q>x0} - {u*(t) - (D_l‘RS(,(l‘)CDxO} -0 as m— oo.
Consider
T L2(J,%) - CJ, X),
where

(.1 3) = (5, 7, 7)) = S [ @7 (¢ - s)“‘lf(s)ds + 2 [ @71 Qu(t - $)i(s)ds

i o @7 =9 h()dB" () + 475 [y 0 O~ Q,(t — $)h(s)dB" (s)

+ 2200 Ml — 5! [ (5. ON(ds,dE) + 22 [T 07104t — 5) [, 3(s.)N(ds, dE)

V(a)F(a)
— RO 0711 — 5)" BB Q5(C - (K, AY) X

Ve fog Q€ - 5)"Mf(s)ds + § V( v) o D710.(C~ S)T(S)ds ds

V(@I (@)

—2® ol (1 — $)BBQLE — HN(k, AS) X

Vi Jo

pRU1-0) fo D(E - 5)* 1(s)ds + 2 [T DT Q,(C - s)f(s)ds ds

V(o)I'(a)

—oR0w Mol - s)“‘l%%*Qa((i — HN(K, A) x

V(o)I'(@)

V()O

ORU_) (€ o1 — 5)e1i()dB(s) + 2 [ D10, (C — $)R(s)dB(5)|ds

V(@) (@)

V((l) 0
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0%2 ! -1 * Y ©
Vi Jo P Qalt = )BBOL(C — SN(k, Ay) X

PRI (21 (€ — ) h(s)dB (5) + 2 [ 07 0, (€ ~ s)ﬁ(s)dBH(s)]ds

V(a)I'(@) V(o) Jo

~IRUZD) (i — 5)* BB QL€ — 5Nk, AS) X

V(a)I(a)

Ry 07N E = 9 [ (s, N (s, dE) + 85 [F 07 Qu(E — 5) [[F(s, N (s, df)]

?7?22) 0 o Qa(t— S)%% Q (({, — S)K(K A(‘Z) %

RO [P — )™ [ (s, ON(ds, dé) + 22 [ D710, (C — 5) [ (s, EN(ds, df)]ds

It is evident from Lemma 2.2 that X o S, .5 is a closed graph operator, where S,.,; = {f €

o(t, x(t))} X {E € o(t, x(t))} X {5 € h(t, x(t))}. From the definition of X, we get

{um(r) - ¢! ‘RS(,(t)CDxO} € z(sﬁ,@h,xm).
Since, x™ tends to x*, as a result of Lemma 2.2,

{u*(r) - @19%50(0@%} € z(sg,mh,ﬁ).

It is clear from this that 21" € T(x*). Hence, T has a closed graph.

Since T is a completely continuous multi-valued map with a compact value, we can infer that T is
u.s.c. from Proposition 2.1. According to Lemma 2.3, operator T has a fixed point on Q,, which
is a mild solution of (1.1).

Theorem 3.2. If (A0)—(A7) are satisfied, then (1.1) is approximately controllable on J.

Proof. We can quickly demonstrate that the operator T has a fixed point in Q,, where r = r(x), for
every 0 < « < 1 by using the method described in Theorem 3.1. A fixed point of T in Q, is defined
as x“(-). Any fixed point of the operator T is a mild solution of (1.1). This indicates that for each
t € (0, €], by stochastic Fubini theorem, there exists {* € S, ,«, Hes o and Y € Sj i,

X(€) = F¢ — k(KT = A)”! {Efc@ + [ ¥(s)dB(s) — ! %Sa(@)qaxo}

o) [ - - a—15x
+%(>lr(a3 fo O~ 'k(kl — A HE — 5)* 1§ (s)ds

+ R0 € ol — AS) (S — 5B (s)dBH(s)

4 oRU- ")j(‘) O~ 'k(kI — A7) '(C - S)‘l ', 5. ©)N(ds, dE)

V(a)l"(a)
(I) Yk(kI — AG) 0.(C — 9 (s)ds + L& q) "k(kl — A(‘:) Qa((i—s)h (s)dBH(s)

V(a) 0 V() 0
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G — -
+2B Lkl — A Qo€ ~ 5) [ 7(5, EN(ds, dE).
In addition, the Dunford-Pettis theorem and conditions on T,E and y, we have Ehat fK,EK and y"
are weakly compact in L%(J,X). Thus, there are subsequences determined by f“,hK and y* weakly
converging to say f, 4 and y. Now, we have

2

¢
E|IX(€) — %l < 14E||k(xI — Ag)-l[Ex¢ — OIRS L(©)Dxo ||| +28HE ! f E|7(s)I2, ds
0 ~e

80%(1 —Cl) ’ ¢ -1 C\-1 a—1) s« ’
|y B[ ot - a6 - {1 f s}

oRU-a) [ (1. 61 a-1 :
ey | B, ot - 3@ ot

2
ds}

+28H¢2H-1[—Km(1 - “)}E{ f ’
V(o)I'() 0

L[9R( - @) I - it ’
+28HEM I[W]E{ fo o kit - A€ - 5) lh(s)Hds}

+147—"O%(1_0‘)]E{fL
| V(o)I'(a@) 0
+14 M]E{ fG
| V(oI'(a@) 0
r 272 €
+14) 22 ]E{ f
| V() 0

[aR2] ¢ N
»V(a/)] E{L ”(D "kl = Ag) ™' Qu(€ - S)f(s)”ds}

+28H¢2H‘1[Q—W]E{ f )
V(a) 0

%]E{ fo ) [0 kit = A 0u(€ = 95| ds}2

aR? ¢ 1 6\—1 —« - o
E O™ k(kl = Ag) Qo€ =) | 1V (5,8) —¥(s,8) ¢ N(ds, d&)
V(a) 0 z
2 ¢ 2
oL, f
V(a) 0
According to the assumption (A0), the operator k(xI — Ay)™' — 0 strongly as x — 0" and also k(xI —

Ag)~' < 1. Thus, by the Lebesgue dominated convergence theorem and the compactness of Q,(?), it is
implied that

O 'k(kl — A N(E - s)f’-l{ﬁ“(s) = E(s)}

}2
O~ (kI — Ag)TH(E = ) fz {ik(s, &) = (s, f)}N(ds, df)‘

2
ds}

O k(kl — AG) (€ - 5)*7! f y(s,&)N(ds, dg)‘
VA

}2

O k(kI — AG) ' Qa(C — S){TK(S) - T(S)}‘

2

+14

2 2
ds}

O k(KT — AG) ™ Qo€ — s>{ﬁ“(s) - E<s>}

+28H¢2H‘1[

+14

}2

+14

O k(kl = Ag) ™' Qu(€ — 5) j;?(s, HN(ds, df)‘

E|IxXC) - %> =0 as «— 0.

Hence, we deduce the approximate controllability of the system (1.1). O
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4. Application

We consider the stochastic partial differential inclusion with the AB fractional derivative:

ABCDS/:‘HI - @}xa o] L. + §1.) + 15 sin(x(1,0)) + o (8, x(1, ) 22
+ [t x(1.0), ON(dt, dé), 1€ ]:=(0,1], {€[0,x],
x(t,0) = x(t,7) =0, te€(0,1]. 4.1)
To write the above system (4.1) into the abstract system (1.1), we choose the space X = Y = U =
L2([0,7],R) and define the operators A : DA) C X - Xand ®: DA) Cc X — X, 1> 0by A= 2 " and
O = 1-A with DAA) = D(D) = {x € X;x, ag be absolutely continuous, agZ € X, x(0)= x(m) = }
Then, A and ® can be written as

x = Zkz(x,xk)xk, x € D(N),
k=1

2(1 + IO, x )%, x € D(D).

k=1

Ox

Furthermore, for x € X we get

-1 _
AP 'x = kzz;l+k2<x’xk>xk’
O 'x = i ! (x, X)X
L+ k2

>~
Il

1

AD! is self-adjoint and x; = \/gsin(kx),k = 1,2,--- be the orthonormal basis of X. However,

AD~! forms a uniformly strongly continuous semigroup of bounded linear operators S(z),z > 0, on a
separable Hilbert space X which is in the form

(o)

S(Hx = Z el x)x, xe D).

k=1

Assume that @w(¢)({) = x(¢,{),t € J, { € [0, ]. Now, construct the bounded linear operator B : U —
X and the function o : J X X — X, respectively, for any @w(¢) € X.

-t

o(t, w(0))({) (o oo Sin(x(t. ),
Bu(t)({) et,0), 0<i<m,

where ¢ : J X [0, 7] — [0, 7] is continuous in # and B = B* = [. Therefore, (4.1) can be reformulated
as the abstract system (1.1). Clearly, all the assumptions of Theorem 3.1 are satisfied, and

G20-1 - ol - ||| [Pa|@!| 3T -
A+ 7o —1 llm|[p17g Tle + 2HE A]{9[ V@@ ] +9[—V(a) ] }7(< 1,
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where

i - {1 +8[9lﬂ(1 —a)||q)—1||3y{%]2 a2 X [QZG,H@—IHSTQB]Z a2 }
V(e)I'(e)x (a — 1) V(a)k Qa - 1)

As aresult, the system (4.1) has a mild solution on J, in addition, it is approximately controllable on J,
according to Theorem 3.2.

5. Conclusions

In this work, a new control model was presented with the Sobolev-type Atangana-Baleanu fractional
stochastic differential inclusions including the fractional Brownian motion and Poisson jumps. We
investigated the approximate controllability for the proposed problem (1.1). Our results were obtained
with the aid of nonsmooth analysis, fractional calculus, stochastic analysis, and fixed-point theorems.
Finally, we provided an example to illustrate the applicability of the results.

For future work, we can present neutral Atangana-Baleanu fractional stochastic differential
inclusions with Clarke subdifferential.
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