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1. Introduction

With the development of human activities, uncertainty and suspicion have become ubiquitous in
real-life issues, ranging from daily life decisions to social affairs, national policies, and other aspects.
To transact with uncertainty, Molodtsov [55] came up with a fresh paradigm named soft sets in
1999. The advantage of this paradigm is that it is free from the inherent restrictions of the foregoing
approaches since it does not require previous procedures such as the use of membership functions in the
theory of fuzzy sets and equivalence relations in the theory of rough sets. Molodtsov [55] succeeded in
presenting some applications of soft sets in numerous disciplines. Then, many authors applied soft sets
to solve the imperfect knowledge, vagueness and inconsistency existing in daily practical problems
in various areas, including information theory [6, 18], economics [19, 45], graph theory [46], medical
science [40, 50] and differential equations [24]. The main principles and concepts of soft set theory
have been detailed and discussed by several researchers [7, 44, 52]. Various authors have proposed
new definitions of some concepts to get rid of the drawbacks of their previous ones that limit their
applications and often contradict their ontology; for more details, see [10, 24].

In 2011, the structure of soft topologies was introduced by Shabir and Naz [60] with the same
postulations of classical topology. They provided the essential ideas of soft topologies, such as soft
operators of interior and closure, soft relative topologies, and soft axioms of separation. Further
investigation into soft separation axioms was conducted by Min [54] who demonstrated that a soft
T3-space is soft T2. Later on, a lot of articles described separation axioms and topological operators
in the environment of soft topologies; recent examples are [1, 3, 4, 21, 38, 43, 48]. The concepts of
soft compact and Lindelöf spaces were defined by Aygünoǧlu and Aygün [37]. Generalizations of
these spaces were discussed by Hida [47] in terms of belonging relations and by other authors who
focused on generalizations of soft-open sets [11, 18, 33, 34]. Also, the notions of soft connectedness,
soft hyperconnectedness, soft extremally disconnectedness, maximal soft connectedness, and other
types were introduced and probed by several topological researchers [36, 58, 62]. The definitions of
basis, functions, Menger spaces, expandable spaces, continuity and homeomorphism were also created
for soft topology by the authors of [2, 5, 27, 28, 49, 51, 59, 64]. The need to produce several forms
of soft topological concepts results in the introduction of many generalizations of soft-open sets by
following similar techniques as those applied in classical topologies. With the introduction of these
types of soft subsets, many of the key characteristics of soft-open subsets have been extended to a
broader family in a soft topological space. In 2013, soft semi-open sets and their characterizations
were studied by Chen [39]. Then, the classes of α-open, somewhere dense, soft parametric somewhat-
open, Q-sets, and minimal sets were implemented in soft settings by the authors of [8,9,12,30]. Some
of these generalizations were applied to handle practical problems as pointed out in [20]. Moreover,
Al-shami, with his coauthors, suggested a new approach to create generalizations of soft-open sets that
are inspired by the classical topologies associated with an original soft topology, namely, weakly soft
β-open [22], weakly soft pre-open [25], weakly soft b-open [26], weakly soft α-open [31], weakly soft
semi-open [32], and weakly soft somewhat open sets [35]. These generalizations make up a weaker
form of their analogous existing counterparts in soft topologies and promote the production of novel
notions for soft topologies with unique properties.

To link classical topologies with soft topologies, it has been proven that the following formula
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generates classical topologies from a soft topology:

τa = {S(a) : (S,℧) ∈ τ}. (1.1)

It is conspicuous that a soft topology is considered to be a classical topology when the parameters
set is a singleton. As expected, some properties and relationships existing in classical topologies
are not valid in the realms of soft topologies; for example,the systematic relation T4 implies T3,
and the compact subsets of Hausdorff space are closed. To shed light on these divergences, the
manuscripts [13, 61] were written. As a matter of fact, these divergences prompt topologists to look at
how topological principles behave between classical and soft topological structures, which provides a
tool to discover the properties of one space by using another well-known one. In this regard, Al-shami
and Kočinac [29] concluded the sufficient terms that guarantee the navigation of most of the topological
properties between two diverse structures (crisp and soft). They first showed the correspondence
between special types of soft topologies, namely extended and enriched soft topologies, and then they
proved that this type of soft topology leads to the equality between soft interior and closure operators
of soft set and their classical counterparts that are computed for each component of this soft set. That
is, if (S,℧) is a soft subset of an extended soft topological space (Z, τ,℧), then (i(S ),℧) = I(S,℧) and
(c(S ),℧) = C(S,℧), where i and c respectively denote the interior and closure operators in classical
topology, and I and C respectively denote the soft interior and closure operators in soft topology.

This article is laid out as follows. The basic concepts that will be prerequisite to understanding
this content are recalled in the next section. In Section 3, we introduce the concept of “finite soft-
open sets” as soft-open sets with the finite region of a soft boundary. Then, in Section 4, we define
the soft f o-interior, f o-closure, f o-boundary, and f o-derived operators. We derive some properties
of these operators and reveal the relationships between them. Section 5 introduces three types of soft
continuity and investigates their transition from a soft topology to crisp topologies that are generated
by using (1.1). To illustrate this matter, we present some counterexamples. Finally, we analyze the
obtained results and propound some directions for future work in Section 6.

2. Fundamentals of soft sets and soft topologies

In this section, we mention some essential concepts and outcomes that will be used in the sequel.

2.1. Soft set theory

Definition 2.1. ( [55]) A pair (S,℧) is stated as a soft set (in short, s-set) over Z , ∅ (known as the
universal set) with ℧ , ∅ (known as a set of parameters) provided that S : ℧ → 2Z is a function,
where 2Z is the power set of Z.

The mathematical representation of an s-set is given by

(S,℧) = {(a,S(a)) : a ∈ ℧ and S(a) ∈ 2Z}.

The components of an s-set (S,℧) are the images of each parameter under a function S.
Through this content, the collection of all s-sets initiated with respect to Z and ℧ is denoted by

Σ(Z,℧).
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Definition 2.2. ( [10]) The complement of (S,℧), indicated by (S,℧)c or (Sc,℧), is given by

Sc(a) = Z − S(a) for each a ∈ ℧.

Definition 2.3. ( [42, 53, 56]) An absolute s-set (S,℧) is defined by S(a) = Z for each a ∈ ℧, whereas
its complement is named a null s-set. They are denoted by Z̃ and Φ, respectively. If (S,℧) is given by
S(a) = z ∈ Z and, for each b ∈ ℧ − {a}, we have S(b) = ∅, then we call (S,℧) a soft point and it
is denoted by za. An s-set (S,℧) is referred to as infinite (resp., uncountable) if S(a) is infinite (resp.,
uncountable) for some a ∈ ℧; otherwise it is called finite (resp., countable). An s-set with the property
S(a) = ∅ or S(a) = Z for each a ∈ ℧ is known as a pseudo-constant s-set. We refer to (S,℧) as a
stable s-set if S(a) = A ⊆ Z for each a ∈ ℧. Note that the absolute and null s-sets are stable and
pseudo-constant s-sets.

Definition 2.4. Let (S,℧) and (K ,℧) be s-sets. Then we write

(i) (S,℧) ⊑ (K ,℧) if, for every a ∈ ℧, we have that S(a) ⊆ K(a) [44].

(ii) (S,℧) ⊔ (K ,℧) = (U,℧) if, for every a ∈ ℧, we have thatU(a) = S(a)
⋃
K(a) [53].

(iii) (S,℧) ⊓ (K ,℧) = (U,℧) if, for every a ∈ ℧, we have thatU(a) = S(a)
⋂
K(a) [10].

(iv) (S,℧)△(K ,℧) = (U,℧) if, for every a ∈ ℧, we have thatU(a) = S(a)\K(a) [10].

(v) (S,℧) × (K ,℧) = (U,℧ ×℧) if, for every (a, b) ∈ ℧ ×℧, we have thatU(a, b) = S(a) × K(b).

Definition 2.5. ( [42, 60, 63]) Let z ∈ Z and (S,℧) be an s-set. Then, we say that

(i) za ∈ (S,℧) whenever z ∈ S(a).

(ii) z ∈ (S,℧) (resp., z ⋐ (S,℧)) if z ∈ S(a) for every (resp., some) a ∈ ℧.

We provide the negation of the above-mentioned relations as follows.

(i) za < (S,℧) whenever z < S(a).

(ii) z < (S,℧) (resp., z > (S,℧)) if z < S(a) for some (resp., every) a ∈ ℧.

Definition 2.6. ( [15]) A soft function Eξ : Σ(Z,℧) → Σ(X,Q), where E : Z → X and ξ : ℧ → Q
are crisp functions, is a relation that associates each za ∈ Σ(Z,℧) with one and only one xq ∈ Σ(X,Q)
such that

Eξ(za) = E(z)ξ(a) for every z ∈ Z and a ∈ ℧.

In addition, E−1
ξ (xq) = ⊔

z∈E−1(x)
a∈ξ−1(q)

za for every x ∈ X and q ∈ Q.
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2.2. Soft topology

Definition 2.7. ( [60]) A subfamily τ of Σ(Z,℧) forms a soft topology over Z with ℧ provided that
the absolute and null s-sets are elements of it, and that it is closed under finite soft intersections and
arbitrary soft unions.

In this case, the triplet (Z, τ,℧) is called a soft topological space (briefly, S T -space). Every element
of τ is called soft-open (in short, s-open) and its complement is called soft-closed (in short, s-closed).

We term an S T -space (Z, τ,℧) soft locally indiscrete if (S,℧) is s-closed whenever it is s-open.

Definition 2.8. ( [60]) For an s-subset (S,℧) of an S T-space (Z, τ,℧), the soft union of all s-open
subsets of (S,℧) is referred to as a soft-interior of (S,℧), and the soft intersection of all s-closed
supersets of (S,℧) is referred to as a soft-closure of (S,℧). These operators are respectively denoted
by I(S,℧) and C(S,℧). The soft boundary of an s-subset (S,℧), denoted by B(S,℧), is given by
B(S,℧) = C(S,℧)∆I(S,℧).

Definition 2.9. ( [36, 58, 62])

(i) If the only soft-clopen subsets of an S T -space (Z, τ,℧) are null and absolute s-sets, then (Z, τ,℧)
is referred to as soft connected.

(ii) If the soft-closure of every s-open subset of an S T -space (Z, τ,℧) is s-open, then (Z, τ,℧) is
referred to as soft extremally disconnected.

(iii) If every s-dense subset of an S T -space (Z, τ,℧) is s-open, then (Z, τ,℧) is referred to as soft
submaximal.

Definition 2.10. ( [8, 12, 39]) An s-subset (S,℧) of (Z, τ,℧) is called soft α-open, soft pre-open, soft
semi-open, soft b-open, soft β-open, or soft somewhere dense subset if the following conditions are
respectively satisfied:

(S,℧) ⊑ I(C(I(S,℧))),

(S,℧) ⊑ I(C(S,℧)),

(S,℧) ⊑ C(I(S,℧)),

(S,℧) ⊑ I(C(S,℧)) ⊔ C(I(S,℧)),

(S,℧) ⊑ C(I(C(S,℧))), and

(S,℧) = Φ or I(C(S,℧)) , Φ.

The complements of the above-mentioned s-subsets are respectively termed soft soft α-closed, soft
pre-closed, soft semi-closed, soft b-closed, soft β-closed, and soft cs-dense sets.

The next formula explains how to inherit crisp topologies from a soft topology.

Proposition 2.11. ( [60]) Let (Z, τ,℧) be an S T-space. Then, for each a ∈ ℧, the class
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τa = {S(a) : (S,℧) ∈ τ}

represents a crisp topology on Z. Since this class is produced for each parameter, we shall name a
parametric topology (in short, p-topology).

Definition 2.12. ( [29]) Let (S,℧) be an s-subset of an S T-space (Z, τ,℧). Then (I(S),℧) and
(C(S),℧) are given by I(S)(a) = I(S(a)) and C(S)(a) = C(S(a)), respectively, where I(S(a)) and
C(S(a)) are the interior and closure operators of S(a) in a p-topological space (Z, τa), respectively.

Proposition 2.13. ( [60]) Let (S,℧) be an s-subset of an S T-space (Z, τ,℧). Then, (C(S),℧) ⊑
(C(S),℧).

Definition 2.14. ( [56, 57]) A soft topology τ is referred to as follows:

(i) an enriched soft topology if every pseudo-constant s-set is a member of τ;

(ii) an extended soft topology if (S,℧) ∈ τ iff S(a) ∈ τa for each a ∈ ℧.

The soft topologies referenced above were explored rigorously by Al-shami and Kočinac [29]. In
the structures produced by these soft topologies, the interchangeable property for the crisp and soft
interior and crisp and soft closure topological operators was proved, which is key in the depiction
of how topological notions behave from the perspective of the spaces of a soft topology and its p-
topologies.

Theorem 2.15. ( [29]) An s-subset of an S T-space (Z, τ,℧) is extended if and only if (I(F),℧) =
I(S,℧) and (C(F),℧) = C(S,℧) for any s-subset (S,℧).

Theorem 2.16. ( [29]) If Eξ : (Z, τ,℧) → (X, θ,℧) is soft-continuous, then E : (Z, τa) → (X, θξ(a)) is
continuous for all a ∈ ℧.

3. Finite s-open sets

This section has been designed to introduce the concept of finite s-open sets as a fresh collection
of s-subsets of an S T -space. In contrast to the celebrated extensions of s-open sets, we find that this
class constitutes an infra soft topology and fails to be a supra soft topology. Also, this class maintains
some topological characteristics that are lost in the structures generated by well-known extensions of
s-open sets, to name a few, the distributive property of the soft union and intersection for soft closure
and interior operators, respectively. The relationships between this class and some of the previous ones
are showed with the aid of some counterexamples.

Definition 3.1. An s-subset (S,℧) of an S T-space (Z, τ,℧) is said to be a finite s-open set provided
that (S,℧) is s-open and C(S,℧) △ (S,℧) is finite. That is, (S,℧) is stated to be a finite s-open set
provided that it is s-open and its soft boundary is a finite s-set. We refer to the complement of a finite
s-open set as a finite s-closed set.

The analogous characteristic of a finite s-closed set is provided in the following proposition.

Proposition 3.2. Let (S,℧) be an s-subset of an S T-space (Z, τ,℧). Then, (S,℧) is finite s-closed if
and only if it is s-closed and (S,℧) △ I(S,℧) is finite.
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Proof. “ ⇒ ”: Assume that (S,℧) is finite s-closed. Directly, we obtain that (S,℧) is s-closed and
C(Sc,℧) △ (Sc,℧) is finite. The next equality relation is obvious:

C(Sc,℧) △ (Sc,℧)

= [I(S,℧)]c ∩ (S,℧)

= (S,℧) △ I(S,℧).

Subsequently, (S,℧) △ I(S,℧) is finite.
“ ⇐ ”: Let the sufficient conditions hold. Then, (Sc,℧) is s-open. By the above equivalence, we get
that C(Sc,℧) △ (Sc,℧) is finite. Thus, (Sc,℧) is finite s-open, which proves the required result.

Before we discover the main properties of these types of s-sets, we shall display the next
proposition, which we need to understand the sequels of this manuscript.

Proposition 3.3. The following properties hold for every s-subset (S,℧) of an S T-space (Z, τ,℧):

(i) B(S,℧) = C(S,℧) ⊓ C(Sc,℧).

(ii) B(S,℧) is s-closed.

(iii) (S,℧) is s-closed (resp., s-open) iff B(S,℧) ⊑ (S,℧) (resp., B(S,℧) ⊑ (Sc,℧)).

(iv) (S,℧) is soft-clopen iff B(S,℧) = Φ.

Proof. It is analogous to the proof given in the classical topology.

Remark 3.4. (i) An s-open set (S,℧) is finite s-open provided that B(S,℧) is finite.

(ii) A finite s-set is finite s-open provided that B(S,℧) ⊑ (Sc,℧).

Proposition 3.5. The inverse image of a finite s-open set is preserved under injective soft continuity.

Proof. Let (S,℧) be a finite s-open subset of (W, θ,℧) and Eξ : (Z, τ,℧) → (W, θ,℧) be a soft
continuous function. We directly obtain that E−1

ξ (S,℧) is an s-open set and

C[E−1
ξ (S,℧)] △ E−1

ξ (S,℧) ⊑

E−1
ξ [C(S,℧)] △ E−1

ξ (S,℧) =

E−1
ξ [C(S,℧) △ (S,℧)].

Since C(S,℧) △ (S,℧) is finite, then, by the injectiveness of Eξ we find that E−1
ξ [C(S,℧) △ (S,℧)] is

finite. Hence, C[E−1
ξ (S,℧)] △ E−1

ξ (S,℧) is finite. This completes the proof.

Corollary 3.6. Finite s-open sets possess the invariant property.

The condition of the injectiveness provided in the aforementioned proposition is dispensable, as the
below example points out.

Example 3.7. Suppose that we have S T-spaces (R, υ,℧) and (Z, τ,℧) such that R is the set of real
numbers, Z = {y, z}, ℧ = {a, b, c}, and the soft topologies υ over R with ℧ and τ over Z with ℧ are
given by
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υ = {R̃, (S,℧) ⊑ R̃ : 1 ∈ (S,℧)} ∪ {Φ}, and

τ = {Φ, Z̃, (U,℧) = {(a, {z}), (b, {z}), (c, {z})}},

where a soft function Eξ : (R, υ,℧)→ (Z, τ,℧) is defined as follows:

ξ is the identity function and

E(1) = z , and for each r , 1, we have that E(r) = y.

It is obvious that Eξ is not injective. Now, (U,℧) is a finite s-open subset of (Z, τ,℧), but
E−1
ξ (U,℧) = {(a, {1}), (b, {1}), (c, {1})} is not finite s-open in (R, υ,℧) in spite of Eξ being soft-

continuous.

Proposition 3.8. The family of finite s-open subsets is closed under a finite Cartesian product.

Proof. Let (S,℧) and (U,℧) be finite s-open sets. As we know, the product of finite numbers of s-
open sets is s-open; also, we know that C[(S,℧) × (U,℧)] = C(S,℧) × C(U,℧). By the hypothesis,
the following is a finite s-set:

[C(S,℧) △ (S,℧)] × [C(U,℧) △ (U,℧)]

= [C(S,℧) × C(U,℧)] △ [(S,℧) × (U,℧)]

= C[(S,℧) × (U,℧)] △ [(S,℧) × (U,℧)],

which ends the proof that (S,℧) × (U,℧) is a finite s-open set.

Proposition 3.9. Let (Z, τ1,℧) and (Z, τ2,℧) be S T-spaces such that τ1 ⊆ τ2. If (S,℧) is a finite
s-open subset of τ1, then it is also a finite s-open subset of τ2.

Proof. Let (S,℧) be a finite s-open subset of (Z, τ1,℧). Since τ1 ⊆ τ2, (S,℧) ∈ τ2 and Cτ2(S,℧) ⊑
Cτ1(S,℧), it follows that Bτ2(S,℧) is finite. Hence, we have finished the proof.

One can see that the converse of Proposition 3.9 is false by taking a member of τ2 which is not a
member of τ1.

Proposition 3.10. Let (Z, τ,℧) be an S T-space and (S j,℧) be s-subsets of it for each j ∈ J. Then,
B[⊔ j∈J(S j,℧)] ⊑ ⊔ j∈J B(S j,℧).

Proof. We provide the proof for two s-subsets. To do this, let za ∈ B[(S,℧) ⊔ (U,℧)]. Then,

za ∈ C[(S,℧) ⊔ (U,℧)] and za < I[(S,℧) ⊔ (U,℧)]

=⇒ za ∈ C(S,℧) or C(U,℧) and za < I(S,℧) and za < I(U,℧)

=⇒ za ∈ C(S,℧)△I(S,℧) or za ∈ C(U,℧)△I(U,℧)

=⇒ za ∈ B(S,℧) ⊔ B(U,℧).

Hence, we obtain B[(S,℧) ⊔ (U,℧)] ⊑ B(S,℧) ⊔ B(U,℧), as required. One can obtain the proof
for an arbitrary number of s-subsets by using the mathematical induction proof.
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Corollary 3.11. The finite numbers of soft unions (resp., soft intersections) of finite s-open (resp., finite
s-closed) subsets of an S T-space (Z, τ,℧) is finite s-open (resp., finite s-closed).

Corollary 3.12. The family of finite s-open sets structures an infra soft topology.

Proof. It is obvious that the absolute and null s-sets are finite s-open. By Corollary 3.11, this family is
closed under a finite soft intersection. Thus, the required finding is obtained.

One may prove the next result by following similar arguments given in the proof of Proposition 3.10.

Proposition 3.13. Let (Z, τ,℧) be an S T-space and (S j,℧) be s-subsets of it for each j ∈ J. Then,
B[⊓ j∈J(S j,℧)] ⊑ ⊔ j∈J B(S j,℧).

Corollary 3.14. The finite numbers of soft unions (resp., soft intersections) of finite s-closed (resp.,
finite s-open) subsets of an S T-space (Z, τ,℧) is finite s-closed (resp., finite s-open).

In the next example, we show that the converse of Proposition 3.10 is not always true, as well as
reveal that both classes of finite s-open and finite s-closed subsets are not always closed under arbitrary
numbers of soft unions and intersections.

Example 3.15. Suppose that we have an S T-space (R, τ,℧) such that R is the real numbers set, ℧ =
{a, b}, and τ is the usual soft topology; that is, τ is generated by the soft basis {(S,℧) : S(a) and S(b)
are open intervals in the forms of (i, j)}. By taking the following s-sets:

(S,℧) = {(a, (3, 4)), (b, (3, 4))}, and

(U,℧) = {(a, [4, 5)), (b, [4, 5))}.

We find that
B[(S,℧) ⊔ (U,℧)] = {(a, {3, 5}), (b, {3, 5})} , whereas

B(S,℧) ⊔ B(S,℧) = {(a, {3, 4, 5}), (b, {3, 4, 5})}.

Therefore, B[⊔ j∈J(S j,℧)] is a proper s-subset of ⊔ j∈J B(S j,℧).
Also, by taking the s-sets of the form (Si,℧) = {(a, (i, i + 1)), (b, (i, i + 1))}, we get that (Si,℧) is

finite s-open for each i in the set of natural numbers N. In contrast, the s-set ⊔i∈N(Si,℧) is not finite
s-open because

C[⊔i∈N(Si,℧)]△ ⊔i∈N (Si,℧)

= C[{(a, [1,∞)\N), (b, [1,∞)\N)}]△{(a, [1,∞)\N), (b, [1,∞)\N)}

= {(a, [1,∞)), (b, [1,∞))}]△{(a, [1,∞)\N), (b, [1,∞)\N)}

= {(a,N), (b,N)},

which is an infinite s-set. So, the class of finite s-open sets is not closed under an arbitrary number of
soft unions.

Moreover, by taking the s-sets of the form (Si,℧) = {(a, (−1
i ,

1
i )), (b, (−1

i ,
1
i ))}, we get that (Si,℧) is

finite s-open for each i in the set of natural numbers N. But the s-set ⊓i∈N(Si,℧) = {(a, {0}), (b, {0})}
is not s-open; thus, it is not finite s-open. Hence, the class of finite s-open sets is not closed under an
arbitrary numbers of soft intersections.

By taking the complement of the second and third computations, we also infer that the class of finite
s-closed sets is not closed under an arbitrary number of soft unions and intersections.
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Proposition 3.16. Let (Z, τ,℧) be an S T-space and (S,℧) and (U,℧) be s-subsets of it such that
C(S,℧) and C(U,℧) are disjoint. Then, B[(S,℧) ⊔ (U,℧)] = B(S,℧) ⊔ B(U,℧).

In what follows, we will discuss the connections of this kind of s-set with s-open sets and their
known generalizations.

Proposition 3.17. (i) Every soft-clopen set is finite s-open.

(ii) Every finite s-open set is s-open (soft ζ-open), where ζ ∈ {α, pre, semi, b, β, somewhere dense}.

Proof. Since B(S,℧) is the null s-set for every soft-clopen subset (S,℧), the proof of (i) follows. The
proof of (ii) is obvious by Definition 3.1 for the case of s-open sets, and by the previous relationships
that are well known in the published articles for the case of between brackets.

By Example 3.15, it can be seen that the s-set (S,℧) = {(a, (4, 5]), (b, [2, 3))} is soft ζ-open for
ζ ∈ {semi, b, β, somewhere dense} but not finite s-open. Also, {(a, [1,∞)\N), (b, [1,∞)\N)} is an s-
open set that is not finite s-open. On the other hand, in a soft topology consisting of three elements
over the finite universal set we get a finite s-open set that is not soft-clopen. Thus, the converse of
Proposition 3.17 is false, in general.

Proposition 3.18. If all proper s-closed subsets of an infinite S T-space are finite, then an s-set is
s-open if and only if it is finite s-open.

Proof. To prove the necessary side, let (S,℧) be s-open. Suppose, to the contrary, that B(S,℧) is
infinite. Then, C(S,℧) is infinite. By the hypothesis, C(S,℧) must equal the absolute s-set. Therefore,
B(S,℧) is the null s-set. But, this contradicts the idea that B(S,℧) is infinite, so (S,℧) is finite s-open.
The sufficient side is obvious by (ii) of Proposition 3.17.

Example 3.15 elucidates the necessity of the condition that all proper s-closed subsets are finite to
satisfy the equality in Proposition 3.18. That is, {(a, [1,∞)\N), (b, [1,∞)\N)} is an s-open subset of an
S T -space (R, τ,℧) defined in Example 3.15 that is not finite s-open.

The following lemma will be useful to demonstrate some of the upcoming results.

Proposition 3.19. The families of s-open and finite s-open subsets of an S T-space (Z, τ,℧) are
identical provided that one of the following conditions holds:

(i) The absolute s-set is finite.

(ii) The soft topology is soft-clopen.

(iii) The soft topology is locally indiscrete.

Proof. (i): It is obvious.
(ii): It follows from (iv) of Proposition 3.3.
(iii): It is sufficient to show that B(S,℧) is null for any s-open subset of a soft locally indiscrete
topological space. To demonstrate this, let (S,℧) be s-open. By the hypothesis, (S,℧) is expressed as
a soft union of soft-clopen subsets, i.e.,

(S,℧) = ⊔ j∈J(U j,℧) where (U j,℧) is an element of soft basis for each j. (3.1)
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By Proposition 3.10, we have the following inclusion

B[⊔ j∈J(U j,℧)] ⊑ ⊔ j∈J B(U j,℧).

Since every (U j,℧) is soft-clopen, B(U j,℧) = Φ. This implies that B[⊔ j∈J(U j,℧)] = Φ. From 3.1
we prove that (S,℧) is finite s-open.

Corollary 3.20. The closeness of finite s-open sets for arbitrary soft unions is satisfied provided that
one of the following conditions holds:

(i) The absolute s-set is finite.

(ii) The soft topology is soft-clopen.

(iii) The soft topology is locally indiscrete.

Proposition 3.21. Let (S,℧) be a finite s-open subset of a soft extremally disconnected space (Z, τ,℧).
Then C(S,℧) is finite s-open.

Proof. Since C(S,℧) is s-open and B[C(S,℧)] ⊑ C(S,℧), the proof follows.

Recall that (S,℧) is called a discrete s-subset of an S T -space (Z, τ,℧) if every soft point za ∈ (S,℧)
has an s-neighborhood (U,℧) such that (S,℧) ⊓ (U,℧) = za.

Lemma 3.22. An S T-space (Z, τ,℧) is soft-submaximal if and only if C(S,℧)∆I(S,℧) is a discrete
s-set.

Proof. It follows by a similar argument as that given in the proof of Theorem 3.3 of [41].

Theorem 3.23. Let (S,℧) be an s-subset of a soft compact and soft submaximal space (Z, τ,℧). Then,
C(S,℧)∆I(S,℧) is a finite s-set.

Proof. Since C(S,℧)∆I(S,℧) is an s-closed set, it follows from Lemma 3.22 that it is a discrete s-set.
By the hypothesis of soft compactness, we obtain that C(S,℧)∆I(S,℧) is also a soft compact set.
Hence, C(S,℧)∆I(S,℧) must be a finite s-set.

Corollary 3.24. If (Z, τ,℧) is a soft compact and soft submaximal space, then the families of s-open
and finite s-open sets are identical.

We conclude this section by looking at the transition of the feature of being a finite s-open set
between soft and classical realms.

Proposition 3.25. If (S,℧) is a finite s-open subset of (Z, τ,℧), then S(a) is a finite open subset of
(Z, τa) for every a ∈ ℧.

Proof. It is obvious that S(a) is an open subset of (Z, τa) for every a ∈ ℧ when (S,℧) is a finite
s-open subset of (Z, τ,℧). It remains to be shown that B(S(a)) is finite. From Proposition 2.13,
(C(S),℧) ⊑ C(S,℧), which automatically means that (B(S),℧) is finite. Hence, B(S(a)) is finite, as
required.

The following counterexample is presented to clarify that the inverse direction of Proposition 3.25
need not be correct, in general.
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Example 3.26. Let the real numbers and natural numbers sets (respectively denoted by R and N) be
the universal and parameter sets, respectively. Define an S T τ over R with N as follows:

τ = {Φ, R̃, (Si,N) : Si(n) = R for all but finitely many n ∈ N}.

Now, one can remark that an s-set (U,N) defined by

U(1) = {1} and for n , 1 : U(n) = R

is not finite s-open in spite of all components being finite open sets.

Proposition 3.27. Let τ be extended and (S,℧) be an s-subset of (Z, τ,℧). Then, (S,℧) is a finite
s-open set if and only if S(a) is a finite open subset of (Z, τa) for every a ∈ ℧.

Proof. The necessary part has been shown in the previous proposition. To prove the sufficient part, let
S(a) be a finite open subset of (Z, τa) for every a ∈ ℧. Since τ is extended, it respectively follows from
Theorem 2.15 and Definition 2.14 that the equality relation C(S,℧) = (C(S),℧) holds, and an s-set
(S),℧) ∈ τ if and only if S(a) ∈ τa for every a ∈ ℧. Therefore, an s-set consists of S(a) for all a ∈ ℧,
i.e., (S,℧), is s-open, and (C(S),℧)△(S,℧) is finite. By the following equalities, we find that B(S,℧)
is finite, which ends the proof.

B(S,℧)

= C(S,℧)△(S,℧)

= (C(S),℧)△(S,℧).

4. Soft interior and closure operators for finite s-open sets

In this section, we put forward some operators that have been inspired by finite s-open and finite
s-closed sets. We document that some topological properties of these operators are missing, to name a
few, the equality between an s-subset and its soft f o-interior (resp., soft f o-closure) operator does not
imply that this s-subset is finite s-open (resp., finite soft closed). We offer some formulas that describe
the interrelations between these operators and build some illustrative examples.

Definition 4.1. Let (S,℧) be an s-set in (Z, τ,℧); the union of all finite s-open subsets which are
contained in (S,℧), is defined as the f o-interior operator of (S,℧), and it will be denoted by I f o(S,℧).

The next result follows directly from the above definition. The validity of its converse is false in
general, as revealed by the example given after this proposition.

Proposition 4.2. If (S,℧) is a finite s-open subset of (Z, τ,℧), then (S,℧) = I f o(S,℧).

Example 4.3. In Example 3.15, we showed that {(a, [1,∞)\N), (b, [1,∞)\N)} is not finite s-open. On
the other hand, notice that {(a, [1,∞)\N), (b, [1,∞)\N)} = ⊔i∈N{(a, (i, i + 1)), (b, (i, i + 1))}, where
{(a, (i, i + 1)), (b, (i, i + 1))} is finite s-open for each i ∈ N. Hence, {(a, [1,∞)\N), (b, [1,∞)\N)} =
I f o({(a, [1,∞)\N), (b, [1,∞)\N)}).
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Proposition 4.2 says that the f o-interior operator does not fulfill a main feature of soft interior
operator; that is, if, for every soft-point za belonging to (S,℧) there exists a finite s-open set (U,℧)
such that za ∈ (U,℧) ⊑ (S,℧), then (S,℧) need not be finite s-open.

The following properties of f o-interior operators can be proved easily, so we omit their proofs.

Proposition 4.4. For all s-subsets (S,℧), (U,℧) of (Z, τ,℧), we have

I f o(S,℧) ⊑ I f o(U,℧) when (S,℧) ⊑ (U,℧).

Corollary 4.5. Let (S,℧) and (U,℧) be s-subsets of (Z, τ,℧). Then I f o(S,℧) ⊔ I f o(U,℧) ⊑
I f o[(S,℧) ⊔ (U,℧)].

The relations of inclusion deduced in the aforementioned results (Proposition 4.4 and Corollary 4.5)
cannot be replaced by equalities, as clarified by the following counterexamples.

Example 4.6. Let (Z, τ,℧) be an S T-space, where Z = {x, y, z}, ℧ = {a, b, c}, and the members of τ
are the null and absolute s-sets and the following s-sets:

(S,℧) = {(a,Z), (b, ∅), (c, ∅)} and (U,℧) = {(a, ∅), (b,Z), (c,Z)}.

Take the s-sets as (H ,℧) = {(a, ∅), (b,Z), (c, ∅)} and (K ,℧) = {(a, ∅), (b, ∅), (c,Z)}. Then, I f o(H ,℧) =
I f o(K ,℧) = Φ in spite of (H ,℧) and (K ,℧) being independent of each other with respect to the
inclusion relation. Moreover,

I f o(H ,℧) ⊔ I f o(K ,℧) = Φ,

whereas
I f o[(H ,℧) ⊔ (K ,℧)] = (U,℧).

Proposition 4.7. Let (S,℧) and (U,℧) be s-subsets of (Z, τ,℧). Then I f o[(S,℧) ⊓ (U,℧)] =
I f o(S,℧) ⊓ I f o(U,℧).

Proof. The side I f o[(S,℧) ⊓ (U,℧)] ⊑ I f o(S,℧) ⊓ I f o(U,℧) follows from Proposition 4.4. The
converse side can be obtained from Corollary 3.11.

Now, we go into f o-closure operators, which are considered as the dual of f o-interior operators.

Definition 4.8. Let (S,℧) be an s-set in (Z, τ,℧); the intersection of all finite s-closed subsets
containing (S,℧) is defined as the f o-closure operator of (S,℧), and it will be denoted by C f o(S,℧).

Proposition 4.9. Suppose that there exists an s-subset (S,℧) of (Z, τ,℧) and za ∈ Z̃. Then, za ∈

C f o(S,℧) if and only if (U,℧) ⊓ (S,℧) , Φ for each finite s-open set (U,℧) containing za.

Proof. Necessity: Let za ∈ C f o(S,℧) and (U,℧) be a finite s-open set such that za ∈ (U,℧). Suppose
that (U,℧) ⊓ (S,℧) = Φ. Now, we have that (S,℧) ⊑ (Uc,℧). It follows that C f o(S,℧) ⊑ (Uc,℧).
But, this contradicts that za ∈ C f o(S,℧). Hence, the intersection of (U,℧) and (S,℧) must be the
non-null s-set.
Sufficiency: Let us consider that the sufficient part holds. Suppose, to the contrary, that za < C f o(S,℧).
This means that we can find a finite s-closed set (H ,℧) containing (U,℧) such that za < (H ,℧).
Accordingly, we have (H c,℧) as a finite s-open set containing za and its intersection with (S,℧) is the
null s-set. This is a contradiction. Hence, we demonstrate that za ∈ C f o(S,℧).
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Corollary 4.10. Let (S,℧) be a finite s-open set and (U,℧) an s-set in (Z, τ,℧). Then, (S,℧) ⊓
(U,℧) = Φ implies that (S,℧) ⊓ C f o(U,℧) = Φ. Moreover, if (S,℧) and (U,℧) are finite s-open
sets, then C f o(S,℧) ⊓ C f o(U,℧) = Φ.

Proposition 4.11. If (S,℧) is an s-subset of (Z, τ,℧); then, the following holds:

(i) If (S,℧) is a finite s-closed set, then (S,℧) = C f o(S,℧).

(ii) [I f o(S,℧)]c = C f o(Sc,℧) and [C f o(S,℧)]c = I f o(Sc,℧).

Proof. (i): It is straightforward.
(ii):

[I f o(S,℧)]c

= [⊔ j∈J(H j,℧) : (H j,℧) ⊑ (S,℧) where (H j,℧) is a finite s-open set]c

= [⊓ j∈J(H c
j ,℧) : (Sc,℧) ⊑ (H c

j ,℧) where (H c
j ,℧) is a finite s-closed set]

= C f o(Sc,℧).

Proposition 4.12. Let (S,℧) be an s-subset of (Z, τ,℧). Then, C f o(S,℧) ⊑ C f o(U,℧) when (S,℧) ⊑
(U,℧).

Proof. Owing to the fact that every finite s-closed set contains (U,℧) is also contains (S,℧), the proof
is completed.

Corollary 4.13. Let (S,℧) and (U,℧) be s-subsets (Z, τ,℧). Then, C f o[(S,℧)⊓(U,℧)] ⊑ C f o(S,℧)⊓
C f o(U,℧).

By Example 4.6, it can be confirmed that the inclusion relations deduced in Proposition 4.12 and
Corollary 4.13 cannot be replaced by equalities.

Proposition 4.14. Let (S,℧) and (U,℧) be s-subsets of (Z, τ,℧). Then, C f o[(S,℧) ⊔ (U,℧)] =
C f o(S,℧) ⊔ C f o(U,℧).

Proof. The side C f o(S,℧) ⊔ C f o(U,℧) ⊑ C f o[(S,℧) ⊔ (U,℧)] follows from Proposition 4.12. The
converse side can be obtained from Corollary 3.11.

Definition 4.15. Let (S,℧) be an s-subset of (Z, τ,℧). The complement of I f o(S,℧) ⊔ I f o(Sc,℧) is
said to be an f o-boundary of (S,℧); it will be denoted by B f o(S,℧).

Proposition 4.16. Let (S,℧) be an s-subset of (Z, τ,℧). Then,

B f o(S,℧) = C f o(S,℧) ⊓ C f o(Sc,℧).

Proof. B f o(S,℧) = [I f o(S,℧) ⊔ I f o(Sc,℧)]c

= [I f o(S,℧)]c ⊓ [I f o(Sc,℧)]c (De Morgan’s law)
= C f o(Sc,℧) ⊓ C f o(S,℧). (Proposition 4.11 (ii))

Corollary 4.17. Let (S,℧) be an s-subset of (Z, τ,℧). Then, the following holds:
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(i) B f o(S,℧) = B f o(Sc,℧).

(ii) B f o(S,℧) = C f o(S,℧)∆ I f o(S,℧).

(iii) C f o(S,℧) = I f o(S,℧) ⊔ B f o(S,℧).

(iv) I f o(S,℧) = (S,℧)∆ B f o(S,℧).

Proof. (i): It is straightforward.
(ii): B f o(S,℧) = C f o(S,℧) ⊓ C f o(Sc,℧) = C f o(S,℧)∆ [C f o(Sc,℧)]c. By (ii) of Proposition 4.11, the
required relation is obtained.
(iii): I f o(S,℧) ⊔ B f o(S,℧) = I f o(S,℧) ⊔ [C f o(S,℧)∆ I f o(S,℧)] = C f o(S,℧).
(iv): (S,℧)∆ B f o(S,℧) = (S,℧)∆ [C f o(S,℧)∆ I f o(S,℧)]

= (S,℧) ⊓ [C f o(S,℧) ⊓ (I f o(S,℧))c]c

= (S,℧) ⊓ [(C f o(S,℧))c ⊔ I f o(S,℧)]
= [(S,℧) ⊓ (C f o(S,℧))c] ⊔ [(S,℧) ⊓ I f o(S,℧)]
= I f o(S,℧).

Note that B f o(S,℧) need not be a finite s-closed set.
From (ii) of Corollary 4.17, the proof of the next proposition follows.

Proposition 4.18. The next formula holds for any s-subset (S,℧) of (Z, τ,℧):

B f o(I f o(S,℧)) ⊔ B f o(C f o(S,℧)) ⊑ B f o(S,℧).

The inclusion relation of Proposition 4.18 cannot be replaced by an equality, as demonstrated by
the following example.

Example 4.19. Let (S,℧) = {(a,Q), (b,Q)} be an s-subset an S T-space (Z, τ,℧) provided in Example
3.15. Then, B f o(I f o(S,℧)) ⊔ B f o(C f o(S,℧)) = Φ, whereas B f o(S,℧) = {(a,R), (b,R)}.

Proposition 4.20. Let (S,℧) be an s-subset of (Z, τ,℧).

(i) If (S,℧) is a finite s-open set, then B f o(S,℧) ⊓ (S,℧) = Φ.

(ii) If (S,℧) of (Z, τ,℧) is a finite s-closed set, then B f o(S,℧) ⊑ (S,℧).

Proof. (i). Since (S,℧) is finite s-open, then by (iv) of Corollary 4.17, we get that I f o(S,℧) = (S,℧) =
(S,℧)∆B f o(S,℧). Thus, B f o(S,℧) ⊓ (S,℧) = Φ.
(ii). Obviously, B f o(S,℧) = C f o(S,℧) ⊓ C f o(Sc,℧) ⊑ C f o(S,℧). Since (S,℧) is finite s-closed, we
obtain the proof.

Corollary 4.21. If (S,℧) is a finite soft-clopen subset of an S T-space, then B f o(S,℧) = Φ.

Definition 4.22. Let (S,℧) be an s-subset of an S T-space (Z, τ,℧); the union of soft points za

satisfying that

[(U,℧)\za] ⊔ (S,℧) , Φ for each finite s-open set containing za

is said to be an f o-derived operator of (S,℧); it will be denoted by L f o(S,℧).
The following properties of f o-derived operators can be proved easily, so we omit their proofs.
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Proposition 4.23. Let (S,℧) and (U,℧) be s-subsets of an S T-space (Z, τ,℧). Then (S,℧) ⊑ (U,℧)
implies that L f o(S,℧) ⊑ L f o(U,℧).

Corollary 4.24. Let (S,℧) and (U,℧) be s-subsets of an S T-space (Z, τ,℧). Then L f o[(S,℧) ⊓
(U,℧)] ⊑ L f o(S,℧) ⊓ L f o(U,℧).

Proposition 4.25. Let (S,℧) and (U,℧) be s-subsets of (Z, τ,℧). Then L f o[(S,℧) ⊔ (U,℧)] =
L f o(S,℧) ⊔ L f o(U,℧).

Proof. The side L f o[(S,℧) ⊔ (U,℧)] ⊑ L f o(S,℧) ⊔ L f o(U,℧) follows from Proposition 4.23. The
converse side can be obtained from Corollary 3.11.

Theorem 4.26. Let (S,℧) be an s-subset of an S T-space (Z, τ,℧).

(i) If (S,℧) is a finite s-closed set, then L f o(S,℧) ⊑ (S,℧).

(ii) C f o(S,℧) = (S,℧) ⊔ L f o(S,℧).

Proof. (i): Assume that (S,℧) is a finite s-closed set and za < (S,℧). Then, za ∈ (S,℧)c which is
a finite s-open set. From the fact that (S,℧)c ⊓ (S,℧) = Φ, we obtain that za < L f o(S,℧). Thus,
L f o(S,℧) ⊑ (S,℧).
(ii): Let za < [(S,℧) ⊔ L f o(S,℧)]. Then za < (S,℧) and za < L f o(S,℧). Therefore, there is a finite
s-open set (U,℧) containing za with (U,℧)⊓ (S,℧) = Φ. Thus, C f o(S,℧) ⊑ (S,℧)⊔ L f o(S,℧). On
the other hand, it is well known that (S,℧) ⊔ L f o(S,℧) ⊑ C f o(S,℧).

5. Soft f o-continuous functions

Here, we will discuss novel kinds of soft continuous functions and establish their fundamentals.
Main characterizations will be provided and the behaviors under decomposition theorems will be
scrutinized. With the help of counterexamples, we will describe the transition of these types between
realms of soft topologies and classical topologies as well as explain the role of extended soft topologies
to guarantee this movement between these realms.

Definition 5.1. A soft function Eξ : (Z, τ,℧) → (X, µ,℧) is said to be soft f f -continuous (resp.,
soft o f -continuous, soft f o-continuous) if the inverse image of each finite s-open (resp., finite s-open,
s-open) subset is finite s-open (resp., s-open, finite s-open).

Proposition 5.2. (i) A soft f o-continuous function is soft f f -continuous.

(ii) A soft f f -continuous function is soft o f -continuous.

It is not necessary for the above proposition’s converse to be true. The example which follows
illustrates it.

Example 5.3. Suppose that we have S T-spaces (R, υ,℧), (R, µ,℧) and (Z, τ,℧) such that R is the set
of real numbers, Z = {y, z}, ℧ = {a, b, c} and the soft topologies υ, µ over R with ℧ and τ over Z with
℧ are given by
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υ = {R̃, (S,℧) ⊑ R̃ : 1 ∈ (S,℧)} ∪ {Φ},

µ = {Φ, R̃, (U,℧) = {(a, {1}), (b, {1}), (c, {1})}}, and

τ = {Φ, Z̃, (U,℧) = {(a, {z}), (b, {z}), (c, {z})}}.

Take soft functions Cξ : (R, υ,℧)→ (R, µ,℧) and Eξ : (R, µ,℧)→ (Z, τ,℧) such that the functions
C : R→ R and ξ : ℧→ ℧ are identities and E : R→ Z is given by

E(1) = z and for each r , 1 we have E(r) = y.

Then, Cξ and Eξ are soft f f -continuous and soft o f -continuous, respectively. In contrast, neither
Cξ is soft f o-continuous nor Eξ is soft f f -continuous.

Proposition 5.4. The soft f f -continuity and soft o f -continuity are identical under an injective
condition.

Proof. By Proposition 3.5, we get the identity between them.

Some descriptions for these sorts of soft continuity are presented in the following proposition.

Proposition 5.5. Let Eξ : (Z, τ,℧)→ (X, µ,℧) be a soft function. Then, the following holds:

(i) If Eξ is soft f f -continuous, then, for every za ∈ Z and every finite s-open subset (S,℧) containing
Eξ(za), there is a finite s-open set (U,℧) containing za with Eξ(U,℧) ⊑ (S,℧).

(ii) If Eξ is soft o f -continuous, then, for every za ∈ Z and every finite s-open set (S,℧) containing
Eξ(za), there is an s-open set (U,℧) containing za with Eξ(U,℧) ⊑ (S,℧).

(iii) If Eξ is soft f o-continuous, then, for every za ∈ Z and every s-open set (S,℧) containing Eξ(za),
there is a finite s-open set (U,℧) containing za with Eξ(U,℧) ⊑ (S,℧).

Proof. We prove (i) and one can prove the other cases by following similar arguments.
Let za ∈ Z and (S,℧) be a finite s-open set containing Eξ(za). Since E−1

ξ (S,℧) is a finite s-open set
containing za, there is a finite s-open set (U,℧) containing za with Eξ(U,℧) ⊑ (S,℧).

The composition theorem for these soft continuity types are exhibited in the following result.

Proposition 5.6. Let CΦ : (X, υ,℧)→ (Y, ω,℧) and Eξ : (Z, τ,℧)→ (X, µ,℧) be soft functions. Then,

(i) If Eξ and CΦ are soft f f -continuous (resp., soft f o-continuous), then CΦ ◦ Eξ is soft f f -continuous
(resp., soft f o-continuous), too.

(ii) If Eξ is soft f f -continuous and CΦ is soft f o-continuous, then CΦ ◦ Eξ is soft f o-continuous.

(iii) If Eξ is soft f o-continuous (resp., soft o f -continuous) and CΦ is soft o f -continuous (resp., soft
f o-continuous), then CΦ ◦ Eξ is soft f f -continuous (resp., soft continuous).

Proof. It is straightforward.
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Note that the decomposition of soft o f -continuous functions need not be a soft o f -continuous
function.

Now, we will derive some characterizations of soft f f -continuity, soft f o-continuity, and soft o f -
continuity.

Proposition 5.7. Let Eξ : (Z, τ,℧) → (X, µ,℧) be a soft function. Then, Eξ is soft f f -continuous
(resp., soft f o-continuous, soft o f -continuous) if and only if the pre-image of every finite s-closed
(resp., s-closed, finite s-closed) subset is finite s-closed (resp., finite s-closed, s-closed).

The next theorems and counterexamples will describe the transitions of these soft continuity types
in the realms of soft and crisp topologies.

Theorem 5.8. If Eξ : (Z, τ,℧)→ (X, µ,℧) is a soft f o-continuous function, then E : (Z, τa)→ (X, µξ(a))
is an f o-continuous function.

Proof. Let U be an open subset of (X, µξ(a)). Then, there is an s-open subset (S,℧) of (X, µ,℧) such
that S(ξ(a)) = U. By the hypothesis, Eξ is soft f o-continuous, so E−1

ξ (S,℧) is a finite s-open set. It
follows from Proposition 3.25 that each component of E−1

ξ (S,℧) is a finite open set. We remark that an
s-subset E−1

ξ (S,℧) = (K ,℧) of (Z, τ,℧) is calculated by applyingK(a) = E−1(S(ξ(a))) for each a ∈ ℧.
Accordingly, we obtain that E−1(S(ξ(a))) = E−1(U) is finite open. Hence, we show the f o-continuity
of E : (Z, τa)→ (X, µξ(a)).

In general, the converse of Theorem 5.8 fails, as the next counterexample illustrates.

Example 5.9. Let ℧ = {a, b, c} and τ = {Φ̃, Z̃, (S,℧)}, µ = {Φ̃, Z̃, (U,℧)} be soft topologies on
Z = {y, z}, where

(S,℧) = {(a, {z}), (b,Z), (c, {z})}, and

(U,℧) = {(a, ∅), (b,Z), (c, {z})}.

Consider the following identity functions ξ : ℧ → ℧ and E : Z → Z. Then, E : (Z, τa) →
(Z, µξ(a)=a), E : (Z, τb) → (X, µξ(b)=b) and E : (Z, τc) → (Z, µξ(c)=c) are f o-continuous. On the other
hand, Eξ : (Z, τ,℧)→ (Z, µ,℧) is not a soft f o-continuous function because E−1

ξ (U,℧) = (U,℧) < τ.

Theorem 5.10. Let τ be an extended soft topology on Z with℧. Then, Eξ : (Z, τ,℧)→ (X, µ,℧) is soft
f o-continuous if and only if E : (Z, τa)→ (X, µξ(a)) is f o-continuous for every parameter of ℧.

Proof. In Theorem 5.8, we proved the necessary part.
To clarify the sufficiency, consider (S,℧) as an s-open subset of (X, µ,℧). Clearly, a soft subset

E−1
ξ (S,℧) = (K ,℧) of (Z, τ,℧) is given by K(a) = E−1(S(ξ(a))) for each a ∈ ℧. Since E is f o-

continuous, E−1(S(ξ(a))) is a finite open subset of (Z, τa). Since a soft topology τ is extended, so we
obtain that E−1

ξ (S,℧) is a finite s-open subset of (Z, τ,℧) by Proposition 3.27. This ends the proof that
Eξ is soft f o-continuous.

Theorem 5.11. Let τ be an extended soft topology on Z with℧. Then, Eξ : (Z, τ,℧)→ (X, µ,℧) is soft
f f -continuous (resp., soft o f -continuous) if and only if E : (Z, τa)→ (X, µξ(a)) is f f -continuous (resp.,
o f -continuous) for every parameter of ℧.

AIMS Mathematics Volume 9, Issue 4, 10363–10385.



10381

Proof. We prove the theorem in the case of soft f f -continuity and f f -continuity. One may follow a
similar technique to demonstrate the case between brackets.

Necessity: Let U be a finite open subset of (X, µξ(a)). Then by Proposition 3.27, there is a finite s-
open subset (S,℧) of (X, µ,℧) such that S(ξ(a)) = U. By the hypothesis, Eξ is soft f f -continuous, so
E−1
ξ (S,℧) is a finite s-open set. Again by Proposition 3.25, we get that each component of E−1

ξ (S,℧)
is a finite open set. Accordingly, we obtain that E−1(S(ξ(a))) = E−1(U) is finite open. Hence, E :
(Z, τa)→ (X, µξ(a)) is f f -continuous, as required.

Sufficiency: Take an arbitrary finite s-open subset (S,℧) of (X, µ,℧). Clearly, a soft subset
E−1
ξ (S,℧) = (K ,℧) of (Z, τ,℧) is given by K(a) = E−1(S(ξ(a))) for each a ∈ ℧. Since E is f f -

continuous, E−1(S(ξ(a))) is a finite open subset of (Z, τa). Since a soft topology τ is extended, so by
Proposition 3.27, E−1

ξ (S,℧) is a finite s-open subset of (Z, τ,℧). Thus, Eξ : (Z, τ,℧) → (X, µ,℧) is
soft f f -continuous.

6. Conclusions and future work

Topology and its uncertain versions like soft topology are vital tools to address many impediments
that we face in different situations of our life [16–20]. The s-open sets are the unit of building soft
topology, so expanding or restricting this unit creates novel frames of study and is sometimes useful to
deal with the phenomena under consideration. So, different forms of s-open sets deserve further and
deeper investigation.

In the current work, we have introduced the concept of finite s-open sets as a subclass that strictly
lies between the classes of soft-clopen and s-open sets. We have demonstrated that this class has unique
features that differ from the well-known extensions of s-open sets; for instance, it constitutes an infra
soft topology and fails to be a supra soft topology. We have elucidated the connections between the
current class and other known generalizations of s-open sets and determined under which conditions
they are equivalent. Also, we have defined the concepts of soft f o-interior and f o-closure operators
and showed that these operators maintain the distributive properties of soft unions and intersections,
respectively. Ultimately, we have discussed some types of soft continuity that have been inspired by
finite s-open sets and described their main characterizations. The sufficient conditions that are required
to navigate these types of soft continuity from soft topologies to classical topologies and vice versa
have been provided. We have presented numerous interesting examples that illustrate the implications
of the obtained findings and interrelations.

Last but not least, as it is well known that topological operators and generalizations of open sets
are alternative tools to describe the approximation operators of subsets and heighten their accuracy
measures, one of the main focuses of future work is to look at how the proposed class can be applied
to information systems to select the optimal choice and make an accurate decision. Also, we plan to
familiarize other topological concepts using the class of finite s-open sets, such as soft regularity and
normality spaces, soft covering properties, soft connectedness, etc. Moreover, we shall study the ideas
discussed here within the context of infra soft topologies [14] and supra soft topologies [23].
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Lindelöf spaces using soft somewhere dense sets, AIMS Mathematics, 6 (2021), 8064–8077.
https://doi.org/10.3934/math.2021468

35. T. M. Al-shami, A. Mhemdi, A. Rawshdeh and H. Al-jarrah, On weakly soft somewhat open sets,
Rocky Mountain J. Math., 54 (2024), 13–30, https://doi.org/10.1216/rmj.2024.54.13

36. B. A. Asaad, Results on soft extremally disconnectedness of soft topological spaces, J. Math.
Comput. Sci., 17 (2017), 448–464. https://doi.org/10.22436/jmcs.017.04.02
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