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1. Introduction

Presently, the differential systems of non-integer orders have gained wide prominence due to their
great relevance in describing several real-world problems in physics, mechanics and engineering. For
instance, we refer the reader to the monographs of Baleanu et al. [12], Hilfer [28], Kilbas et al. [31],
Mainardi [33], Miller and Ross [34], Podlubny [37], Samko et al. [39] and the papers [22, 40].

During the study of some phenomena, a number of researchers realized the importance of fractional
operators with non-singular kernels which can model practical physical phenomena well like the heat
transfer model, the diffusion equation, electromagnetic waves in dielectric media, and circuit model
(see [7, 9, 23, 24] and the references existing therein).

Caputo and Fabrizio in [11] studied a new kind of fractional derivative with an exponential
kernel. Atangana and Baleanu [10] introduced a new operator with fractional order based upon the
generalized Mittag-Leffler function. Their newly fractional operator involves kernel being nonlocal
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and nonsingular. The nonlocality of the kernel gives better description of the memory within the
structure with different scale. Abdeljawad [4] extended this fractional derivative from order between
zero and one to higher arbitrary order and formulated their associated integral operators.

On the other hand, the theory of measure of non-compactness is an essential tool in investigating
the existence of solutions to nonlinear integral and differential equations, see, for example, the recent
papers [6, 14, 20, 26, 38] and the references existing therein.

In [19], Benchohra et al. studied the existence of solutions for the fractional differential inclusions
with boundary conditionsCDry(t) ∈ G (t, y(t)) , a.e. on [0, T ], 1 < r < 2,

y(0) = y0, y(T ) = yT ,
(1.1)

where CDr is the Caputo fractional derivative, G : [0, T ] × E → P(E) is a multi-valued map,
y0, yT ∈ E and (E, | · |) is a Banach space and P(E) = {Z ∈ P(E) : Z , ∅}.

In the present work, we are interested in studying the existence of solutions for the following
nonlinear fractional differential inclusions withABC fractional derivatives

 ABC
aD

αx(t) ∈ F (t, x(t)) , a.e. on J := [a, b],
x(a) = x′(a) = 0,

(1.2)

where ABC
aD

α denotes the ABC fractional derivative of order α ∈ (1, 2], (E, | · |) is a Banach space,
P(E) is the family of all nonempty subsets of E, and F : J ×E → P(E) is a given multi-valued map.
We study theABC fractional inclusion (1.2) in the case where the right hand side is convex-valued by
means of the set-valued issue of Mönch fixed point theorem incorporated with the Kuratowski measure
of non-compactness.

Differential inclusions play an important role as a tool in the study of various dynamical processes
described by equations with a discontinuous or multivalued right-hand side, occurring, in particular, in
the study of dynamics of economical, social, and biological macrosystems. They also are very useful
in proving existence theorems in control theory.

Due to the importance of fractional differential inclusions in mathematical modeling of problems
in game theory, stability, optimal control, and so on. For this reason, many contributions have been
investigated by some researchers [1–3, 5, 8, 16–18, 25, 30, 35].

It is worth noting that the results included with the fractional differential inclusions with the ABC
fractional derivatives in Banach spaces are rather few, so the outputs of this paper are a new addition
for the development of this topic.

2. Preliminaries

First at all, we recall the following definition of Riemann-Liouville fractional integral.

Definition 2.1. [31] Take α > 0, a ∈ R, and v a real-valued function defined on [a,∞). The Riemann-
Liouville fractional integral is defined by

aIαv(t) =
1

Γ(α)

∫ t

a
(t − s)α−1v(s) ds.
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Next, we present the basic definitions of the new fractional operator due to Atangana and
Baleanu [10] and the extended ones due to Abdeljawad [4].

Definition 2.2. [10] Take α ∈ [0, 1] and v ∈ H1(a, b), a < b, then the ABC fractional derivative is
given by

ABC
a Dαv(t) =

B(α)
1 − α

∫ t

a
Eα

[
−α

(t − s)α

1 − α

]
v′(s) ds, (2.1)

where B(α) = α
2−α > 0 denotes the normalization function such that B(0) = B(1) = 1 and Eα

denotes the Mittag-Leffler function defined by

Eα(t) =
∞∑

k=0

tk

Γ(αk + 1)
.

The associated Atangana-Baleanu (AB) fractional integral by

AB
a Iαv(t) =

1 − α
B(α)

v(t) +
α

B(α)Γ(α)

∫ t

a
(t − s)α−1v(s)ds. (2.2)

The following definitions concern with the higher order case.

Definition 2.3. [4] Take α ∈ (m, m + 1], for some m ∈ N0, and v be such that v(n) ∈ H1(a, b). Set
β = α −m. Then β ∈ (0, 1] and we define theABC fractional derivative by

ABC
aD

αv(t) = ABC
a Dβv(m)(t). (2.3)

In the light of the convention v(0)(t) = v(t), one has ABC
aD

αv(t) = ABC
a Dαv(t) for α ∈ (0, 1].

The correspondent fractional integral is given by

ABC
aI

αv(t) = aIm ABC
a Iαv(t). (2.4)

Lemma 2.4. [4] For u(t) defined on [a, b] and α ∈ (m, m + 1], for some m ∈N0, we obtain that

ABC
aI

α ABC
aD

αu(t) = u(t) −
m∑

k=0

u(k)

k!
(t − a)k.

Denote by C(J, E) the Banach space of all continuous functions from J to E with the norm ‖x‖ =
supt∈J |x(t)|. By L1(J, E), we indicate the space of Bochner integrable functions from J to E with the

norm ‖x‖1 =
∫ b

0 |x(t)| dt.

2.1. Multi-valued maps analysis

Let the Banach space be (E, | · |). The expressions we have used are P(E) = {Z ∈ P(E) : Z , ∅},
Pcl(E) = {Z ∈ P(E) : Z is closed}, Pbd(E) = {Z ∈ P(E) : Z is bounded}, Pcp(E) = {Z ∈ P(E) :
Z is compact}, Pcvx(E) = {Z ∈ P(E) : Z is convex}.

• A multi-valued map U : E → P(E) is convex (closed) valued, if U(x) is convex (closed) for all
x ∈ E.
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• U is bounded on bounded sets if U(B) = ∪x∈BU(x) is bounded in E for any B ∈ Pbd(E), i.e.
supx∈B{sup{‖y‖ : y ∈ U(x)}} < ∞.

• U is called upper semi-continuous on E if for each x∗ ∈ E, the set U(x∗) is nonempty, closed subset
of E, and if for each open set N of E containing U(x∗), there exists an open neighborhood N∗ of
x∗ such that U(N∗) ⊂ N.

• U is completely continuous if U(B) is relatively compact for each B ∈ Pbd(E).

• If U is a multi-valued map that is completely continuous with nonempty compact values, then U is
u.s.c. if and only if U has a closed graph (that is, if xn → x0, yn → y0, and yn ∈ U(xn), then
y0 ∈ U(x0).

For more details about multi-valued maps, we refer to the books of Deimling [21] and Hu and
Papageorgiou [29].

Definition 2.5. A multi-valued map F : J ×E→ P(E) is said to be Carathéodory if

(i) t 7→ F(t, x) is measurable for each u ∈ E;

(ii) x 7→ F(t, x) is upper semi-continuous for almost all t ∈ J.

We define the set of the selections of a multi-valued map F by

SF,x := { f ∈ L1(J, E) : f (t) ∈ F(t, x(t)) for a.e. t ∈ J}.

Lemma 2.6. [32] Let J be a compact real interval and E be a Banach space. Let F be a multi-
valued map satisfying the Carathèodory conditions with the set of L1-selections SF,u nonempty, and
let Θ : L1(J, E)→ C(J, E) be a linear continuous mapping. Then the operator

Θ ◦ SF,x : C(J, E)→ Pbd,cl,cvx(C(J, E)), x 7→ (Θ ◦ SF,x)(x) := Θ(SF,x)

is a closed graph operator in C(J, E) ×C(J, E).

2.2. Measure of non-compactness

We specify this part of the paper to explore some important details of the Kuratowski measure of
non-compactness.

Definition 2.7. [15] Let ΛE be the family of bounded subsets of a Banach space E. We define the
Kuratowski measure of non-compactness κ : ΛE → [0,∞] of B ∈ ΛE as

κ(B) = inf{ε > 0 : B ⊂
m⋃

j=1

B j and diam(B j) ≤ ε},

for some m ∈N and B j ∈ E.

Lemma 2.8. [15] Let C, D ⊂ E be bounded, the Kuratowski measure of non-compactness possesses
the next characteristics:

i. κ(C) = 0⇔ C is relatively compact;
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ii. C ⊂ D⇒ κ(C) ≤ κ(D);

iii. κ(C) = κ(C), where C is the closure of C;

iv. κ(C) = κ(conv(C)), where conv(C) is the convex hull of C;

v. κ(C + D) ≤ κ(C) + κ(D), where C + D = {u + v : u ∈ C, v ∈ D};

vi. κ(νC) = |ν|κ(C), for any ν ∈ R.

Theorem 2.9. (Mönch’s fixed point theorem) [36] Let Ω be a closed and convex subset of a Banach
space E; U a relatively open subset of Ω, and N : U → P(Ω). Assume that graph N is closed, N
maps compact sets into relatively compact sets and for some x0 ∈ U, the following two conditions are
satisfied:

(i) G ⊂ U, G ⊂ conv(x0 ∪N(G)), G = C implies G is compact, where C is a countable subset of G;

(ii) x < (1 − µ)x0 + µN(x) ∀u ∈ U\U, µ ∈ (0, 1).

Then there exists x ∈ U with x ∈ N(x).

Theorem 2.10. [27] Let E be a Banach space and C ⊂ L1(J, E) countable with |u(t)| ≤ h(t) for a.e.
t ∈ J , and every u ∈ C; where h ∈ L1(J, R+). Then the function z(t) = κ(C(t)) belongs to L1(J, R+)
and satisfies

κ
({ ∫ b

0
u(τ) dτ : u ∈ C

})
≤ 2

∫ b

0
κ(C(τ)) dτ.

3. Main results

We start this section with the definition of a solution of theABC fractional inclusion (1.2).

Definition 3.1. A function x ∈ C(J, E) is said to be a solution of theABC fractional inclusion (1.2) if
there exist a function f ∈ L1(J, E) with f (t) ∈ F(t, x(t)) for a.e. t ∈ J, such that ABC

a Dα
t x(t) = f (t)

on J, and the conditions x(a) = x′(a) = 0 are satisfied.

Lemma 3.2. [4] For any h ∈ C(J, R), the solution x of the linearABC fractional differential equation ABC
a Dαx(t) = h(t), t ∈ J,

x(a) = x′(a) = 0,
(3.1)

is given by the following integral equation

x(t) =
2 − α

B(α − 1)

∫ t

a
h(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1h(s) ds, t ∈ J. (3.2)

Remark 3.3. The result of Lemma 3.2 is true not only for real valued functions x ∈ C(J, R) but also
for a Banach space functions x ∈ C(J, E).
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Lemma 3.4. Assume that F : J × E → P(E) satisfies Carathèodory conditions, i.e., t 7→ F(t, x) is
measurable for every x ∈ E and x 7→ F(t, x) is continuous for every t ∈ J. A function x ∈ C(J, E) is a
solution of theABC fractional inclusion (1.2) if and only if it satisfies the integral equation

x(t) =
2 − α

B(α − 1)

∫ t

a
f (s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1 f (s) ds, (3.3)

where f ∈ L1(J, E) with f (t) ∈ F(t, x(t)) for a.e. t ∈ J.

Now, we are ready to present the main result of the current paper.

Theorem 3.5. Let % > 0, K = {x ∈ E : ‖x‖ ≤ %}, U = {x ∈ C(J, E) : ‖x‖ < %}, and suppose that:

(H1) The multi-valued map F : J ×E→ Pcp,cvx(E) is Carathèodory.

(H2) For each % > 0, there exists a function ϕ ∈ L1(J, R+) such that

‖F(t, x)‖P = {| f | : f (t) ∈ F(t, x)} ≤ ϕ(t),

for a.e. t ∈ J and x ∈ E with |x| ≤ %, and

lim
%→∞

inf

∫ b
a ϕ(t)dt

%
= ` < ∞.

(H3) There is a Carathèodory function ϑ : J × [0, 2%] → R+ such that

κ (F(t, G)) ≤ ϑ(t, κ(G)),

a.e. t ∈ J and each G ⊂ K , and the unique solution θ ∈ C(J, [a, 2%]) of the inequality

θ(t) ≤ 2

 2 − α
B(α − 1)

∫ t

a
ϑ (s, κ (G(s))) ds+

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t− s)α−1ϑ (s, κ (G(s))) ds

, t ∈ J,

is θ ≡ 0.

Then theABC fractional inclusion (1.2) possesses at least one solution, provided that

` <

[
(2 − α)(b − a)

B(α − 1)
+

α − 1
B(α − 1)

(b − a)α

Γ(α+ 1)

]−1

. (3.4)

Proof. Define the multi-valued map N : C(J, E)→ P(C(J, E)) by

(N x)(t) =

 f ∈ C(J, E) : f (t) = 2−α
B(α−1)

∫ t
a w(s) ds

+ α−1
B(α−1)

1
Γ(α)

∫ t
a (t − s)α−1w(s) ds, w ∈ SF,x.

(3.5)

In accordance with Lemma 3.4, the fixed points of N are solutions to the ABC fractional
inclusion (1.2). We shall show in five steps that the multi-valued operator N satisfies all assumptions
of Mönch’s fixed point theorem (Theorem 2.9) withU = C(J,K).
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Step 1. N(x) is convex, for any x ∈ C(J,K).
For f1, f2 ∈ N(x), there exist w1, w2 ∈ SF,x such that for each t ∈ J, we have

fi(t) =
2 − α

B(α − 1)

∫ t

a
wi(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1wi(s) ds, i = 1, 2.

Let 0 ≤ µ ≤ 1. Then for each t ∈ J, one has

(µ f1 + (1 − µ) f2)(t) =
2 − α

B(α − 1)

∫ t

a
(µw1(s) + (1 − µ)w2(s)) ds

+
α − 1

B(α − 1)
1

Γ(α)

∫ t

a
(t − s)α−1(µw1(s) + (1 − µ)w2(s)) ds.

Since SF,x is convex (forasmuch F has convex values), then µ f1 + (1 − µ) f2 ∈ N(x).
Step 2. N(G) is relatively compact for each compact G ∈ U.

Let G ∈ U be a compact set and let { fn} be any sequence of elements of N(G). We show that { fn}
has a convergent subsequence by using the Arzelà-Ascoli criterion of non-compactness in C(J,K).
Since fn ∈ N(G), there exist xn ∈ G and wn ∈ SF,xn , such that

fn(t) =
2 − α

B(α − 1)

∫ t

a
wn(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1wn(s) ds,

for n ≥ 1. In view of Theorem 2.10 and the properties of the Kuratowski measure of non-compactness,
we have

κ ({ fn(t)}) ≤ 2

 2 − α
B(α − 1)

∫ t

a
κ (

{
wn(s) : n ≥ 1

}
) ds

+
α − 1

B(α − 1)
1

Γ(α)

∫ t

a
κ
({
(t − s)α−1wn(s) : n ≥ 1

})
ds

. (3.6)

On the other hand, since G is compact, the set {wn(τ) : n ≥ 1} is compact. Consequently,
κ ({wn(s) : n ≥ 1}) = 0 for a.e. s ∈ J. Likewise,

κ
({
(t − s)α−1wn(s) : n ≥ 1

})
= (t − s)α−1κ (

{
wn(s) : n ≥ 1

}
) = 0,

for a.e. t, s ∈ J. Therefore, (3.6) implies that { fn(t) : n ≥ 1} is relatively compact in K for each t ∈ J.
Furthermore, For each t1, t2 ∈ J, t1 < t2, one obtain that:

| fn(t2) − fn(t1)| =

∣∣∣∣∣∣∣ 2 − α
B(α − 1)

∫ t2

t1
wn(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t1

a

[
(t2 − s)α−1 − (t1 − s)α−1

]
wn(s) ds

+
α − 1

B(α − 1)
1

Γ(α)

∫ t2

t1
(t2 − s)α−1wn(s) ds

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ 2 − α
B(α − 1)

∫ t2

t1
wn(s) ds

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣ α − 1
B(α − 1)

1
Γ(α)

∫ t1

a

[
(t2 − s)α−1 − (t1 − s)α−1

]
wn(s) ds

∣∣∣∣∣∣∣
AIMS Mathematics Volume 7, Issue 11, 20328–20340.
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+

∣∣∣∣∣∣∣ α − 1
B(α − 1)

1
Γ(α)

∫ t2

t1
(t2 − s)α−1wn(s) ds

∣∣∣∣∣∣∣
≤

2 − α
B(α − 1)

∫ t2

t1
ϕ(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t1

a

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣ϕ(s) ds

+
α − 1

B(α − 1)
1

Γ(α)

∫ t2

t1

∣∣∣(t2 − s)α−1
∣∣∣ϕ(s) ds

As t1 → t2, the right hand side of the above inequality tends to zero. Thus, {wn(τ) : n ≥ 1} is
equicontinuous. Hence, {wn(τ) : n ≥ 1} is relatively compact in C(J,K).
Step 3. The graph of N is closed.

Let xn → x∗, fn ∈ N(xn), and fn → f∗. It must be to show that f∗ ∈ N(x∗). Now, fn ∈ N(xn)
means that there exists wn ∈ SF,xn such that, for each t ∈ J,

fn(t) =
2 − α

B(α − 1)

∫ t

a
wn(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1wn(s) ds.

Consider the continuous linear operator Θ : L1(J, E)→ C(J, E),

Θ(w)(t) 7→ fn(t) =
2 − α

B(α − 1)

∫ t

a
wn(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1wn(s) ds.

It is obvious that ‖ fn − f∗‖ → 0 as n→ ∞. Therefore, in the light of Lemma 2.6, we infer that Θ ◦ SF
is a closed graph operator. Additionally, fn(t) ∈ Θ(SF,xn). Since, xn → x∗, Lemma 2.6 gives

f∗(t) =
2 − α

B(α − 1)

∫ t

a
w(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1w(s) ds,

for some w ∈ SF,x.
Step 4. G is relatively compact in C(J,K).

Assume that G ⊂ U, G ⊂ conv ({0} ∪N(G)), and G = C for some countable set C ⊂ G. Using
a similar approach as in Step 2, one can obtain that N(G) is equicontinuous. In accordance to G ⊂
conv ({0} ∪N(G)), it follows that G is equicontinuous. In addition, since C ⊂ G ⊂ conv ({0} ∪N(G))
and C is countable, then we can find a countable set P = { fn : n ≥ 1} ⊂ N(G) with C ⊂ conv ({0} ∪ P).
Thus, there exist xn ∈ G and wn ∈ SF,xn such that

fn(t) =
2 − α

B(α − 1)

∫ t

a
wn(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1wn(s) ds.

In the light of Theorem 2.10 and the fact that G ⊂ C ⊂ conv ({0} ∪ P), we get

κ (G(t)) ≤ κ
(
C(t)

)
≤ κ (P(t)) = κ ({ fn(t) : n ≥ 1}) .

By virtue of (3.6) and the fact that wn(τ) ∈ G(τ), we get

κ (G(t)) ≤ 2

 2 − α
B(α − 1)

∫ t

a
κ (

{
wn(s) : n ≥ 1

}
) ds

AIMS Mathematics Volume 7, Issue 11, 20328–20340.
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+
α − 1

B(α − 1)
1

Γ(α)

∫ t

a
κ
({
(t − s)α−1wn(s) : n ≥ 1

})
ds


≤ 2

 2 − α
B(α − 1)

∫ t

a
κ (G(s)) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1κ (G(s)) ds


≤ 2

 2 − α
B(α − 1)

∫ t

a
ϑ (s, κ (G(s))) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1ϑ (s, κ (G(s))) ds

.

Also, the function θ given by θ(t) = κ (G(t)) belongs to C(J, [a, 2%]). Consequently by (H3),
θ ≡ 0, that is κ (G(t)) = 0 for all t ∈ J.

Now, by the Arzelà-Ascoli theorem, G is relatively compact in C(J,K).
Step 5. Let f ∈ N(x) with x ∈ U. Since x(τ) ≤ % and (H2), we have N(U) ⊂ U, because if it is not
true, there exists a function x ∈ U but ‖N(x)‖ > % and

f (t) =
2 − α

B(α − 1)

∫ t

a
w(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1w(s) ds,

for some w ∈ SF,x. On the other hand, we have

% < ‖N(x)‖ ≤
2 − α

B(α − 1)

∫ t

a
|w(s)| ds +

α − 1
B(α − 1)

1
Γ(α)

∫ t

a
(t − s)α−1|w(s)| ds

≤
2 − α

B(α − 1)

∫ b

a
ϕ(s) ds +

α − 1
B(α − 1)

1
Γ(α)

∫ b

a
(b − s)α−1ϕ(s) ds

≤

[
(2 − α)(b − a)

B(α − 1)
+

α − 1
B(α − 1)

(b − a)α

Γ(α+ 1)

] ∫ b

a
ϕ(s) ds.

Dividing both sides by % and taking the lower limit as %→ ∞, we infer that[
(2 − α)(b − a)

B(α − 1)
+

α − 1
B(α − 1)

(b − a)α

Γ(α+ 1)

]
` ≥ 1,

which contradicts (3.4). Hence N(U) ⊂ U.
As a consequence of Steps 1–5 together with Theorem 2.9, we infer that N possesses a fixed point

x ∈ C(J,K) which is a solution of theABC fractional inclusion (1.2). �

4. Example

Consider the fractional differential inclusion ABC
0D

3
2 x(t) ∈ F (t, x(t)) , a.e. on [0, 1],

x(0) = x′(1) = 0,
(4.1)

where α = 3
2 , a = 0, b = 1, and F : [0, 1] ×R→ P(R) is a multi-valued map given by

x 7→ F (t, x) =
(
e−|x| + sin t, 3 +

|x|
1 + x2 + 5t3

)
.
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For f ∈ F, one has

| f | = max
(
e−|x| + sin t, 3 +

|x|
1 + x2 + 5t3

)
≤ 9, x ∈ R.

Thus

‖F(t, x)‖P = {| f | : f ∈ F(t, x)}

= max
(
e−|x| + sin t, 3 +

|x|
1 + x2 + 5t3

)
≤ 9 = ϕ(t),

for t ∈ [0, 1], x ∈ R. Obviously, F is compact and convex valued, and it is upper semi-continuous.
Furthermore, for (t, x) ∈ [0, 1]× ∈ R with |x| ≤ %, one has

lim
%→∞

inf

∫ 1
0 ϕ(t)dt

%
= 0 = `.

Therefore, the condition (3.4) implies that[
(2 − α)(b − a)

B(α − 1)
+

α − 1
B(α − 1)

(b − a)α

Γ(α+ 1)

]−1

≈ 0.77217 > 0.

Finally, we assume that there exists a Carathèodory function ϑ : [0, 1] × [0, 2%] → R+ such that

κ (F(t, G)) ≤ ϑ(t, κ(G)),

a.e. t ∈ [0, 1] and each G ⊂ K = {x ∈ R : |x| ≤ %}, and the unique solution θ ∈ C([0, 1], [0, 2%]) of the
inequality

θ(t) ≤ 2

 1
Γ(α − 1)

∫ t

0

∫ u

0
exp

(
−

∫ t

u

k1(α, s)
k0(α, s)

ds
)
(u − τ)α−2

k0(α, u)
ϑ (τ, κ (G(τ))) dτ du

, t ∈ J,

is θ ≡ 0.
Hence all the assumptions of Theorem 3.5 hold true and we infer that the ABC fractional

inclusion (4.1) possesses at least one solution on [0, 1].

5. Conclusions

In this paper, we extend the investigation of fractional differential inclusions to the case of theABC
fractional derivatives in Banach space. Based on the set-valued version of Mönch fixed point theorem
together with the Kuratowski measure of non-compactness, the existence theorem of the solutions for
the proposed ABC fractional inclusions is founded. An clarified example is suggested to understand
the theoretical finding.
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